
315 International Journal of Control Theory and Applications

International Journal of Control Theory and Applications

ISSN : 0974–5572

© International Science Press

Volume 9  •  Number 42  •  2016

A Cloud-based Solution of Dynamic Traffi c Routing Problem for 
Autonomous Robots

Rajesh Doriyaa Avinash Kumar Singhb and Pavan Chakrabortyb

aDepartment of Information Technology, National Institute of Technology, Raipur India -492010
E-mail: rajeshdoriya.it@nitrr.ac.in, Corresponding Author
b Robotics and Artifi cial Intelligence Lab, Indian Institute of Information Technology, Allahabad India - 211012
E-mail: avinashkumarsingh1986@gmail.com, pavan@iiita.ac.in

Abstract: Dynamic Vehicle Traffi c Routing is one of the interesting and challenging research area due to its stochastic 
nature and practical usage in navigation system. This paper presents a solution to Dynamic Vehicle Traffi c Routing 
problem in which a cloud based approach is utilized to compute the most suited route to reach the destination given 
that traffi c is changing stochastically. Here, the effi cient route is calculated on the basis of historical traffi c data and 
ranking of roads. In our system, a cloud server observes the traffi c patterns and send the updates after calculating 
most promising move to the vehicles as per their destination. We also tested the working of cloud-based dynamic 
traffi c routing service for autonomous robots with various synthetic data set for 20 nodes by adapting different 
constraints.
Keywords: Dynamic Vehicle Traffi c, Robotic Services, Cloud Computing, Vehicle Routing Problem, Cloud Robotics.

1. INTRODUCTION
Autonomous Guided Vehicle [1] is a type of mobile robot that can use vision or other sensors for navigation. In 
the arena of robotics, mobile robotics has gained much attention due to its economical impact. It has become the 
center of revolution and an active fi eld of research as it reduces costs and increase the effi ciency of the system 
by automation. One of the noticeable projects carried out by S. Thrun at Google is Google’s Autonomous Car 
[2]. The routing of a car like a robot in an urban environment is one of the interesting and challenging research 
area due to its stochastic nature and practical usage in the navigation system.

In DVRP, all relevant information of the vehicle traffi c is not known to the planner and the information 
changes after the initial route planned. The DVRP belongs to the category of NP-hard problems as the problem 
can be solved in reasonable time for realistic problem size.

In a survey carried out by Psarafi ts [3], only a few general results for a simple version of DVRP problem 
have been reported. Powell et. al [4] distinguish dynamism between a model and its application, according 
to him, a problem is dynamic if its parameters are a function of time and the model is solved repeatedly 
upon receiving new information. Several researchers presented many algorithms to solve classical shortest path 
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problem. In a non-stochastic network, a linear or exponential utility function can be solved using an effi cient 
Dijkstra’s algorithm [5]. Hall [6] showed that it fails to address the problems of the non-stationary stochastic 
network. In the same class of problem, the AO* algorithm with heuristics such as air distance and expanding 
some nodes under breadth search can result in effi cient results than the dynamic programming. A new algorithm 
for a least shortest path for the non-stationary stochastic network is also presented by Hooks [7].

Cloud-enabled robots [8-10] primarily expect two functionalities from any cloud service provider, i.e., 
computation offl oading and collaboration and information sharing [11-13]. Both functionalities differ from 
each other by a far margin; the  fi rst cloud service emphasizes on performing computational expensive part of 
a robot at cloud infrastructure; and the second cloud service enables the robot to share their knowledge with 
others present in the cloud eco-system and it also promotes collaboration to perform a task.

In this paper, we have implemented a cloud-based solution of dynamic traffi c routing problem for 
autonomous robots by synthetically generated traffi c data.

2. DYNAMIC TRAFFIC ROUTING PROBLEM FOR ROBOTS WITH CLOUD
The study of Travelling Salesman Problem (TSP) [14] and Vehicle Routing Problem (VRP) [15] has carried 
a wide attention in the scientifi c community. TSP deals with the problem of visiting multiple cities (start and 
return to the same city) optimally in a single tour. Whereas, VRP depicts the problem of delivering logistics by 
different vehicles (may start with different depots) to different places optimally having that each vehicle has a 
limited carrying capacity. The problem of VRP can be classifi ed into two categories: Static VRP and Dynamic 
VRP. Dynamic VRP is much more complex and challenging due to the following facts: 

1. Time dimension is important,

2. Future information is unknown,

3. Neighboring events are very important,

4. Information needs to be updated at regular intervals,

5. Faster computation of information is required,

6. Presence of unavoidable side constraints (such as accidents, road blocks, etc.),

7. Different objective functions, etc.

Dynamic Routing in any kind of network has always been a challenging problem. In our system, we refer 
to Dynamic Vehicle Traffi c Routing Problem (DVTRP), where a network of a city is considered as a problem 
space. However, if the problem is large then it is fi rst divided into a smaller set of a problem then each small 
problem set is addressed individually and the result is combined. 

A city network can be seen as a network or graph of several nodes (road junctions) joined by links (roads). 
The average velocity of the vehicles on each road is acquired through the deployment of fi xed cameras with a 
small computational device. This computational device computes the average velocity of the vehicles from the 
images and transmits it to the OpenStack cloud [16]. The velocities are used to convert the distance graph of the 
cities into a time graph by dividing each branch distance by the average velocity of the car on that branch. Every 
car travelling in the city is connected to the cloud. The vehicle provides its destination and its present location 
through GPS to the cloud. The cloud maps these vehicles on the graph and optimizes the travelled time. The 
path is then conveyed to each vehicle accordingly by the cloud.

The problem of navigation for vehicular robots in a city like operating environment can be seen as 
the Dynamic Vehicle Traffi c Routing Problem (DVTRP) where a vehicle is required to travel from source 
to destination point in shortest time considering the fact that traffi c is changing stochastically. A solution to 
DVTRP in which a cloud-based approach is utilized to compute the most suited route to reach the destination 
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given that traffi c is changing stochastically. The effi cient route is calculated on the basis of traffi c history and 
ranking of roads. A cloud infrastructure observes the traffi c patterns and sends the optimum route in terms of 
time to reach. In our system, we refer to DVTRP, where a network of a city is considered as a problem space. 
However, if the problem is large then it is fi rst divided into a smaller set of a problem then each small problem 
set is addressed individually and the result is combined.

3. DVTRP PROBLEM FORMULATION
Let the network is G  (V, E) Where, V and E V  V are fi nite sets representing the set of nodes and set of 
directed links.  This model can be seen as the network of intersections (nodes) and roads (links). In this model, 
(n, n')  E iff there exists a road segment from n to n'. If n0  V is a start node and g  V is a goal node.  The 
successor for each element can be denoted by SUCCESSOR (n) which is set of nodes having an incoming link 
emanating from n

 SUCESSOR(n) ≡  [n' : (n, n') E] (1)
A path P = (n0 , n1,…, nk) from n0 E forms a sequence of such that nk + 1  SUCCESSOR(nk) where 

k = 0,1,..., k – 1. If TG denotes the travel time between n0 and g, then
 [TG]k (t) =  Tij(t) (2)
Where Tij denotes the path between two nodes at time t. Here, i  j and k denotes the number of possible 

paths to reach goal node.
Since, the path travel time in traffi c is not trivial therefore Tij can be treated as a random variable. Let,  

and 2 are the mean and variance of the random variable. So, the problem of ending optimal path for vehicle in 
traffi c can be denoted by the following optimization equations:

 
GExpected time

min [T ( )]t
 (3)

subject to, T(t) = Tij (t) Zij (4)
where Z is the stochastic path incidence variable. Zij denotes a feasible path between any two nodes of the 
network. Since the path travel time in traffi c is not trivial, therefore Tij () can be denoted as a random variable. 
The algorithm takes the source and destination as input from the navigating vehicle.  Then, starting with the 
source node n0 , it ends the best feasible successor SCS (n) using the current traffi c data, and other heuristics.  
Deciding the next node n' is where a wise decision should be made. Node n' will be the successor, if the node is 
not forming a loop or it has not been visited from this node before.

4. IMPLEMENTATION OF DVTRP AS A SERVICE FOR ROBOTS AT CLOUD
Fig. 1 illustrates a graph of 20 nodes where starting node is n0 = 1 and destination node is g = 20. Each link 
indicates a tuple of two values, the fi rst value represents the average vehicle traffi c on that link and the second 
value is the distance of that link. Some highlighted tuples show that vehicle traffi c values have been changed 
from the last traffi c map hence shows the dynamic nature of the graph. A path P = 1 4 5 10 14  15 
indicates a possible solution in the problem space, where source node is 1 and goal node is 15. In the graph, 
a loop consists of green colored links with dotted oval shows a possible deadlock situation 1 6 3 1. 
At its core, our algorithm searches the graph starting from source node, exploring adjacent nodes until the 
destination is found. While searching for a good path it will keep an account of the number of hops travelled, and 
hence reducing the congestion at the junctions which in turn helps increasing the overall network consistency. 
The heuristics will help in fi nding a robust path which can be judged from the previously available data. 
A feasible path (in terms of time taken) is computed by observing current traffi c conditions from the network.
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The algorithm takes the source and destination as input from the navigating vehicle. Then, starting with 
the source node n0 , it fi nds the best feasible successor SUCCESSOR (n) using the current traffi c data, and other 
heuristics. In order to decide the next node (n'), a wise decision should be made. Although, node n' will be the 
successor, if the node is not forming a loop or it has not been visited from this node before. Now, if this node is 
not the destination node, then it takes the following into account: 

1. The current traffi c values on links (with help of average velocity and (n, n’)).

2. The historical usage (traffi c history), which gives the algorithm an intelligence to move towards goal 
node g and reducing the search space. It may also help in breaking ties between two roads with equal 
traffi c values.

3. The probability of traffi c change (vehicle traffi c window, i.e., traffi c in different slots on a given day) 
at a particular time, which decreases the chance of selecting a road which is free at this moment but 
may get congested at some other time.

4. Constraints parameters which help in fi nding the best path by applying various constraints such as 
opting different hop count values in a vehicle traffi c network.

Figure 1: Problem space of 20 nodes for DVTRP

These parameters help in computing an expected value for every immediate neighbour using Dijkstra's 
algorithm [17] for fi nding a path with minimum weight forms all the nearest neighbours into consideration 
through which the better-seen option should be chosen. While traversing a new node, it keeps a variable hop 
count and marks itself as visited and adds the processing node to the path vector. Thereafter, it checks the 
average hop count variable, if the value of the hop count variable is greater than average hop count variable to 
reach the destination, then it discards that path for further exploration. If it exceeds, then the backtracking is 
initiated, otherwise, it recursively traverses to the adjacent nodes to fi nd the destination. However, if the current 
node is the destination, then the search is terminated.

In our evaluation, CPU run time(s) is used as a principle metric to fi nd minimum time to get the optimum 
route. In the quest of fi nding an optimum route, the Tmin, Tmax and Tavg indicate the minimum, maximum and 
average time obtained from 10 runs over a dynamically created network of 20nodes. Here, we have assumed 
that the starting node is n0 = 1 and goal/destination node is g = 20. The  and  represent standard deviation and 
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fault tolerance parameter respectively, which indicates an average number of faulty paths in a vehicle traffi c 
network that can be caused from any reason of road block. Three cases for each network of 20 nodes with 
random traffi c is taken into account. We represent simple Dijkastra’s shortest route fi nding algorithm as Local 
Search (LS) parameter in this service. 

In order to fi nd the best optimum path, we have taken three constraints into consideration: Hop Count (HC), 
History Parameter (HP) and Fault Tolerance (FT). The HC parameter describes the number of links considered 
simultaneously to calculate the path to reach the destination. The HP parameter details the knowledge about the 
usage and trustworthiness of any link in the network. The FT parameter is used to create the random situations 
in the network. These random situations can be occurred due to road blockage, VIP movement, etc.

In Table 1, three sub-tables are shown, each entry shows the best-obtained path P for given constraints. In 
a sub-table, the best optimum path is evaluated after varying hop-count variable (where HC1 < HC2 < HC3) 
with the values 1, 2 & 3 respectively. From the running times in the given table, we see that Tmin decreases 
when there is an increase in deviation of the average hop count for choosing a path. Here, Tmax shows the worst 
case time where excessive backtracking happens. The second sub-table of each table shows the resulted paths 
when HP is applied in conjunction with HC. In the third sub-table, the HC, HP and FT parameters are applied 
simultaneously on the network. In each table, we have only shown the best path out of the 50 iterations.

Table 1
Results obtained after 50 iterations on 20 nodes with different constraints. Each path shows 

the best path generated from 50 iterations

(a) for constraint HC

S. No. Computed best path P from 50 iterations Tmin Tmax Tavg   Constraints

1. 1  3 → 2 → 9 → 13 → 17 →20 83 501 229.88 115.28 – HC = 1

2. 1 → 2 → 3 → 4 → 5 → 10 →
12 → 18 → 20 125 412 306.70 47.22 – HC = 2

3. 1 → 5 → 4 → 9 → 13 → 15 →
17 → 20 78 679 348.18 118.63 – HC = 3

(b) for constraint HC and HP

S. No. Computed best path P from 50 iterations Tmin Tmax Tavg   Constraints

1. 1 → 7 → 8 → 9 → 13 → 17 → 20 94 415 203.94 68.91 – HC = 1, HP

2. 1 → 7 → 8 → 9 → 13 → 17 → 20 92 491 246.74 86.97 – HC = 2, HP

3. 1 → 2 → 9 → 8 → 15 → 17 → 20 83 548 286.20 146.62 – HC = 3, HP

(c) for constraint HC, HP and FT

S. No. Computed best path P from 50 iterations Tmin Tmax Tavg   Constraints

1. 1 → 2 → 8 → 9 → 13 → 17 → 20 150 470 414.81 92.49 1.7 HC = 1, HP, FT

2. 1 → 7 → 8 → 9 → 13 → 18 → 20 309 759 416.48 105.46 1.32 HC = 2, HP, FT

3. 1 → 2 → 9 → 8 → 15 → 17 → 20 330 684 413.65 83.11 1.7 HC = 3, HP, FT
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Our observation showed that the amount of backtracking has a considerable impact on the execution time 
of a program. With the increase in a number of nodes in the network, the number of intermediate nodes between 
the source and destination increase and the number of possible ways between them increases drastically which 
also increases the program execution time. As we can observe from  Table 1 (a), when only LS and HC were 
applied, the output is almost arbitrary, i.e., any path satisfying the given constraints was the output which may 
or may not be an optimum one. In this case, the search is almost blind and so the amount of backtracking is 
also large most of the times, which can be seen by comparing the average times. However, when hop count is 
increased probability of getting optimum path is always increased. 

In  Table 1, when a sense of direction was given to the algorithm through the HP parameter the performance 
improved signifi cantly. A number of times the search needed to backtrack reduced considerably and the output 
inclined towards the routes given in the table. The routes given in the table appeared repeatedly despite dynamic 
nature of the network. And by changing the TC parameter we see that when we can have alternate paths apart 
from those set of paths that are repeatedly chosen by the long-term history parameter and hence enhancing the 
quality of unbiasedness towards some good links which may be busy at specifi c times of the day. 

Table 1 (c) shows the experiment with the generating faulty paths:
1. The readings do not include the worst case scenario of paths being blocked in a way that there is no 

path to the destination.

2. Minimum number of faulty paths generated is 1.

3. Also, the experiment does not consider a scenario when the parameters are badly tuned.

4. Average FT rate implies the average number of faults generated per iteration considering a set of 50 .

F igure 2: Results obtained on 20 iterations with 20 nodes. Y-axis and X-axis denote the paths generated 
and time took to calculate the path (in seconds)
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Fig. 2 shows the effect of three constraint sets when experimented with 20 nodes having applied 20 
iterations in each. Each constraint set has a different hop count value with different constraint parameters 
such as local search LS, history parameter HP, traffi c change LS and fault tolerance parameter FT.  In Fig. 2 
horizontal bars for 20 nodes show that the optimum traffi c evaluation varies with time due to the stochastic 
traffi c conditions. It can be clearly observed that with the increasing in hop count, the probability of getting 
optimum path increases.

In the system, all the participating nodes share their information with the cloud at regular interval. Cloud 
infrastructure manages this traffi c information with OpenStack LXCs. The cloud controller manages the 
overall traffi c scenario of the network, where each node contributes to the system by sharing its local traffi c 
information. The traffi c pattern is observed and updated at a regular time interval in the cloud. In a cloud-based 
system, when an autonomous robotic car is placed in a vehicular traffi c network for navigation between two 
points, it fi rst observes the current traffi c and sends a request, attaching its current location and destination to 
cloud infrastructure to provide the best approximate route to reach the destination at that particular time. The 
cloud controller returns back the optimum route to the robotic car for further navigation. Here, the robot’s 
cooperation is undertaken by having different traffi c data from the robots which are used to fi nd the better path 
in the dynamic traffi c.

In the experiments, three randomly vehicle traffi c networks are generated with random time-varying 
probability.  A directed network of a pre-specifi ed number of nodes is created, where each node carries in or out 
degree in between one and four. The service is implemented in C and run on an instance with the confi guration 
of Intel Core I7 2.2GHz with 4GB RAM under a Linux container of the cloud. The source and destination nodes 
are provided in the cloud at random to fi nd an optimal route.

5. CONCLUSION
In this paper, we fi rst discussed how an autonomous vehicle can be treated as a robot with an example of 
Google’s self-driving car. Next, to exploit the collaboration and information sharing capabilities of the 
cloud infrastructure, DVTRP is formulated as a service for vehicular robots.  Herein, the overall problem is 
formulated in the form of a dynamic graph network where traffi c is changing stochastically. In the system, all 
the participating nodes share their information with the cloud at regular interval. Cloud infrastructure manages 
this traffi c information with OpenStack LXCs. In order to investigate the working of the service, we have taken 
the synthetic dynamic traffi c data with  nodes. In the quest of an approximate optimum path, various parameters 
such as local search, hop count, history parameter and traffi c change are introduced. Apart from this, several 
faulty paths are generated randomly to test the effectiveness and completeness of the proposed service. The 
network of nodes with 50 iterations each is analyzed to fi nd the best approximate route to reach the destination.
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