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SURVEY ON GEOMETRY OF STATISTICAL
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Abstract: We survey main results of geometry of submanifolds of statistical manifolds.
We discuss recent work on submanifolds of holomorphic statistica manifolds. The notion
of statistical structure on Sasakian manifoldsis also briefly discussed.
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1. INTRODUCTION

Statistical manifoldsintroduced by Amari (1985) have been actively studied in recent times
as it finds many applications in the field of information geometry, hessian geometry,
statistical inference, neural networks, document classification, face recognition, image
analysis, clustering, control systems and many more. Statistical manifolds may be
considered as manifolds consisting of certain probability density functions. They are
geometrically formulated as Riemannian manifolds with a certain affine connection. Their
complex version named holomorphic statistical manifolds are studied by T. Kurose [13].
It isnatural for geometersto try to build the submanifold theory and the complex manifold
theory of statistical manifolds. Recently Furuhata [5], Hasegawa [7] and [10] has done
work on CR statistical submanifolds of holomorphic statistical manifolds.

In this article, we collect the recent work done in the field of geometry of statistical
submanifolds. The paper is organized as: in Section 2, we give elementary theory of
statistical manifolds and in Section 3, we discuss the geometry of statistical submanifolds.
In Section 4, the basic definitions and the properties of holomorphic statistical
submanifolds aregiven. In Section 5, we give someresults on statistical real hypersurfaces.
Finally in Section 6, we discuss the notion of Sasakian statistical structure on odd
dimensional hypersurfaces.

2. STATISTICAL MANIFOLDS

This section is fully devoted to several fundamental notions, formulas and definitions
related to the theory of statistical manifolds. Let M be an m-dimensional manifold, V an
affine connection and g a Riemannian metric on M. We denote by T, M the tangent space
at apoint x € M and by TM the tangent bundle over M. By I'(E), we denote the s&t of all
C* sections of avector bundle E — M so I'(TMP*9) means the set of tensors fields of type

(p,q) on M.
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Definition 2.1: (M,V, g) is called a statistical manifold if: (a) V is of torsion free and (b)
Vx(Y,2) = (Vy§)(X, Z), for X,Y,Z € T(TM). The pair (V, g) is caled a statistical
structure on M.

Definition 2.2: The affine connection V' of M is called the dual connection of V with
respect to g if Xg(¥,Z) = g(VxY,Z) + g(Y,V'x2), for X,Y,Z € T(TM). Trivially, we
have (V') = V.

Let V9 bethe L evi-Civitaconnection of g. By definition, the pair (V9, ) isastatistical
structure which is called a Riemannian statistical structure or trivial statistical structure.
Using the above definitions, we have the following propositions:

Proposition 2.3: For a statistical manifold (M,V,V’, g) we have [X,Y] = [X,Y]" where
[X,Y] =VyY —V,Xand[X,Y] = VyY — V,X asbothV and V' are of torsion free.

Proposition 2.4: (M,V, g) is a statistical manifold if and only if (M,V’, §) is a statistical
manifold.

Definition 2.5: A statistical manifold (M, V, ) is said to be of constant curvaturek € R if
R(X,Y)Z = k{g(Y,2)X — g(X,2)Y} holds, where R(X,Y)Z =VyVyZ —V,VyZ —
VixyZ. A statistical structure (V, g) of constant curvature 0 is called a Hessian structure.

For a gtatistical manifold (M,V, g) for X,Y,Z € I'(TM), we can obtain
GRX,V)Z,W) = —g(R'(X,Y)W, 2),
gRX,Y)Z,W) =—-gR(Y,X)Z,W),

R X,Y)Z,W) = —g(R'(Y,X)Z,W),

Proposition 2.6: A statistical manifold (M, V, ) is of constant curvature k if and only if
(M, V', g) isof constant curvaturek. In particular if (V, ) isHessian structuresois (V/, g).

Proposition 2.7: For a statistical manifold (M, V, g) asV and V' are of torsion free, we
have the first Bianch’s identity:

GRX,VZ,W) + gRY,2)X,W) + gR(Z,X)Y,W) =0,
gR' X, Y)Z,W)+gR'(Y,Z)X,W) + g(R'(Z,X)Y,W) = 0,
for X,Y,Z € T(TM).

Furuhata [5] for a statistical structure (V, g) defined the difference tensor field K €
(TMYP)asK(X,Y) = VyY — VIY satisfying K(X,Y) = K(¥,X) and g(K(X,Y),Z) =
g(Y,K(X,Z)). Thefollowing structure equations for (M, V, V', g) can be obtained easily:

RX,Y)Z = RIX,V)Z + (VoK)(Y,2) — (Vi K)(Z,X)
+K(X,K(Y,2)) - K(Y,K(Z,X)),

RX,Y)Z=RIX,V)Z - (VIK)(Y,2) + (VIK)(Z X)
+K(X,K(Y,2)) - K(Y,K(Z,X)),
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RI (X,Y)Z = RX,Y)Z — (VxK)(Y,Z) + (VyK)(Z,X)
+K(X,K(Y,2)) - K(Y,K(Z,X)),

VxK)(Y,2) — (VyK)(Z,X) = 2{K(X,K(Y,Z2)) — K(Y,K(Z,X))}
+é{E(X, Y)Z —R'(X,Y)Z},

where, R9(X,Y)Z = VgVyZ — VoVaZ — viqx rZ

For a Hessian structure (V, §), we have
RI(X,Y)Z =-K(X,K(Y,2)) —K(Y,K(Z,X)) = —%{(VXK)(Y, 7) — (VyK)(Z,X)},

Definition 2.8 [7]: For a statistical manifold (M, V, g) we define the statistical curvature
tensor  fidd as  S(X,V)Z=_{RX,V)Z+R'(X,Y)z} ad S(XY,ZW)=
G(S(X,Y)Z, W), any for X,Y,Z, W € ['(TM)

Proposition 2.9: Let (M,V, §) be a statistical manifold. The tensor field § € [(TM©4)
satisfies
SXx,Y,Zzw)= =S(,X,Z,W),
SXx,Y,Zw)= -S(X,Y,W,2),
SX,Y,ZW)+S(Y,Z,X,W)+S(Z,X,Y,W) = 0,
SX,Y,ZW)=S(Z W,X,Y).

Definition 2.10 [7]: Let (M,V,g) be a datistica manifold. For x € M and a two
dimensional subspacell = spang (v, w) of T,M

Se((v,w)w,v)
g, mgw,w) — (g, W))2 ,

is called the sectional curvature of (M, V, g) for section I1. A statistical manifold (M, V, )
is said to be of constant sectional curvaturek € R if it is constant for x and section I1.

Definition 2.11 [7]: The sectional curvature of a statistical manifold (M, V, §) is constant
k if and only if S(X,Y)Z = k{g(Y,2)X — g(X,Z)Y}, for X,Y,Z € T(TM).

Remark 2.12 [7]: If V is the Levi-Civita connection of g, the definition of sectional
curvature coincides with the standard one.

An isometric immersion preserving attached connection is called a dstatistical
immersion. Furuhata [5] studied such immersions, in particular, eementary properties of
hypersurfaces in statistical manifolds of constant curvature.
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3. STATISTICAL SUBMANIFOLDS

For geometers, it is quite interesting and natural to study the geometry of submanifolds of
statistical manifolds. In this section, we havetried to collect the basic definitions and results
related to the theory of statistical submanifolds. Let (M, g) be a submanifold of statistical
manifold (M, g) with theinduced metric g. Let V be an affine connection on M defined by
VxY = (VxY)T where ()T denotes the orthogonal projection of () on thetangent space of
M with respect to g, that is g(VyxY,Z) = g(VxY,Z) for X,Y,Z € T(TM). Then (M, V, g)
becomes a statistical manifold with the induced statistical structure(V, g).

Definition 3.1: (M,V, g) is a statistical submanifold in (M,V, g) if (V, g) is the induced
statistical structureon M.

Let T(TM+) bethenormal bundle of M in M. We define the second fundamental form
of M for Vby h(X,Y) = (VxY)* for X,Y € I'(TM). We define the shape operator and the
normal connection V+ for V, respectively by Ay X = — (Vi V)T and ViV = (Vy V)L forV €
I'(TM+Y) and X € T(TM). Similar to the Riemannian submanifold theory, we can write the
Gauss and Weingarton formulas as VY = VY + h(X,Y) , VxV = —A, X + V3V, for
X,Y €T(TM) andV € I'(TM*1). Similarly for theinduced connection V' corresponding to
thedual connection V' of M, wecanwrite VY = V4 Y + h'(X,Y), VsV = —ALX + V4 V.
Since V is of torsion freetherefore h(X,Y) = h(Y, X). By using these equations, we have
the following proposition:

Proposition 3.2[11]: If (M, V, g) beastatistical submanifold of (M, V, §) with theinduced
connections V , V'on M corresponding to V and its dual connection V' on M, respectively.
Then

(@ V' is aso a dual connection on M to V that is Xg(Y,Z) = g(VxY,Z) +
g(Y,VxZ).

(b) (M,V',g) is adso a satistical submanifold of (M,V’,g) with the induced
statistical structure (V', g).

(c) V! and V' are also dual connections with respect to the induced metric g+ on
[(TMY) that is Xgt(U,V) = gt (VEU,V) + gL (U, Vy V) for U,V € T(TMY)
and X € T(TM).

(d) ForX,Y € I(TM) andV € [(TM%)
g4yX,Y) = g(h'(X,Y),V),
g4y X,Y) = g(h(X,Y),V)

which are different from the results obtained during the development of Riemannian
submanifold theory.

The corresponding Gauss, Codazzi and Ricci equationsto the Riemannian submanifold
theory are given by the following result.
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Proposition 3.3 [3, 15]: Let V be a statistical connection on M and V be the induced
connectionon M. Let R and R be the Riemannian curvaturetensors of V and V respectively.

Then
JRX,VZW) = gRX,Y)ZW)+ g(h(X,2),h' (Y,W))
—g(h' (X, W), h(Y,2)),
(RX,Y)Z2)* = Vxh(Y,Z) — h(VxY,Z) — h(Y,VxZ)
—{V¢h(X,Z) — h(VyX,Z) — h(X,VyZ)},
where, R+ isthe Riemannian curvaturetensor onT'(TM*1), U,V € I'(TM*) and [A};, Ay ] =
LAy — AyAY.

For the equations of Gauss, Codazzi and Ricci with respect to the dual connectionV’
on M, we have

Proposition 3.4 [3]: Let V' be adual connection on M and V' be the induced connection
on M. Let R’ and R’ bethe Riemannian curvaturetensors for V' and V' respectively. Then

JR X, VZ,W) = gR' X, NZ,W)+ g(h'(X,2),h(Y,W))
—g(hX, W), 1’ (Y, 2)),

(R'(X,Y)2)* = Vi h(Y,Z) — ' (VyY,Z) — h' (Y, VxZ)
V) h(X, 2) — B (Vy X, Z2) — B/ (X, Vy D)),

R NUV) = GR' (XU, V) + g([Ay, AV X, V),
where, R'* is the Riemannian curvature tensor on I'(TMY), U,V € I(TMY) and
[Ay, Ay] = AyAy — Ay Ay.
Definition 3.5[7]: Let (M, V, g) be a statistical submanifold of dimensionn in (M, V, ).
We define the mean curvature field of M for V by

H—lt h
_nrg

where, tr isthe trace with respect to g.

Definition 3.6 [4]: M is said to be totally geodesic with respect to V if the second
fundamental form h of M for V vanishes identically. M is said to be totally umbilical with
respect to V if h(X,Y) = Hg(X,Y) holds. M is said to be totally normally umbilical with
respect to V if AyX = g(H,U)X forany X € I'(TM) and U € T(TM?1).

Similarly, we can define M to betotally geodesic, totally umbilical and totally normally
umbilical with respect to V'. Using the above proposition we can easily deduce the
following theorem:
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Theorem 3.7: Let (M,V, g) be a submanifold of a statistical manifold (M, V, g). If M is
totally geodesic then R(X,Y) = R(X,Y), forany X,Y € ['(TM).

Submanifold theory for statistical manifolds was initially developed by Vos [15] with
applications to Bartlett correction for which he had given an invariant expression using
curvature that described how a statistical submanifold is curving in a supermanifold. We
will discuss the recent work done on theory of statistical submanifolds by Furuhata [5],
Milijevic [10], Aydin [3], Furuhata and Hasegawa [7] and Siddiqui et a [4]. Aydin [3]
studied the behavior of submanifolds in statistical manifolds of constant curvature and
investigated curvature properties of such submanifolds. Some main results for
submanifolds with any codimension and hypersurfaces of statistical manifolds of constant
curvature developed in Aydin [3] includes the following:

Proposition 3.8 [3]: Let M be an n-dimensional submanifold of an m-dimensional
statistical manifold M (k) of constant curvature k € R. Assume that the imbedding
curvaturetensor H and H' satisfy h(X,Y) = g(X,Y)Hand h'(X,Y) = g(X,Y)H', for any
X,Y e(TM). Then M is also a statistical manifold of constant curvature k + g(H,H'),
where g(H, H") is constant.

Definition 3.9 [3]: Let M be an m-dimensional statistical manifold. Then the Ricci tensor
Q of type (0,2) is defined by Q(Y,Z) = trace{X — R(X,Y)Z}, where R is the curvature
tensor field of the affine connection V on M.

Theorem 3.10 [3]: Let M(k) be an m-dimensional statistical manifold of constant
curvature k € R and M an n-dimensional statistical submanifold of M (k). Also, let

{e1 v vevnent @and {fi, .o e ces e oo frn_n } be orthonormal tangent and normal frames,
respectively on M. Then the induced Ricci tensor Q and the Ricci tensor Q' of M satisfy
m-—-n

QX,Y)=k(n—1)gX,Y)+ Z {g(Ar X, Y)trA; — g(ArY, AF X))},
i=1
QX,Y)=k(n—1)gX,Y)+ Z {g(A;X,Y)trAs, — g(Ar X, A; Y )},

=1

where, Af, and A¢, arelinear transformations defined as in paragraph after Definition 3.1.

Definition 3.11: Let V be a torsion free affine connection on a Riemannian manifold M
that admits a paralel volume eement Q such that VQ = 0, then (V,Q) is called an
equiaffine structure on M.

Lemma3.12[3]: Let M (k) bean m-dimensional statistical manifold of constant curvature
k € R and M an n-dimensional submanifold of M (k). Assume that the affine connection
V of M is equiaffinethen X/27"[Af,, A7, ] = 0 where [Ar,, A | = Ap Af, — Af Ay,

Proposition 3.13 [3]: Let M(k) be an m-dimensional statistical manifold of constant
curvature k € R and M an n-dimensional statistical submanifold of M (k). Then
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2r 2 n(n— Dk +n?g(H,H") — ||AllllR']],
where, 7 isthe scalar curvature of (M, V, g), thatisT = X1<; j<n 9(R(ei, €)e;, €)).

Proposition 3.14 [3]: Let M be a statistical hypersurface of an (n + 1)-dimensional
statistical manifold M (k) of constant curvature k € R. We have

2r =2 n(n— Dk + n?|HIIH'] = IRIIR],
where, r isthe scalar curvature of M.

Proposition 3.15 [--3]: Let M be a statistical hypersurface of an (n + 1)-dimensional
statistical manifold M (k). For each X € T,,(M) we have

Ric(X) = (n— Dk +ng(h'(X, X), H) — Z hihly,

=1

n
Ric(X) =(n— Dk +ngh(X,X),H") — z hihis,
i=1

where, hy by = G(h(X, e),h' (X, ¢)).

Theorem 3.16 [3]: Let M bean n-dimensional statistical submanifold of anm-dimensional
statistical manifold M (k). For each X € T, (M), we have

Ric(X) = 2Ric9(X) — %Zg_(H, H) —%Zg_(H’,H’) +(n—1Dk—-2(n—1)maxR°(X A.)

where, Ric9(X) is Ricci tensor with respect to the Levi-Civita connection V9 on M. In
particular, M isaminimal submanifold.

4. HOLOMORPHIC STATISTICAL SUBMANIFOLDS

Holomorphic statistical manifolds were initially studied by Kurose [13] and later on
Furuhata [4], [5], [7], [10] and many more developed the theory of submanifolds of
holomorphic statistical manifolds. A holomorphic statistical manifolds is considered as a
special Kahler manifold with a certain connection.

Definition 4.1 [7]: Let M be an almost complex manifold with almost complex structure
J € (TM®V) and an affine connection V of M. A quadruple (M,V,g,]) is caled a
holomorphic statistical manifold if: (a) (M, V, §) isastatistical manifold and (b) w(X,Y) =
g(X,JY) isaV-parallel 2-formon M.

The skew-symmetry of w, thatisw(X,Y) = —w(Y,X) impliesthat (g,]) isan amost
Hermitian structure and the condition Vaw = 0 impliesthat w is closed since V is of torsion

free. It may be noted that a holomorphic statistical manifold (M, V, g,]) isaspecia Kahler
manifold if V isflat, that is

(Vx)Y = (VyDX.
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Lemma 4.2 [11]: Let (M, g,]) be a Kahler manifold. If we define a connection V as V=
V9 + K, where K isa (1,2)-tensor fied satisfying the next three conditions:

KX, Y) =K(Y,X),
GKX,),2) = g(v,K(X,2)),

KX,JY) = —-JK(X,Y),
for X,Y,Z € I'(TM) then (M,V, g,]) is aholomorphic statistical manifold.
Lemma 4.3 [5]: Thefollowing hold for a holomorphic statistical manifold (M, V, g, J):

V/ =V, where V,= J~1V5(JY),
vX(]Y) = ]W(Y,
RX,Y)]Z = JR'(X,Y)Z

Definition 4.4 [5]: A holomorphic statistical manifold (M, V, g,]) is said to be of constant
holomorphic curvature k € R if

R, V)Z =2{g(V, DX = gX, 2)Y + gUY, 2)]X - §UX, 2)]Y +23(X,JY)]Z},

for any X,Y,Z € I'(TM). A holomorphic statistical manifold M of constant holomorphic
curvatureis called a holomorphic statistical space form.

In this section, we discuss the statistical submanifold theory in holomorphic statistical
manifolds. Let (M, g,]) be aKahler manifold and M a submanifoldin M. For X € T'(TM)
andV € T'(TM%), define

JX =PX+FX,JV =tV +fV
where, PX = (JX)T,FX = (JX)5tV = V)T, fV = (JV)*.
It is easy to obtain
g(PX,Y) = —g(X, PY),
g(fu,v) = —g(U,fV),
g(FX,V) = —g(X,tV),
P? = —Idpy — tF,FP + fF =0,
Pt+tf =0,f?=—Idpy — Ft,
for, X,Y € I(TM) and U,V € [(TM*4).

Definition 4.5 [4]: A statistical submanifold M is called a CR-statistical submanifold in
holomorphic statistical manifold M of dimension 2m > 4 if M is CR- submanifold in M,
that is, there exists a differentiable distribution D:x - D, € T,M on M satisfying the
following conditions: (a) D is holomorphic JD,, = D, c T, M for each x € M and (b) the
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complementary orthogonal distribution D+: x » D c T, M istotally real JDf < T, M+ for
eachx € M.

Let N beasubbundieof TM* definedas N, = {V € T,M*:V 1 JD;i)} for eachx € M.

Accordingly, wehaveTM = TM @ TM* = {D @ D1} {JDL @ N}and FP = 0, fF =
0,tF = 0,Pt = 0,P3 = —P, f3 = —f.

Definition 4.6 [4]: A statistical submanifold M of a holomorphic statistical manifold M is
called holomorphic (F = 0 and t = 0) if thealmost complex structure/ of M carries each
tangent space of M into itsdf whereas it is said to be totally real(P = 0) if the almost
complex structure J of M carries each tangent space of M into its corresponding normal
space.

If Jp+ = TM* and D # 0 then M is called a generic submanifold (f = 0). If D+ =
TM and /D1 = TM* then M is called a Lagrangian submanifold (P = 0 and f = 0). If
D # 0 and D+ # 0 then M is said to be proper CR-submanifold of M.

Furuhata[5] proved that if a hypersurfacein a atistical manifold of constant curvature
carries a holomorphic statistical structure of constant holomorphic curvature then the
hypersurface is a special Kahler manifold.

Theorem 4.7 [5]: Let (M, V, g) bea (2n + 1)-dimensional statistical manifold of constant
curvature k with n > 2 and (M, V, g) a holomorphic statistical submanifold of constant
curvature k. If there exists a statistical immersion f: M — M of codimension 1, then the
curvature k vanishes.

Lemma 4.8 [7]: Let (M,V, g) bea statistical submanifold in M. Then
Vx(PY) — ApyX = PVyY 4+ th'(X,Y),
h(X,PY) + VxFY = fh'(X,Y) + FVyY,
Vi(tV) — A X = —PALX + tV'3V,
h(X,tV) + Vx(tV) = —FA, X + fVsV,
for, X,Y € I(TM) andV € I'(TM1).

Remark 4.9[7]: Let (M, V, g) beaholomorphic statistical submanifoldin M. Using above
lemma, we have

Vx(JY) = JVxY,
h(X,JY) = Jh'(X,Y),
A]VX = ]A;/X,

VE(V) = JV'5V,

for, X,Y € I'(TM) and V € T'(TM*'). Accordingly, the mean curvature vector fields for V
and V' vanish.
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Theorem 4.10 [10]: Let M be a statistical submanifold of a holomoprphic statistical
manifold M. Then VxFY = F(VyY) holdsif and only if Ay, PY = —As,Y for X, Y € I'(TM)
andV € [(TM4Y).

Theorem 4.11[10]: Let M be a statistical submanifold of holomorphic statistical manifold
M. If VxFY = FV}Y holds then the curvature tensor R’ and the normal curvature tensor
R* satisfy FR'(X,Y)Z = R'(X,Y)FZ forany X,Y,Z € T(TM).

Theorem 4.12 [7]: Let (M,V, g) be a CR-statistical submanifold in M. Then A;, W =
AV and Aj, W = Ay, V for V,W € D*.

Definition 4.13 [11]: Let (M, V, g) be a holomorphic statistical manifold and let M be its
submanifold. Then M is said to be a totally real submanifold of M if JTM < TM*.

Proposition 4.14 [11]: Let (M, V, g,]) be a holomorphic statistical manifold.
Let M beatotally real submanifold of M. Then
Ay X +th'(X,Y) = 0,
fH' (X, Y) = Dx(JY) = JVxY,
Ay X = Vx(tV) — tV'xV,
~JAyX = h(X,tV) = Vx(fV) = f(V'xV),
and their duals hold.

Let M be atotally real submanifold of M with Vi (fV) = f(V'x V). Then 4}, = 0 for
V e T'(N),

h(XI Y) = ]A}YX'

vi(Y) = J(V'xY),
and their duals hold, where N is defined as in Definition 4.5.

Proposition 4.15 [11]: Let (M,V, g,]) be a holomorphic statistical manifold. We define
1(X,Y) = VDY, I'(X,Y) = (Vy))Y, for X,Y €T(TM). Then I(X,Y)=1I1(Y,X),
IX,Y) = -I'(X,Y) ad I[(X,]Y) = —JI(X, Y).

Theorem 4.16 [10]: Let (M,V, g,]) be a holomorphic statistical manifold and M be a
totally real submanifold of M with dimM = 2dimM. Then I(X,Y) € ['(TM*) for X,Y €
I'(TM) ifandonlyif A= A".

Some results on totally umbilical CR-statistical submanifolds with respect to V and V'’
in holomorphic statistical manifolds with constant holomorphic curvature are obtained in
[7], [10] are asfollows:
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Theorem 4.17 [7]: Let (M,V, g,]) be a holomorphic statistical manifold and (M, V, g) a
generic submanifold in M of codimension greater than one. If M istotally umbiolical with
respect to V, then M istotally geodesic with respect to V.

Theorem 4.18 [7]: Let (M,V, g,]) be a holomorphic statistical manifold and (M, V, g) a
proper CR-submanifold in M. If M is totally umbilical with respect to V and V', then the
sectional curvature of M for a CR-section of M vanishes, where a plane section X A V with
X € DandV € Dt iscalled aCR-section of M.

Theorem 4.19 [10]: Let M be a CR-statistical submanifold in a holomorphic statistical
manifold M. If M is totally umbilical with respect to V and V' such that JH' € T'(N), then
we have either (a) M istotally geodesic with respect to V' or (b) dim D > 2.

Theorem 4.20 [10]: Let M be a CR-statistical submanifold in a holomorphic statistical
manifold in a holomorphic statistical manifold M. If M istotally umbilical with respect to
V and V', then for any X € I'(D+) we have : (8) ViH € JD* or (b) VxH = 0. Similarly,
@@’ V'yH' € JD* or (b)) V'3H' = 0.

Milijevi’c [10] has given the following results for CR-statistical submanifolds in
holomorphic statistical space form:

Theorem 4.21 [10]: Let M be a CR-statistical submanifold in a holomorphic statistical
spaceform M (k). If M istotally umbilical with respect to V and V' such that Vy H = 0 and
VyH' =0 for any X € I'(D4), then:

@ k=0or

(b) dimD >2or

(c) HandH' areperpendicularsto D+ or

(d) M istotally geodesic with respect toVand V'.
Theorem 4.22 [10]: Let M be a proper CR-statistical submanifold in a holomorphic
statistical space form M (k). If M is totally umbilical with respect to V and V' such that
VixFY = FVyY for any Y € (DY) and X € (D), then we have: (8) k =0 or (b)
dim D+ = 0.

The above result is also true if M is totally geodesic with respect to V and V'.

Furthermore, Furuhata et a [7] show that a Lagrangian submanifold is of constant sectional
curvature if the statistical shape operator and its dual operator commute.

Theorem 4.23 [7]: Let (M,V, g,]) be a holomorphic statistical manifold and (M, V, g) a
Lagrangian submanifold in M. If AjxA)y, = AjyAjx for each X,Y € I(TM), then
X, Y)Z)t =5(X,Y)Z for each X,Y,Z € ['(TM). In particular, if (M,V,g,]) is of
constant holomorphic sectional curvature k additionally, then M is of constant sectional
curvaturek /4.
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Definition 4.24 [11]: Let M be a submanifold of a holomorphic statistical manifold M.

(& M is said to have paralld second fundamental form h with respect to the
connection V, if Vh = 0. Here (V,h)(Y,Z) = Vih(Y,Z) — h(V4Y,Z) — h(Y,Vy2Z).

(b) M is called a semi-parallel submanifold for the connection V', if R(X,Y)h =0
where R(X, V)h(Z, W) = (Vx(Vy ) (Z, W) — (V, (Vx ) (Z, W) — (Vixpih) (Z,W).

In [11] Milijevic studied semi-parallel submanifolds with respect to the connection V
and gave the following result:

Theorem 4.26 [11]: Let (M, V, g,]) be a holomorphic statistical manifold and M atotally
real submanifold of M. Suppose

@ Vx(fV) = fvgV.

(b) (V,9) isof constant curvaturek # 0. If M issemi-parallel for V, then M istotally
geodesic for V.

Corollary 4.27 [11]: Let (M,V,g,]) be a holomorphic statistical manifold and M a
Lagrangian submanifold of M. If (V, g) is of constant curvature k # 0 and M a semi-
paralle for V, then M istotally geodesic for V.

It is remarked that the dual version of the above theorem holds namely if M is semi-
paralle for V', then M istotally geodesic for V'.
5. STATISTICAL REAL HYPERSURFACES

Real hypersurfaces in holomorphic statistical manifolds form an important class of CR-
statistical manifolds. In this section, we give results given by [3] and [7] on statistical real
hypersurfaces. Let (M, V, g,]) be a 2m-dimensional holomorphic statistical manifold and
M bea(2m — 1)-dimensional submanifold of M, that is, M is a hypersurface of M. Let V
be a unit normal vector field of M. Then Gauss and Weingarton formulas are

VY = ViV + h(X,Y),V,Y = ViY + R'(X,Y),
ViV = —AX 4+ uQOV, V4V = —A'X + 1/ (X)V,

where, u(X) = gVV, V), @' (X) = g(V'xV,V),u(X) = —p'(X). Also g(A4'X,Y) =
gr(X, V), V), g(AX,Y) = g(h'(X,Y),V)

The structure vector U is defined by U = —JV € I'(TM). For X € T'(TM), JX can be
decomposed as

JX =PX =gX,U)V.

Proposition 5.1 [10]: Let M be areal hypersurface of a holomorphic statistical manifold
M. For X,Y € T(TM), thefollowing relations hold:
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1. ViU =PAX + 1/ (X)U = PA'X — u(X)U,
2. (VxP)Y = u(Y)AX — g(AX,Y)U — PVxY + PV,Y.

Lemma5.2 [7]: Let (M,V, g) be astatistical hypersurfacein M. The following formulas
hold for X,Y € I'(TM):

g(U,U) =1,PU = 0,uoP = 0, whereu(X) = g(U, X),

P2X = —X +u(X)U, g(PX,PY) = g(X,Y) — u(X)u(y),

p(X) = u(vyU),

VyY = —PVyU + u(A'X)U,

A'X = —PVyU + u(A'X)U.

The Gauss and Codazzi equations can be derived as follows:

RX,Y)Z = R(X,Y)Z —{g(A'Y,2)AX — g(A'X, 2)AY} + g((VyA))Y,Z)V
—g((VyADX, Z)V + g(A'Y, Z2)p(X)V — g(A'X, Z)u(Y)V,

R(X,Y)Z =R X, Y)Z—{g(AY,2)A'X — g(AX, 2)A'Y} + g((VxA)Y, Z)V
—g((Vy )X, Z)V + g(AY, D' (X)V — g(AX, )’ (Y)V.

o~ w0 DnPE

Therefore

SX,VZ=5SX,Y)Z+ %{g(A’X, 2)AY — g(A'Y, 2)AX + g(AX,2)A'Y
—g(AY, DAX + g((Vi A" + V4 AY, Z)V
—g((VYA" + Ve D)X, 2)E + g(A'Y, 2D uX)V — g(A'X, 2)u(Y)V
+g(AY, D' XV — g(A'X, DuX)V + g(AY, 2’ XV
—g(AX, 2w (V)V},
glX,VZW) =g(SX,Y)Z,W) + %{g (A'X,2)g(AY, W)

—g(A'Y,2)g(AX,W) + g(AX,Z)g(A'Y, W)
—g(AY,Z)g(A'X, W)},

(the Gauss equation)
glX,VZ,V) = %{g((VS(A’ + VxAY,Z) — g(Vy A’ + Vy A)X, Z)
+g((A' — AY, 2)uX) — g((4' — DX, Z)u)},
(the Codazzi equation)
where, X,Y,Z,W € I(TM) andV € T'(TM%).

For a manifold M of constant holomorphic sectional curvature k, the Gauss and
Codazzi equation, respectively reduces to

S(X,V)Z = S{g(A'Y, 2)AX — g(A'X,2)AY + g(AY,2)A'X — g(AX, Z)A'Y}
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k {g(Y, DX — g(X,2)Y + g(PY, Z)PX}
4l —g(PX,2)PY + 2g(X,PY)PZ

S(X,Y)Z = %{g(x, U)PY — g(Y,U)PX + 2g(PX,PY)U} = (V4 A" + V3 A)Y
—(Vyp A"+ Vy DX + u(X) (A =AY —u(¥)(A' — A)X
Theorem 5.3 [10]: Let M be a real-hypersurface of a holomorphic statistical manifold M

of constant holomorphic sectional curvature k. If for the shape operators 4, A" of M and
functionsa and 8; AX = aX and A'X = X thenk = 0.

Proposition 5.4 [10]: Let M be areal-hypersurface of a holomorphic statistical manifold
M of constant holomorphic sectional curvature k. If for the shape operators 4, A’ of M and
functions a and B; AX = aX and A'X = BX then a + B = constant if and only if V is

parallel with respect to the normal connections V- (V™).
Theorem 5.5[10]: Let M bean n-dimensional CR-submanifold of maximal CR-dimension
in an (n + p)-dimensional holomorphic statistical manifold M of constant holomorphic

sectional curvature k and let p < n. If for the shape operators A, A’ of the distinguished
normal vector field V and functions a and 8; AX = aX and A’X = X thenk = 0.

Theorem 5.6 [7]: Let M(k) denote a holomorphic statistical manifold (M,V, g,]) of
constant holomorphic sectional curvature k and (M, V, g) be a Satistical hypersurface in
M(k). If M is totally umbilical with respect to V and V', then k =0 and X(A + 1) =
A= 2DuX),SX,Y)Z = ' {g(Y,2)X — g(X,Z)Y}, for any X,Y,Z € T(TM) where 1
and A’ denote the eigenvalues of A and A’, respectively. Moreover, if 1 = 1', then 1 is
constant and M is of constant sectional curvature A2.

6. SUBMANIFOLDS OF SASAKIAN STATISTICAL MANIFOLDS

In this section, we give the notion of statistical structure on Sasakian manifolds. A typical
example of Sasakian manifolds is an odd-dimensional sphere. Furuhata et al [8] discuss
standard Sasakian statistical structure on odd-dimensional spherewhich is also an example
of compact statistical manifold.

Definition 6.1 [8]: A triple (g, ¢, €) is called an almost contact metric structure on M, if
the following equations hold for any X, Y € T'(TM):

$¢=0g¢ <) =1,
P*X = X + (X, 98,
g@x,Y) +gX,¢Y) = 0,
where, ¢ € I(TM®D) and & € T(TM).
Definition 6.2 [8]: An amost contact structure on M is called a Sasakian structure, if
(VRo)Y = (v, )X — g(¥, X)§,
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holds for any X,Y € I'(TM). We call a manifold equipped with a Sasakian structure a
Sasakian manifold.

Let,n € I(TM*) and w € T(TM©®?) as
nX) =g, 0lX,Y) = gX,¢v),
For any X,Y € I'(TM), we have the following formulas easily:
no¢ = 0,
g(@X,¢Y) = giX,Y) —nOn(Y),
(Vo) .2) = (¥, (V3¢)Z) = (v, X)§(Z2,§) - §(2,X)3(Y,¢)
=n{gX,Y)Z - g(X,2)Y}.

Lemma 6.3 [8]: Let (V, g) be a statistical structure and (g, ¢, §) be an amost contact
metric structure on M. Then

(Vxw)(¥,2) = g(¥, Vx(¢2) — $(Vx2)),
(Vx 0) (¥, 2) — (Vyw)(¥,2) = —2G(Y,K(X, pZ) + pK (X, Z)),
Vx(¢Y) = p(VxY) = (Tyd)Y + K(X,¢Y) + $K(X,Y).
iIZf)(.afinition 6.4 [6]: A quadruple (V, g, ¢, ) is called a Sasakian statistical structure on M,
1. (g, ¢, &) isaSasakian structure and
2. (V,9) isadatigtical structure and

3. Ker([TM%?) for (V,g) satisfies K(X,¢Y) +pK(X,Y)=0 for X,Y €
[(TH).
Proposition 6.5 [8]: Let (V, g, ¢, &) be a Sasakian statistical structure on M and 1 €
C*(M). Set V*=V9 + AK. Then (V4 g,¢,&) is a Sasakian dtatistical structure. In
particular, sois (V', g, ¢, &).
Proposition 6.6 [6]: For a Sasakian dtatistical manifold (M,V,g,¢,&), we have
SX, V)¢ =g, )X — g(X,§)Y holdsfor X,Y € [(TM).

Definition 6.7 [8]: Let (M,V, g, $, &) be a Sasakian statistical manifold and k € R. The
Sasakian statistical structureis said to be of constant ¢-sectional curvature k if
2G(, DX — X, DY} + 2 {g(pY, DX — G(X, V)Y

—29(@X,V)pZ —g(¥,$)g(Z,$)X + g(X,§)§(Z, )Y
+9(Y,9g(Z, X)§ - g(X,$)g(Z,Y)§},

holdsfor X,Y,Z € I'(TM).

SX,Y)Z =
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A Sasakian statistical manifold is of constant ¢-sectional curvature if and only if the
sectional curvature has the same value for each ¢-section and for each point. At a point
x € M, by definition, a ¢-section means a plane spanned by X and ¢X in T, M, where X is
aunit tangent vector orthogonal to &,.

Proposition 6.8 [8]: Let (V, g) be a statistical structure and (g, ¢, ) a Sasakian structure
onM.Then (V, g, ¢, §) isaSasakian statistical structureif and only if two of Vw, V'w, VIw
coincide with each other.

Theorem 6.9[8]: Let (V, §) beastatistical structureand (g, ¢, §) analmost contact metric
structure on M. Then (V, g, ,¢) is a Sasakian statistical structure if and only if the
following formulas hold:

Vx(@Y) — ¢p(VyY) = g(¥, )X — g(¥, X)s,
vxf = ¢X+9_(VX€»E)€-
The following relations hold for a Sasakian statistical manifold:
KX,$) =2g(X,$)¢, g(K(X,Y),§) = 19X, g(¥,$),
where, 1 = g(K (¢, ), ).

Proposition 6.10 [8]: (M, g, ¢,&) be a Sasakian manifold. Set V= V9 + fK for f €
C®(M). Then (V, g, ¢, &) is a Sasakian statistical structure on M. Conversely, we define
VxY = V7Y + L(X,Y)V for some unit vector fieldV and L € T(TM©?). If (V, g, ¢, &) is
a Sasakian statistical structurethen L @ V iswritten as L(X,Y)V = fg(X,é)g(Y, ), for
some f € C®(M).

Lemma 6.11 [8]: Let (M,V,g,]) be a holomorphic statistica manifold and M be a
hypersurface with a unit normal vector field V. Let (g, ¢, &) bethe induced almost contact
metric structure on M defined as:

¢ =—-JV,JX =X +n(X)V,
for, X,& € I'(TM),n € T(T™).
We have the following formulas and their duals hold for X,Y € I'(TM):
—AX = ¢Vx§ — g(AX,§)SE,
uX) = g(Vx&, %),
Vx(PY) — p(VxY) = g(¥,AX — g(¥, AX)S,
Vx§ = ¢A'X — p(X)$ = pA'X + g(Vx§, )X,

Lemma 6.12 [8]: Suppose that a hypersurface M in a holomorphic statistical manifold
(M,V, g,]) satisfies AX =X+ g(AX — X, ) AX =X+ g(AX —X,§)¢& for any X €
[(TM). Then (M,V, g, ¢, &) isaSasakian statistical manifold and u(X) = u(é)n(X) holds
forany X € I'(TM).
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Theorem 6.13 [8]: Let M with a contact metric structure (g, ¢, &) be a hypersurface of a
holomorphic statistical manifold (M, V, g, J). Then the quadruple (V, g, ¢, §) isa Sasakian
statistical structure on M if and only if the shape operators satisfy AX =X +
gAX — X, OEAX =X+ g(A'X — X, §)E.

Moreover, if the ambient spaceis of constant holomorphic sectional curvature k, then
the Sasakian statistical structure (V, g, ¢, &) is of constant ¢-sectional curvature k + 1.

Definition 6.14: A submanifold M of a Sasakian manifold (M, g, ¢, ¢) is said to be an
invariant submanifold if &, € T,M,¢pX € T,M for any X€T,M,x e M. L& g€
r(TM©?),¢ € T(TM®?) and ¢ € T'(TM) betheredtrictions of g, ¢ and &, respectively.
Then (g, ¢, §) isa Sasakian structure on M.

In [6], Furuhata et a also discussed the notion of invariant submanifolds of a Sasaian
statistical manifolds and gave the following results:

Theorem 6.15 [6]: Let (M,V, g, ¢,¢) be a Sasakian statistical manifold and M be an
invariant submanifold of M with g, ¢, ¢ as defined earlier. Then the following hold:

1. Aquadruple(M,V,g,¢,¢) isaSasakian statistical manifold.
2. h(X, &) =h'(X,é)forany X e I(TM).

3. h(X,¢Y) =h(pX,Y) = ph'(X,Y) for any X,Y € ['(TM). In particular, tryh =
tr,h' = 0.
9

4. If hisparalle with respect to the Van der Weaden-Bertolotti connection V' for
V, then h and A’ vanish, Namely, if (Vixh)(Y,Z) = V3h(Y,Z) — h(VyY,Z) —
h(Y,VyxZ) = 0 for Z € I(TM) then k' (X,Y) = 0.

5. gSX, ¢X)PX — S(X, X)X, X) = 2g(h' (X, X), h(X, X)) for X € T(TM).

Also theinduced Sasakian statistical structureon M has constant ¢-sectional curvature
k if and only if g(h'(X,X),h(X,X)) =0, for any X € ['(TM) orthogonal to ¢ since
g(SX, pX)pX, X) = k(g(X,X))? for any X € I'(TM) suchthat g(X,&) = 0.

Definition 6.16 [14]: If m:(M,V,g) - (B,V,gg) is a semi-Riemannian statistical
submersion suchthat (M, V, g, ¢, €, 1) isan amost contact metric manifold of certain kind
then 7 is said to be an almost contact metric submersion of certain kind. We say that a
statistical submersion 7: (M, V, g) — (B,V, gg) is a Sasaki-like statistical submersion if
M,V,g,¢,&n) is a Sasaki-like statistical manifold, each fibre is a ¢-invariant semi-
Riemannian submanifold of M and tangent to the vector ¢.

Takano [14] discusses the notion of Sasaki-like statistical submersions and gave the
following results:

Theorem 6.17 [14]: Let m: M — B be an almost contact metric submersion of certain kind.
Then the base space is an almost Hermite-like manifold and each fibre is an almost contact
metric manifold of certain kind.
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Theorem 6.18 [14]: If m: (M,V,g) — (B,V, gg) is a Sasaki-like statistical submersion,
then the base space (B,V, gg, @) is a Kahler-like statistical manifold and each fibre
(M,V, g,¢,¢&,n) isaSasaki-like statistical manifold.

Theorem 6.19 [14]: Let : (M, V, g) — (B,V, gg) is a Sasaki-like statistical submersion.
If rank(¢p + ¢') = dimM — 1, then we have AyY = —g(X, pY)¢& for X,Y € I(TM). If
¢ = ¢', thenwehave AyY = —g(X, pY)¢&, for X,Y € [(TM).
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