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FLOW OF VISCOELASTIC FLUID THROUGH
TRIANGULAR CHANNEL

G. NARSIMLU AND L. ANAND BABU

ABSTRACT: In this paper numerical solution of viscoelastic liquid through equilateral
triangle of side 1 has been studied under the influence of (1) Exponential decreasing pressure
gradient, (2) Periodic pressure gradient, (3) Constant pressure gradient One side is taken
as axis and a line perpendicular to it at one edge as y-axis. With h = 1

2
 k = 3

12
 triangular

region is descritized giving 25 internal nodal points. Five point finite difference formula
[11] is employed. The velocity distribution along the lines y = 3

12
, y = 2 3

12
, y = 3 3

12
 are

investigated at t = 104 and 102 and w = 10– 4 etc for different values of parameter B and C.

 It is observed that maximum velocity is obtained on the line y = 2 3
12

 in all cases of
pressure gradients and also velocity found to increase from x = 0.80 to 0.85 on the line
y = 3

12
 and decreases there afterward in all cases of pressure gradient. Velocity is parabolic

on line y = 2 3
12

, y = 3 3
12

 in all cases of pressure gradient. Velocity is maximum at x = 0.5
in all cases of pressure gradient.

Key words: Viscosity, Shear stress, Finite difference methods, Stress tensor, Non-Newtonian
fluid, Kinematic viscosity.

1. INTRODUCTION

Non-Newtonian liquids such as blood, thick oils, pastes, paints, colloid solutions are
highly viscous. Their behavior cannot be explained by the classical hydrodynamic stress-
rate strain relations. Generalizing the stress-rate of strain relations of classical
hydrodynamics, the rhelogical behavior of the Non-Newtonian liquids have been studied
by Rivlin [8], Rivlin and Reiner [9]. Langloise and Rivlin [4] have studied slow steady
state flow of viscoelastic fluids through non-circular tubes. Rivlin [10] has discussed
some exact solutions of viscoelastic fluids. Dutta [1] has obtained the solutions for
viscoelastic Maxwell fluids through a circular annulus. Jones and Walters [2, 3] have
discussed the oscillatory motion of viscoelastic liquid. Elsayed F., [12] et al. Have
studied peristaltic viscoelastic fluid motion in a tube. Daniel D. Joseph [14] have studied
viscous and visoelastic potential flow. Paulo J. Olivera [13] have studied a symmetric
flows of viscoelastic fluids in symmetric planner expansion geometries. Nand Lal Singh
[6] studied unsteady flow of a viscoelastic fluid between two parallel planes under
periodic pressure gradient. In view of the considerable interest being evinced at present
in the field, it was considered worthwhile to study the flow of viscoelastic liquid specified
by three constants �1, �2, �0 . In a channel with equilateral triangular channel.
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2. EQUATIONS OF MOTION

The equations of motion together with stress-rate of strain relations of viscoelastic
liquids characterized by three material constants a viscosity coefficient and two
relaxation times under the approximation of small rates of strain are given by
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Where � ij and ��ij denote stress and deviatoric stress tensors, V i the components of
velocity, gij are contravarient components of metric tensor, e

ij
 the strain rate of

deformation, P the pressure, � the density, �0 kinematic viscosity the coefficients �0,
�1 and �2 are material constants, subject to conditions (such as �0 > 0, �1 � �2 � 0)
dictated by thermodynamic principles.

It was pointed out by Oldroyd [7] that for a liquid at rest any small sheerstress
decays at 1/te

�
�  and in a liquid element free from stress, any small rate of strain decays

as at 2/te
� �  Michael C. Williams and R. Byron [5] has shown that the ratio of material

constants (�2/�1) varies from 1/9 to 2/3

3. FORMULATIONS OF PROBLEM

We shall investigate the flow of viscoelastic liquid described by (1) to (5) equations through
a pipe whose cross section is equilateral triangle of side 1 under the influence of

1. Exponentially decreasing pressure gradient (� (t) = � e
– m2t)

2. Periodic pressure gradient (� (t) = � cos wt)

3. Constant pressure gradient (� (t) = �)
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The axis of the cylinder is taken as Z-axis

V1 = 0, V2 = 0, V3 = V
z
 (x, y, t) with boundary condition V

z
 = O on �D  (7)

Using the equations (3), (4), (6) and (7) and Assuming

– 

1
( )

p
t

z
�

� �
� �

. (8)

Where � (t) is one of the pressure gradients defined above
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and 0
0

�
� �

�
 is Kinematic viscosity.

Assuming V
z = Real part of V

z
 = V (x, y) ei� t for constant and periodic pressure

gradients and V
z
 = V (x, y)– m2t for exponentially decreasing pressure gradient.

Using above defined velocity components and pressure gradients the equation (9)
reduces to

�2V + BV + C = 0  (11)

With boundary condition V = 0 on �D

Where B and C are

For exponentially decreasing pressure gradient
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For Periodic pressure gradient
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For constant pressure gradient
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A five point difference analogue for the above equation can be written as

2 1 1 2

1 2 1 21 2 1 2

2 1 1 2

1 2 1 2

( , ) ( , ) 1 1
( , )

( )

( , ) ( , )
0.

( )

i j i j
i j

i j i j

h v x h y h v x h y
Bv x y

h h k kh h h h

k v x y k k v x y k
C

k k k k

� � � � �� �� � �� � �
� � �

� � �
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(12)

An equilateral triangle of side “1” taken using one side as axis of x and a line
perpendicular to its edge as axis of y. The triangular region is discritized with h = 1

2
along x-axis K = 3

12  along y axis which gives rise to 25 internal nodal points. With
V (x, y) = 0 on boundary, applying five point difference formula (12) at internal nodal
points we get 25 is linear equations.

Periodic Pressure Gradient in Triangle
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4. PARAMETRICAL VALUES

The following values are given to the parameters

6 3
1 0

2

1
, 10 , 10 ,

100
1

, 1.
300

m� �� � � � �

� � � �

Exponentially Decreasing Pressure Gradient in Tringle

Constant Pressure Gradient in Triangle
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0

�
�

 = 100, 10, 1; k = 1 velocities are computed at t = 104 and 102

5. DISCUSSION

Incase of periodic pressure gradient it is observed from Graph (1) represents velocity

distribution on y = 3
12

 when t = 104 the velocity of fluid increases upto x = 0.5 obtaining
maximum at x = 0.5 and decreases there afterwards the velocity start increasing from
x = 0.8 upto 0.85 and decreases there onwards. The same phenomena is observed for

all values of B, t and � in this region. Maximum velocity is obtained on y = 2 3
12  and

decreases in all lines parallel to y = 2 3
12  above and below. The velocity increase on the

line y = 3
12

2  and taking a parabolic shape with maximum velocity at x = 0.5. The

velocity found to decrease on line y = 3 3
12  and taking a parabolic shape. When t = 100

the velocity found to increase with same pattern of flow as discussed above Graph (2).
Increasing B does not show much variation in the flow pattern Graph (3).

In Case of exponentially decreasing Pressure gradient same type of flow pattern is

observed at y = 3
2  as in periodic pressure gradient. Velocity profiles take same shape

when B = 1 Graph (4) and B = 10 Graph (5). However when B is increase abnormally a

wave like velocity distribution observed in y = 3
12

 and y = 2 3
12  Graph (6).

In case of Constant Pressure gradient the velocity profiles found to be of the same

pattern as discussed above i.e. y = 3
12  same pattern of flow as observed in periodic

pressure gradient and also y = 2 3
12  and y = 3 3

12 . The flow profile is parabolic in nature
taking max at x = 0.5 Graph (7)&(8) in this case B has no much effect on flow pattern.

6. CONCLUSION

Finally it is observed that line y = 3
12

 the velocity profile is not parabolic but subject to
variations x = 0.8 to x = 0.85 and velocities are found to increase as we move from base

up to y = 2 3
12  and taking maximum at x = 0.5 decrease there afterwards in all types of

pressure gradient velocities are maximum on line throughout the cross section of triangle.
In case of exponential pressure gradient an abnormal increase in B i.e. parameter m,
kinemetic Viscosity, material constant play very important role and makes the flow
un-uniform and velocity profile takes wave like form. In case constant pressure gradient
not much variation is observed on basis B-value.
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