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Abstract. Starting from F , the matrix generating Fibonacci numbers, we
find the one-parameter Lie group generated by F 2. The matrix elements of

the group provide “special functions” identities that include special relation-
ships for Fibonacci and Lucas numbers. The generator of the group provides
a self-adjoint operator that we study in the context of quantum probability,
recovering an interesting family of binomial distributions involving the golden

ratio and a related class of Krawtchouk polynomials.

1. Introduction

Solutions to the Fibonacci recurrence

xn = xn−1 + xn−2

may be found as entries in powers of the companion matrix

F =

(
0 1
1 1

)
.

In particular, the Fibonacci and Lucas sequences arise via appropriate choices of
initial values. Many properties of those sequences are related to corresponding
properties of the sequence of powers of the matrix F .

This point of view of “special functions”, following Vilenkin, Klimyk, et al.
[8, 9], is that they appear as matrix elements [entries] of Lie groups. To this
end, we embed F 2 into a one-parameter Lie group, Fibonacci group, and consider
properties of this group, a subgroup of SL(2,R).

We start with basic properties of the matrix F and continue in the succeeding
section with properties of the sequence of powers of the golden ratio, φ. We present
all 2-by-2 symmetric matrix solutions to the basic equation F 2 = I +F to fill out
background. Section 5 presents the Lie group generated by F 2, starting with the
matrix |F | determined as the symmetric matrix with the same spectral resolution
as F , but with eigenvalues replaced by their absolute values. Section 6 takes
a look at the algebra of matrices under consideration by their special form. The
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next section takes a brief look at the corresponding unitary group. The self-adjoint
generator, call it A, of the Fibonacci group provides a way to bring in quantum
probability. This is accomplished by looking at the Lie algebra and corresponding
matrix factorization in SL(2,R). After recalling Bochner’s Theorem, we determine
the distribution of A as a quantum random variable and find a connection with a
class of Krawtchouk polynomials involving the golden ratio.

2. Basic Properties

Let

F =

(
0 1
1 1

)
be the Fibonacci matrix. It is easily verified that

F 2 = I + F

which imply, for n ≥ 1,

Fn+1 = Fn−1 + Fn

as well as

F−1 = F − I .

The following basic features are readily proven:

Proposition 2.1. Properties of F
1. For n ≥ 0,

Fn =

(
Fn−1 Fn

Fn Fn+1

)
where Fn denotes the nth Fibonacci number, with initial conditions F−1 = 1,
F0 = 0.
2. The trace trFn = Fn+1 + Fn−1 = Ln, the n

th Lucas number, and detFn =
(−1)n.

3. F has eigenvalues φ, the golden ratio equal to (1 +
√
5)/2, and −φ−1.

For an account of Fibonacci and Lucas related matrices we refer to [4, 5].

3. Powers of the Golden Ratio

A fundamental role is played by powers of the golden ratio φ [7].

Proposition 3.1. 1. We have the defining property φ2 = 1 + φ. Some further
relations:

2φ− 1 =
√
5 , φ

√
5 = 2 + φ = 1 + φ2 , φ−1 = −1 + φ

2. For n ≥ 0, we have

φn = Fn−1 + Fnφ , (−φ−1)n = Fn+1 − Fnφ

Proof. These follow directly by induction on n. □

Writing these in matrix form yields the important spectral result for Fn:
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Proposition 3.2. We have the spectral decomposition

Fn =
1√
5

(
1 −φ
φ 1

)(
φn 0
0 (−φ−1)n

)(
φ−1 1
−1 φ−1

)
Proof. By Propositions 2.1 and 3.1 ,

Fn

(
1 −φ
φ 1

)
=

(
Fn−1 Fn

Fn Fn+1

)(
1 −φ
φ 1

)
=

(
φn (−φ−1)n−1

φn+1 (−φ−1)n

)
=

(
1 −φ
φ 1

)(
φn 0
0 (−φ−1)n

)
and the result is obtained after multiplying both sides of the above from the right
by (

1 −φ
φ 1

)−1

=
1√
5

(
φ−1 1
−1 φ−1

)
□

4. The Matrix Equation F 2 − F − I = 0

Proposition 4.1. The real (2× 2) symmetric matrices F that satisfy the matrix
equation F 2−F − I = 0 are, up to an orthogonal similarity transformation, of the
form

F =

(
φ 0
0 −φ−1

)
or

(
−φ−1 0

0 φ

)
or

(
φ 0
0 φ

)
or

(
−φ−1 0

0 −φ−1

)
Proof. Since F is symmetric, it has real eigenvalues λ1, λ2 and there exists an
orthogonal (2× 2) matrix P such that

F = PDPT , D = diag(λ1, λ2)

Then

F 2 = F + I ⇔ PD2PT = PDPT + PIPT

⇔ P
(
D2 −D − I

)
PT = 0 ⇔ D2 −D − I = 0

which has the only solutions

D = diag(φ,−φ−1) or diag(−φ−1, φ) or diag(φ,φ) or diag(−φ−1,−φ−1)

Moreover, if F is a symmetric matrix solution of the equation F 2 − F − I = 0,
then any matrix G := PTFP , where P is an orthogonal (2 × 2) matrix, is also a
symmetric solution of the equation since

G2 −G− I = (PTFP )2 − PTFP − I = PT (F 2 − F − I)F = 0

□

Remark 4.2. Viewed as linear transformations on the plane, the first two matri-
ces F in Proposition 4.1 are area preserving and orientation reversing since their
determinant is equal to −1. The other two are orientation preserving, since they
have positive determinants, with areas magnified by φ2 and 1

φ2 respectively.
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Example 4.3. Examples of orthogonal similarity matrices P and the resulting
matrix F are:

P =

(
cos θ − sin θ
sin θ cos θ

)
in which case

F =

(
cos θ − sin θ
sin θ cos θ

)(
φ 0
0 −φ−1

)(
cos θ − sin θ
sin θ cos θ

)−1

=

(
φ cos2 θ − φ−1 sin2 θ (φ+ φ−1) sin θ cos θ
(φ+ φ−1) sin θ cos θ φ sin2 θ − φ−1 cos2 θ

)
and

P =

(
cos θ sin θ
sin θ − cos θ

)
in which case

F =

(
cos θ sin θ
sin θ − cos θ

)(
φ 0
0 −φ−1

)(
cos θ sin θ
sin θ − cos θ

)−1

=

(
φ cos2 θ − φ−1 sin2 θ (φ+ φ−1) sin θ cos θ
(φ+ φ−1) sin θ cos θ φ sin2 θ − φ−1 cos2 θ

)
Remark 4.4. We can also find the real (2× 2) symmetric matrices F that satisfy
the matrix equation F 2 − F − I = 0 by reducing to a system of polynomials. If

F =

(
x y
y w

)
then the matrix equation F 2 − F − I = 0 is equivalent to the system

−1− x+ x2 + y2 = 0 (4.1)

−y + wy + xy = 0 (4.2)

−1− w + w2 + y2 = 0 (4.3)

For y = 0 we find that x and w are either φ or −φ−1 and we get the solution
triples

(x, y, w) ∈ {(φ, 0, φ), (φ, 0,−φ−1), (−φ−1, 0,−φ−1), (−φ−1, 0, φ)}

For an arbitrary y ̸= 0, equation (4.1) implies x =
1±

√
5−y2

2 and then (4.2) implies

w = 1− x =
1∓

√
5−y2

2 where y ∈ [−
√
5,
√
5].

5. Fibonacci Group

We will construct a one-parameter matrix group starting from F 2 so that we
have a Lie subgroup of SL(2,R). Observe that

2 + φ = φ
√
5 , 2− φ−1 = φ−1

√
5

In other words, the spectrum of the matrix (2I + F )/
√
5 is {φ,φ−1}. It satisfies

(2I + F )/
√
5 =

1√
5

(
2 1
1 3

)
, ((2I + F )/

√
5)2 = F 2 =

(
1 1
1 2

)
Thus, (2I + F )/

√
5 is the positive definite symmetric square root of F 2.
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Proposition 5.1. The matrix

|F | := (2I + F )/
√
5

admits the spectral decomposition |F | = PDP−1 where

D =

(
φ 0
0 φ−1

)
, P =

(
1 −φ
φ 1

)
, P−1 =

1√
5

(
φ−1 1
−1 φ−1

)
Proof. The proof follows, through standard diagonalization, from the fact that
(1, φ)T and (−φ, 1)T are eigenvectors of |F | corresponding to its eigenvalues φ
and φ−1 respectively and(

1 −φ
φ 1

)−1

=
1√
5

(
φ−1 1
−1 φ−1

)
□

For the remainder of this paper, we use the notation

ℓ = logφ .

Theorem 5.2. The one-parameter Fibonacci group F = {|F |t / t ∈ R} is a Lie
subgroup of SL(2,R) of the form

|F |t = etA

where the generator A is given by

A =
ℓ√
5

(
−1 2
2 1

)
=

ℓ√
5
(−I + 2F )

The group element |F |t has the explicit form

|F |t = 1√
5

(
φt−1 + φ1−t φt − φ−t

φt − φ−t φ1+t + φ−(1+t)

)
Proof. In the notation of Proposition 5.1

|F |t = et log |F | = et log(PDP−1) = etA

where

A = log(PDP−1) = P (logD)P−1 = P

(
logφ 0
0 log

(
φ−1

))P−1

= ℓ P

(
1 0
0 −1

)
P−1 =

ℓ√
5

(
−1 2
2 1

)
We may also compute A as follows:

A =
d

dt

∣∣∣∣
t=0

|F |t = d

dt

∣∣∣∣
t=0

1√
5

(
φt−1 + φ1−t φt − φ−t

φt − φ−t φ1+t + φ−(1+t)

)
=

ℓ√
5

(
φ−1 − φ 2

2 φ− φ−1

)
=

ℓ√
5

(
−1 2
2 1

)
since φ2 − 1 = φ. Indeed, for each n = 0, 1, 2, ...,

An =
1√
5

(
φ(−ℓ)n + φ−1(ℓ)n (ℓ)n − (−ℓ)n

(ℓ)n − (−ℓ)n φ(ℓ)n + φ−1(−ℓ)n
)
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and summing the exponential series we obtain

|F |t = etA =
1√
5

(
φt−1 + φ1−t φt − φ−t

φt − φ−t φ1+t + φ−(1+t)

)
We notice that

det(|F |t) = et trA = e0 = 1

so |F |t ∈ SL(2,R) for each t. We also have that I = |F |0 ∈ F , |F |t|F |s = e(t+s)A ∈
F and |F |−t = e−tA ∈ F . Thus F is a subgroup of SL(2,R) and therefore of GL(2)
as well. Moreover, if (|F |tn)n∈N, |F |tn = etnA, is a sequence in F converging to a

matrix Φ ∈ GL(2,R) of the form Φ = et0A ∈ F where t0 = limn→∞tn, i.e., F is
a closed matrix subgroup of GL(2,R). By von Neumann’s theorem [6] F is a Lie
group. □

Remark 5.3. If tan θ = φ then tan 2θ = −2. Thus (1/ℓ)A is a reflection through a
line with slope φ passing through the origin.

5.1. Integer values of t. We recover the powers of F for even integer values of
t. For odd integer values, it turns out that we find Lucas numbers. In fact

Proposition 5.4. 1. For even integer t = 2m, we have

|F |2m =

(
F2m−1 F2m

F2m F2m+1

)
.

2. For odd integer t = 2m+ 1, we have

|F |2m+1 =
1√
5

(
L2m L2m+1

L2m+1 L2m+2

)
.

Proof. By Theorem 5.2, for t = 2m

|F |2m =
1√
5

(
φ2m−1 + φ1−2m φ2m − φ−2m

φ2m − φ−2m φ1+2m + φ−(1+2m)

)
=

(
F2m−1 F2m

F2m F2m+1

)
.

Multiplying |F |2m by |F | we get

|F |2m+1 =

(
F2m−1 F2m

F2m F2m+1

)
1√
5

(
2 1
1 3

)

=
1√
5

(
2F2m−1 + F2m 2F2m + F2m+1

2F2m + F2m+1 F2m + 3F2m+1

)
=

1√
5

(
L2m L2m+1

L2m+1 L2m+2

)
because L2m+2 = F2m+3 + F2m+1 = F2m+2 + 2F2m+1 = F2m + 3F2m+1 where
we have made repeated use of the defining recursion of the Fibonacci numbers:
Fk = Fk−1 + Fk−2 and of the Lucas numbers: Lk = Fk+1 + Fk−1. □

Remark 5.5. In particular, note that the original |F | is indeed

|F | = 1√
5

(
L0 L1

L1 L2

)
.

We can recover F as well.
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Proposition 5.6. The group |F |t satisfies
d

dt
|F |t = A|F |t

and
d

dt

∣∣∣∣
t=1

|F |t = ℓF .

Proof. The first line is by construction. The second follows by direct calculation.
□

For a survey of Fibonacci related groups we refer to [2].

6. Algebra Generated by F

Notice that all of the matrices involved in this study are of the form(
x y
y x+ y

)
= xI + yF

They form an algebra over the reals with multiplication

(aI + bF )(cI + dF ) = (ac+ bd)I + (ad+ bc+ bd)F

What is of special interest here is that the continuous parameter family |F |t are
all of this form as well.

Proposition 6.1. Letting

xt :=
1√
5
(φ1−t + φt−1) and yt :=

1√
5
(φt − φ−t) .

we have

|F |t = xtI + ytF

Proof.

xtI + ytF = xt

(
1 0
0 1

)
+ yt

(
0 1
1 1

)
=

(
xt yt
yt xt + yt

)
=

1√
5

(
φ1−t + φt−1 φt − φ−t

φt − φ−t φ1−t + φt−1 + φt − φ−t

)
In view of Theorem 5.2, we have to verify the identity

φ1−t + φt−1 + φt − φ−t = φt+1 + φ−(t+1)

Multiplying both sides by φt we obtain

(φ2 − φ− 1)(φ2t − 1) = 0

which is true since φ2 − φ− 1 = 0. Thus

xtI + ytF =
1√
5

(
φ1−t + φt−1 φt − φ−t

φt − φ−t φt+1 + φ−(t+1)

)
= |F |t

□



124 ANDREAS BOUKAS, PHILIP FEINSILVER, AND ANARGYROS FELLOURIS

Proposition 6.2. In the notation of Proposition 6.1, xt and yt satisfy the initial
condition x0 = 1 , y0 = 0. Moreover, for t, s ∈ R:
1. Group law: xs+t = xsxt + ysyt , ys+t = xsyt + xtys + ysyt
2. Doubling: x2t = x2t + y2t , y2t = 2xtyt + y2t
3. Inversion: x−t = xt + yt , y−t = −yt
Proof. As in the proof of Proposition 6.1

|F |t =
(
xt yt
yt xt + yt

)
Since |F |t = etA we have |F |t|F |s = e(t+s)A = |F |t+s which after writing it in
matrix form, carrying out the multiplication and equating corresponding entries
of the resulting matrices, yields the group law identities. For s = t we obtain
the doubling identities and for t = 0 the defining formulas for xt and yt give
x0 = (φ+ φ−1)/

√
5 = (φ2 + 1)/

√
5 = 1 and y0 = 0. Finally,

xt + yt = (φ1−t + φt−1 + φt − φ−t)/
√
5 = (φt+1 + φ−(t+1))/

√
5 = x−t

□
6.1. Hyperbolic form.

Proposition 6.3. The Fibonacci group F has the hyperbolic form

|F |t = 2√
5

(
cosh(ℓt− ℓ) sinh ℓt

sinh ℓt cosh(ℓt+ ℓ)

)
Proof. The proof follows from Theorem 5.2 after writing the entries of

|F |t = 1√
5

(
φt−1 + φ1−t φt − φ−t

φt − φ−t φ1+t + φ−(1+t)

)
in terms of the hyperbolic functions. For example,

φt−1 + φ1−t = e(t−1)ℓ + e(1−t)ℓ = 2 cosh((t− 1)ℓ)

□
Remark 6.4. F is a self-adjoint group of operators over the reals. The determinant
is one for all t. In view of

|F |t =
(
xt yt
yt xt + yt

)
and Proposition 6.3, letting xt = 2√

5
cosh(ℓt − ℓ) and yt = 2√

5
sinh ℓt the group

law, doubling and inverse identities of Proposition 6.2 become:

cosh(ℓ(s+ t)− ℓ) =
2√
5
cosh(ℓs− ℓ) cosh(ℓt− ℓ) +

2√
5
sinh ℓs sinh ℓt

sinh ℓ(s+ t) =
2√
5
cosh(ℓs− ℓ) sinh ℓt+

2√
5
cosh(ℓt− ℓ) sinh ℓs+

2√
5
sinh ℓs sinh ℓt

cosh(2ℓt− ℓ) =
2√
5
cosh2(ℓt− ℓ) +

2√
5
sinh2 ℓt

sinh 2ℓt =
4√
5
cosh(ℓt− ℓ) sinh ℓt+

2√
5
sinh2 ℓt
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cosh(−tℓ− ℓ) = cosh(ℓt− ℓ) + sinh ℓt

sinh ℓ(−t) = − sinh ℓt

7. Unitary Fibonacci Group

Extending to an algebra over the complex numbers, we have the unitary Fi-
bonacci group U = {|F |it / t ∈ R} where

|F |it = eitA =
1√
5

(
φi(t+i) + φ−i(t+i) φit − φ−it

φit − φ−it φi(t−i) + φ−i(t−i)

)
Proposition 7.1. The elements of the unitary Fibonacci group U have the trigono-
metric form

|F |it = 2√
5

(
cos(ℓ(t+ i)) i sin(ℓt)
i sin(ℓt) cos(ℓ(t− i))

)
Proof. The proof follows from Proposition 6.3 after replacing t by it and using the
identities cosh t = cos it and sinh t = −i sin it or, equivalently, cosh it = cos t and
sinh it = i sin t. □
Remark 7.2. The unitarity property |F |it

(
|F |−it

)T
= I implies the “Pythagorean

Identity”

| cos(ℓ(t+ i))|2 + sin2 ℓt =
5

4
.

Remark 7.3. The group law, doubling and inverse identities become:

cos(ℓ(s+ t) + iℓ) =
2√
5
cos(ℓs+ iℓ) cos(ℓt+ iℓ)− 2√

5
sin ℓs sin ℓt

sin ℓ(s+ t) =
2√
5
cos(ℓs+ iℓ) sin ℓt+

2√
5
cos(ℓt+ iℓ) sin ℓs+ i

2√
5
sin ℓs sin ℓt

cos(2ℓt+ iℓ) =
2√
5
cos2(ℓt+ iℓ)− 2√

5
sin2 ℓt

sin 2ℓt =
4√
5
cos(ℓt+ iℓ) sin ℓt+ i

2√
5
sin2 ℓt

cos(ℓt− iℓ) = cos(ℓt+ iℓ) + i sin ℓt

sin ℓt = − sin(−ℓt)

8. Lie Algebra and Group Elements

We use as standard basis for the Lie algebra sl(2,R)

R =

(
0 0
1 0

)
, ρ =

(
1 0
0 −1

)
, L =

(
0 1
0 0

)
raising, neutral, and lowering operators respectively [3] with commutation relations

[R, ρ] = 2R , [ρ, L] = 2L , [L,R] = ρ

The corresponding SL(2,R) group elements g take the form

g = eV RhρeV L =

(
1 0
V 1

)(
h 0
0 h−1

)(
1 V
0 1

)
for parameters V and h, corresponding to the LDU (Gauss) decomposition.
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Proposition 8.1. For the SL(2,R) group element g = (gij)1≤i,j≤2 we recover the
parameters h and V by

h = g11 and V = g12/g11

Proof. The proof follows from the fact that

g = eV RhρeV L =

(
1 0
V 1

)(
h 0
0 h−1

)(
1 V
0 1

)
=

(
h hV
V h hV 2 + h−1

)
□

Theorem 8.2. The Fibonacci group element |F |t has the SL(2,R) form |F |t =
eV RhρeV L with

h = ht =
φt−1 + φ1−t

√
5

=
2√
5
cosh(tℓ− ℓ)

and

V = Vt =
φt − φ−t

φt−1 + φ1−t
=

sinh tℓ

cosh(tℓ− ℓ)

where ℓ = ℓ. We note the “Fibonacci condition” as the relation

h−2 = 1 + V − V 2 = (1 + φV )(1− φ−1V ) .

Proof. The Fibonacci condition is g11+g12 = g22. The formulas for h and V follow
from the form of |F |t in Propositions 8.1, 6.3 and in Theorem 5.2, after equating
the corresponding entries. □

Remark 8.3. Note that at t = 2, h = V = 1, hence the relation

F 2 = eReL

easily checked directly from the matrices.

9. Bochner’s Theorem and Quantum Random Variables

A continuous function f : R 7→ C is positive definite if∫
R

∫
R
f(t− s)ϕ(t)ϕ̄(s) dt ds ≥ 0

for every continuous function ϕ : R 7→ C with compact support. Bochner’s theorem
(see [10] p. 346) states that such a function can be represented as

f(t) =

∫
R
eitλ dv(λ)

where v is a non-decreasing right-continuous bounded function. If f(0) = 1 then
such a function v defines a probability measure on R and Bochner’s theorem says
that f is the Fourier transform of a probability measure, i.e., the characteristic
function of a random variable that follows the probability distribution defined by
v. Moreover, the condition of positive definiteness of f is necessary and sufficient
for such a representation.

An example of such a positive definite function is provided by f(t) = ⟨Ω, eitAΩ⟩
where Ω is the normalized vacuum vector of a Fock-Hilbert space F and A is an
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observable (self-adjoint operator on F) also called a quantum random variable in
which case ∫

R

∫
R
f(t− s)ϕ(t)ϕ̄(s) dt ds = ∥

∫
R
e−itAϕ(t) dt Ω ∥2 ≥ 0

In the next section we compute the vacuum characteristic function ⟨Ω, eitAΩ⟩,
where Ω is the vacuum vector of the Fock space associated with the sl(2,R) Lie
algebra [3] and A is the self-adjoint generator of the Fibonacci group.

10. Quantum Probability Distribution and Associated
Orthogonal Polynomials

10.1. Distribution of A as a quantum random variable. To develop the
quantum probability connections, we form a GNS/Fock space construction. Let Ω
be a norm one “vacuum vector”, i.e., vacuum state, satisfying

LΩ = 0 and ρΩ = NΩ

with N a positive integer. The self-adjoint operator A becomes multiplication
by the real variable x. The vacuum expectation value of the group ezA gives
the moment generating function of A interpreted as a random variable. (We use
z rather than t here for the group parameter to distinguish it from the time-
parameter of the corresponding stochastic process.)

We get
⟨Ω, ezAΩ⟩ = ⟨Ω, eV RhρΩ⟩ = ⟨eV LΩ, hNΩ⟩ = hN

the N th convolution power of the distribution corresponding to h. Now,

h(z) =
2√
5
cosh(zℓ− ℓ) =

eℓz−ℓ

√
5

+
e−ℓz+ℓ

√
5

=
φ−1

√
5
eℓz +

φ√
5
e−ℓz

= peℓz + qe−ℓz

which is the moment generating function for a Bernoulli distribution taking values
±ℓ with probabilities

p =
φ−1

√
5

and q =
φ√
5

respectively. Thus

Proposition 10.1. For integer N > 0, the operator A has a binomial distribution
with parameters p and N .

We abstract to where the only properties of the operators R, ρ, and L we use
are the commutation relations defining the Lie algebra. The basis states for the
representation are

ψn = RnΩ

with the actions of L and ρ induced via sl(2,R) commutation relations. By induc-
tion we find

Rψn = ψn+1, ρψn = (N − 2n)ψn, Lψn = n(N + 1− n)ψn−1 .
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Now write A in terms of R, ρ, L:

A =
ℓ√
5
(2R− ρ+ 2L)

The action of A as multiplication by x gives:

Proposition 10.2. We have the“three-term” recurrence formula

x
√
5

ℓ
ψn = 2ψn+1 + (2n−N)ψn + 2n(N + 1− n)ψn−1

which hints at orthogonal polynomials.

10.2. Associated family of orthogonal polynomials. Our goal is to find the
generating function for the basis {ψn}n≥0. Start with

ezAΩ = ezxΩ = eV RhρeV LΩ = hNeV RΩ

If we solve v = V (z) for z we will have the generating function

evRΩ =
∞∑

n=0

vn

n!
ψn .

On the other hand, denoting the function inverse to V (z) by z = U(v),

evRΩ = h−NezxΩ = (1 + v − v2)N/2exU(v)Ω

using the relation found above via the Fibonacci condition. Once we have functions
of x and v we may drop the Ω’s. Thus

Theorem 10.3. The generating function for the basis {ψn} has the form

(1 + φv)(
x
2ℓ+

N
2 )(1− φ−1v)(−

x
2ℓ+

N
2 )

Proof. For the factors involving N in the exponent, we use the factorization

1 + v − v2 = (1 + φv)(1− φ−1v) .

For the factors involving x in the exponent, we must solve for the inverse function
U . Write

V =
sinh zℓ

cosh(zℓ− ℓ)
=

ezℓ − e−zℓ

ezℓ−ℓ − eℓ−zℓ
=

e2zℓ − 1

e2zℓ−ℓ + eℓ
= v

Solving for z gives

U(v) =
1

2ℓ
log

1 + veℓ

1− ve−ℓ

=
1

2ℓ
log

1 + φv

1− φ−1v
.

Exponentiating to exU(v) and multiplying in the remaining factors yields the result.
□



FIBONACCI GROUP 129

Now consider the random walk moving right or left length ℓ for N steps arriving
at position x = kℓ. We let

j = number of steps moving left = (N − k)/2

Note that the number of steps to the right is (N + k)/2. Rewriting in terms of
j, the exponents take the form N − j and j respectively. Thus we have the form,
denoting the generating function by G(v)

G(v) = (1 + φv)N−j(1− φ−1v)j .

Denote the corresponding random variable by J . Then J is binomial with distri-
bution

Prob{J = j} =
1

5N/2

(
N

j

)
(φ−1)N−jφj =

1

5N/2

(
N

j

)
φ2j−N .

Orthogonality means that the expected value of G(v)G(w) depends only on vw.
In fact, we calculate

⟨G(v)G(w)⟩ = 1

5N
((φ+ φ−1)(1 + vw))N = (1 + vw)N .

We recognize the generating function for Krawtchouk polynomials which are
families of polynomials orthogonal with respect to binomial distributions [1, 3].

11. Conclusion

We have shown how to consider Fibonacci and Lucas numbers, related se-
quences, and the golden ratio as special functions related to a particular Lie sub-
group of SL(2,R). One possibility to consider is that the algebra generated by F is
an interesting candidate for a parallel study of a “quantum mechanics” alternative
to that based on the complex numbers. It would provide an approach different
from generalizations based on Clifford algebras, for example.

The quantum probability angle leads to the question of developing a correspond-
ing field theory. To start, the study of tensor powers of F and representations of
the associated algebra on symmetric tensor powers (boson Fock space) would pro-
vide interesting connections with Boolean algebra that provide many possibilities
for further study.
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