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ABSTRACT

The vector coprocessor (VP) is taken as a potential solution for control applications because of its low power
consumption and internal feedback network. Due to partial re-programmability and hardware sharing, field
programmable gate array (FPGA) offers a novel platform to implement it. Architecture is presented for simultaneous
detection of the desired non-overlap n-binary control vectors of a constant length of m-bit with reduced hardware
requirement. Finite state machine (FSM) has been investigated for designing the proposed detector. Within a bit
stream, which is generated by central processor unit (CPU), it provides a single output or user defined output
combinations for desired control vectors. The reduced state table for its FSM implementation is obtained without
using state diagram and state reduction techniques. A formula has been developed for calculation of an approximate
number of memory elements required for implementation of the proposed detector. One of its application is also
conferred to add new devices to any existing digital system or to modify its features. It provides adaptability in
three aspects i.e. the length of sequences, the number of sequences and user defined output combinations.

Keywords: Field programmable gate array (FPGA), finite state machine, control vector detector, state diagram,
state reduction, vector coprocessor (VP).

1. INTRODUCTION

Vector coprocessors (VPs) have proved their significance in the field of multimedia data processing [20].
An FPGA-based platform (i.e. Spartan 3E Starter Board) is considered for its hardware implementation.
The motivation to develop control applications using VPs stems from simultaneous detection of input
control vectors within a serialized bit stream generated by the central processor unit and to produce outputs
associated with it.

This paper presents a new designing technique that generates an optimal set of states to implement an
FSM design for simultaneous detection of multiple control vectors of a constant length. A detector is
required to identify the advent of a particular m-bit length binary control vector within a serialized bit
stream. It provides the user defined outputs upon the arrival of the last bit of the desired binary control
vector [1].

The prime objective of this study concerns about creating an accurate, stable and flexible design for
controlling operations as well as to keep it economical. Therefore, an efficient utilization of hardware is
required to make the design cost effective. It can be obtained by the FSM model which is a circuit with the
internal states [2], [3]. FSMs furnish a beautiful framework to solve control problems, which involves a
sequential operation [4].

Unlike regular sequential circuits, the state transition of an FSM is more complicated. The design of
FSM typically starts with an abstract graphic description, such as a state diagram [5], [6]. A state diagram
consists of nodes and one-directional transition arcs [7]. A node symbolizes a unique state of the FSM, and
an arc signifies a transition from one state to another. The creation of a state diagram for the proposed
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detector necessitates, selecting the required states, input-output combinations and possible transitions between
them, which results in state-space explosion. The corresponding state table is formed by the state diagram.

From state table, a reduced state table is created by using the merger graph method [8] or other state
reduction techniques [2], [3], which results in the saving of precious memory. An efficient state encoding
technique [6], [9] is used to reduce the power consumption further during synthesis. The computation
required obtaining a reduced state table increases with the growing complexity of a state diagram. The
mentioned complexity upsurges as per increase in (n, m) values. Furthermore, data dependent control
specifications become tedious to be expressed through FSM at abstraction level.

The proposed algorithm overcomes the problem of forming a state diagram for the control vector detector.
It provides the simplest way to obtain a corresponding reduced state table without utilization of monotonous
computation. While creating prototypes using FPGA [10], [11], the proposed method can develop efficient
techniques for implementation of FSMs using less number of embedded memory blocks (EMBs) [12],
[13]. The proposed method provides a complete framework to design adaptive control systems [14].

Device portability is termed as, adding new devices to the port or changing the configuration of
the existing output device connected to that port. Nowadays, it is getting attention, while designing
modern systems. It creates a new era of developing flexible systems, which supports the addition of
new hardware and reconfiguration in its features. It offers promising results for robotics and its
applications. But the potential problems lie in controllability [15] of such devices. A possible solution
has been introduced as an application of the proposed detector i.e. a new approach for controlling the
devices by control vector matching.

2. PROPOSED ARCHITECTURE

The proposed detector consists of two parts as shown in Figure 1. The part-1 is used to detect desired n-
binary control vectors of m-bit length by a single output or user defined output combinations. The part-2 is
used to identify all n-binary control vectors of m-bit length by an output 1. The incapability in the detection
of overlapped control vectors is the primary disadvantage of the proposed algorithm. Overlapping of control
vectors will occur, if the proposed algorithm is applied to detect multiple control vectors simultaneously,
which results in failure. A solution is introduced as the part-2 of the architecture, which is used for generation
of a reset signal to overcome the mentioned problem. The output of the part-2 is used as a reset signal
(i.e. signal for moving all states to the initial state in the FSM present in the part-1).

Figure 1: Proposed control vector detector architecture.
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2.1. Control Vector Detection by a Single Output combination:

To illustrate all aspects and conditions and to compare its performance with [1] examples have been
introduced.

Example 1. Let us consider the part-1 of the detector will produce a single output combination i.e. 1,
when any one of the following non-overlap binary control vector of a constant length of 21 bit is detected:
100011001000111110000, 100011001010111111000, 100011001000111110011, 100011001010111111011,
100011001000111110110, 100011001000111110111, 100011001010111111110, 100011001010111111111
and the part-2 of the detector will produce output 1, when any 21-bit long sequence is detected. To obtain
an optimal hardware for the proposed detector the following designing steps [13] should be followed:

2.1.1. Step (1): Arranging the desired sequences in ascending or descending order

First of all, the desired vectors should be arranged in ascending or descending order according to its weight.

2.1.2. Step (2): According to the occurrence of switching, making a column-wise separation
and partition of bits

Now, the separation of bits of the desired vectors from each other should be performed to form columns.
After that, a column-wise search for switching i.e. 1 to 0 or 0 to 1 should be accomplished. A column-wise
search for switching operation should be executed in the direction of most significant bit (MSB) to least
significant bit (LSB). In the case of occurrence of switching, a partition should be made by a horizontal line
as shown in Figure 2.

2.1.3. Step (3): Assigning default states F1 and F0

The unspecified states in FSM make the system unpredictable [2], [3], [16]. To avoid this problem default
states should be defined. According to the occurrence of switching the operation of assigning default states
F1 (i.e. first one) and F0 (i.e. first zero) should be performed by looking at the first and second column. It
has been presented in Figure 3. As the mentioned default states are the frequently visited states, so a
technique referred to in [17] can be used to protect these states and avoid soft errors.

Figure 2: According to the occurrence of switching, making a column
wise separation and partition of bits for the part-1 of example 1.
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2.1.4. Step (4): Drawing equivalent state diagram

Further, an operation similar to assign names in Figure 2 should be performed to get Figure 4, which is
equivalent to its state diagram. To construct a state table from Figure 4, it has been considered that at state
S0 which is the initial state, if input 1 occurs, it goes to state S1, if input 0 occurs, it goes to state S0. In the
case of state S1, if input 1 occurs, it goes to state S1, if input 0 occurs, it goes to state S2. Similarly, In the
case of state S2, if input 1 occurs, it goes to state S1, and if input 0 occurs, it goes to state S3. It should be
remembered that, if any state is not defined for input 1, then, in that case, it goes to state assigned with F1.
Similarly, if any state is not defined for input 0, then, in that case, it goes to state assigned with F0. For
example, states like S0, S4, S5, S8, etc. are not defined for input 0, so they go to the state S0 upon the
occurrence of input 0 because S0 is assigned to F0. Similarly, states like S1, S2, S3, S6, etc. are not defined
for input 1, so they go to the state S1 upon the occurrence of input 1 because S1 is assigned to F1. In the
case of states present in the last column, if input 1 or 0 occurs, they go to corresponding default states.

All the desired control vectors are detected only in the states present in the second last column, at the
occurrence of a particular input. Output is defined by 1 (i.e. Single output combination) if input 0 occurs at
state S31 and S34, and output is determined by 1 if input 1 occurs at state S32 and S35. In the case of states
S33 and S36 output is defined by 1 for input 1 or 0. For rest of the states, output is determined by 0 for both
inputs i.e. 0 and 1 respectively.

2.1.5. Step (5): Applying first state reduction rule

The first state reduction [4] rule is stated as, “For the proposed detector, the states present in the first and
last column of the equivalent state diagram are identical to each other and can be combined [2], [3], [8].”

2.1.6. Step (6): Applying second state reduction rule

The second state reduction rule is stated as, “To identify the identical states blocks should be created, and
then the comparison of blocks to each other should be executed. The column-wise state reduction should
be performed in the direction LSB to MSB.”

• Iteration (1): As all the desired control vectors are defined by a single output combination, so at this
stage the following three cases are possible:

Case (i): If more than one state will go to initial state for input 1, whereas they are not defined for
input 0, then those states will be equivalent to each other [4], [8].

Case (ii): If more than one state will go to initial state for input 0, whereas they are not defined for
input 1, then those states will be equivalent to each other [4], [8].

Case (iii): If more than one state will go to initial state for input 1 and 0, then those states will be
equivalent to each other [4], [8]. It has been shown in Figure 5.

Figure 3: (A) Assigning F1 and F0, if switching does not occur and 1 is present between the first two columns.
(B) Assigning F1 and F0, if switching does not occur and 0 is present between the first two columns.

(C) Assigning F1 and F0, if switching occurs between the first two columns for the part-1 of example 1.
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• Iteration (2): At this stage, the output is equal to 0 for all the states present in this iteration, so if
more than one state goes to same next states for input 0 and 1 respectively, then they will be
equivalent to each other [2]–[4].

Similarly, these iterations should be performed until the advent of states present in the second column.
These state reduction process will take maximum (m-1) iterations.

A reduced equivalent state diagram is obtained at the last iteration. After finishing state reductions as
mentioned earlier, a reduced state table should be formed from its reduced equivalent state diagram as
shown in Table 1.

2.1.7. Step (7): Detection of m-bit long all binary control vectors by an output 1

It is the unique condition. If the detector is formed to detect m-bit long all binary vectors by an output 1, it acts
as an m-bit counter, whose output is the AND gate output, which is fed by all outputs of flip-flops present in
the m-bit counter. Only m states are required to detect all binary vectors of length m-bit as shown in Figure 6.

Figure 4: Equivalent state diagram for the part-1 of example 1.

Figure 5: (A) Formation of blocks and (B) Combined states
after comparing blocks to each other at iteration 1 for the part-1 of example 1.
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2.2. Detection of control vectors by User Defined Output Combinations

Except the second state reduction rule at iteration 1, all rules applied for detection of vectors by user
defined output combinations are identical to rules used for detection of vectors by a single output combination.

Example 2. Let us consider a detector for detection of non-overlap binary control vectors of constant
length 21-bit by user defined output combinations. The part-1 of the detector will produce output 1000 if
binary vector 100011001000111110000 is detected. It will produce output 0100 if vector
100011001010111111000 is identified. It will produce output 0010 if any one of the following vectors is
determined: 100011001000111110011, 100011001010111111011 and it will produce output 0001 if any
one of the following vectors is detected: 100011001000111110110, 100011001000111110111,
100011001010111111110, 100011001010111111111. The part-2 of the detector will produce output 1 if
any 21-bit vector is identified.

Figure 6: (A) Reduced equivalent state diagram to detect m-bit long all binary vectors by an output 1,
(B) Reduced equivalent state diagram for the part-2 of example 1.

Table 1
Reduced State table for example (1)

PRE-SENT NEXT OUTPUT PRE-SENT NEXT OUTPUT
STATE STATE z STATE STATE z

x = 0 x = 1 x = 0 x = 1 x = 0 x = 1 x = 0 x = 1

S0 S0 S1 0 0 S16 S0 S18 0 0

S1 S2 S1 0 0 S17 S0 S19 0 0

S2 S3 S1 0 0 S18 S0 S20 0 0

S3 S4 S1 0 0 S19 S0 S21 0 0

S4 S0 S5 0 0 S20 S0 S22 0 0

S5 S0 S6 0 0 S21 S0 S23 0 0

S6 S7 S1 0 0 S22 S0 S24 0 0

S7 S8 S1 0 0 S23 S25 S1 0 0

S8 S0 S9 0 0 S24 S0 S25 0 0

S9 S10 S1 0 0 S25 S27 S28 0 0

S10 S11 S12 0 0 S27 S31 S32 0 0

S11 S13 S1 0 0 S28 S0 S33 0 0

S12 S14 S1 0 0 S31 S0 S1 1 0

S13 S0 S15 0 0 S32 S0 S0 0 1

S14 S0 S16 0 0 S33 S0 S0 1 1

S15 S0 S17 0 0
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The second state reduction rule at iteration 1 for detection of control vectors by user defined output
combinations can be specified as, Two states S

i
 and S

j
 are said to be equivalent if they go to same next states

and produce same output combinations for input 0 and 1 respectively [2], [3], [5] as shown in Figure 7.

3. ESTIMATION OF MEMORY ELEMENTS REQUIRED FOR IMPLEMENTATION OF THE
PROPOSED SEQUENCE DETECTOR

A formula is presented for calculation of an approximate number of memory elements or flip-flops required
for implementation of the proposed detector. The presented formula gives the exact number of memory
elements needed for a detector with a single output combination without applying second state reduction
rules. The number of reduced states after applying second state reduction rule and number of additional
states required for implementation of the detector by user defined output combinations are not reasonably
high. So the proposed formula gives an approximate measure of required memory elements because it has
been described in logarithmic scale. The proposed formula is applicable only after applying the first two
steps of sequence detection. The proposed formula for estimation of required memory elements is given by
Equation (1).

Number of  required memory elements =

�2log    1 2m[ m  (m - first switching  between seq.  & seq. )   � � ��
   2 3 (m - first switching between seq.  & seq. )�

   3 4(m - first switching between seq.  & seq. )

� �   1...................................................  (m - first  switching between seq.(n - ) & seq.n)]� (1)

Figure 7: (A) Formation of blocks and (B) Combined states after comparing
blocks to each other at iteration 1 for the part-1 of example 2.
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4. NEW APPROACH FOR DEVICE PORTABILITY

A new approach is illustrated for device portability. Let us consider a system with a single or multiple
general purpose processor units (GPUs) and limited input/output ports. GPU generates different constant
length and non-overlap binary control vectors corresponding to particular processes as safe control commands
[15]. It has been taken into account that output AC/DC characteristics of a particular intermediate device
must match with the input AC/DC characteristics of the corresponding output device. Hence, along with
the modification of GPU programming, the proposed detector can be studied to add new devices or to
modify the previously defined functionalities of existing output device or to perform both on a single port.
Device portability comes with a trade-off of the speed of operation.

Example 3: Let us consider a robot that consists of a GPU, which generates 8-bit length control signals
from port-1 to operate the output units as shown in Figure 8. Extra devices can be added to the robot by
introducing a new intermediate device (i.e. proposed detector) and output features of the robot can be
modified by changing the configuration of the intermediate device along with the amendment in GPU
programming. Operational description [10] for example 3 has been presented in Table 2.

Table 2
Operational description for the example (3)

Device Name Robot part name Job (or Process) Process Defined Output Combinations
to beperformed by Sequence

Inter-mediate Device 1 Arm Control Rotate Clockwise 00000001 z1_1 z2_1= 10

Rotate Anti-clockwise 00000010 z1_1 z2_1= 01

Inter-mediate Device 2 Direction Control Move Forward 00000011 z1_2 z2_2 z3_2 z4_2 = 1000

Move Backward 00000100 z1_2 z2_2 z3_2 z4_2 = 0100

Move Left 00000101 z1_2 z2_2 z3_2 z4_2 = 0010

Move Right 00000110 z1_2 z2_2 z3_2 z4_2 = 0001

Inter-mediate Device 3 Speed Control Speed Level 1 00000111 z1_3 z2_3 z3_3 z4_3 z5_3 = 10000

Speed Level 2 00001000 z1_3 z2_3 z3_3 z4_3 z5_3 = 01000

Speed Level 3 00001001 z1_3 z2_3 z3_3 z4_3 z5_3 = 00100

Speed Level 4 00001010 z1_3 z2_3 z3_3 z4_3 z5_3 = 00010

Speed Level 5 00001011 z1_3 z2_3 z3_3 z4_3 z5_3 = 00001

Figure 8: System model for example 3.
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5. RESULTS AND DISCUSSIONS

The variation of the number of required states for FSM implementation of part-1 w.r.t. possible combinations
of adjacent binary vectors are shown in Figure 9. Comparison results have been presented in Figure 10. In
Figure 9 & Figure 10, an up-counting scheme have been used for generation of all possible combinations of
sequences after applying first two steps of sequence detection, and its decimal equivalent have been used
for representation as shown below:

Figure 10: (A) For 4-bit long 3 sequences and (B) For 4-bit long 4 sequences,
comparison of memory element requirement between proposed method and the existing method

Figure 9: (A) For 4-bit long 3 sequences and (B) For 4-bit long 4 sequences, variation in state
requirement for FSM implementation of part-1 w.r.t. all possible combinations of adjacent sequences.
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(0, 1, 2), (0, 1, 3), (0, 1, 4), ...................., (3, 4, 15), (3, 5, 6), (3, 5, 7), ...................., (12, 14, 15), (13, 14, 15).

The program written for examples as mentioned earlier have been successfully simulated using Xilinx
ISE Design Suite. Simulation results have been presented for example 3 in Figure 11 (Note: all variables
contain their usual meaning). Hardware implementations have been performed using Spartan 3E Starter
Board; which validates the simulation results. Table 3 presents different parameters for it.

6. CONCLUSION

The proposed technique provides an optimal hardware compared with existing method when the number
of desired control vectors and correlation between them is high. Therefore, it can be applied to design low
power devices. The states combined in a particular iteration is proportional to the states combined in its
previous iteration while state reduction. Therefore, the number of states required to implement the FSM for
proposed detector by user defined output combinations is always greater than the number of states needed

Figure 11: Simulation results for example 3.

Table 3
Device Utilization Summary for example 3

Device Utilization Summary

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 47 9,312 1%

Number of 4 input LUTs 56 9,312 1%

Number of occupied Slices 36 4,656 1%

Number of Slices containing only related logic 36 36 100%

Number of Slices containing unrelated logic 0 36 0%

Total Number of 4 input LUTs 56 9,312 1%

Number used as logic 53

Number used as Shift registers 3

Number of bonded IOBs 14 232 6%

Number of BUFGMUXs 1 24 4%

Average Fanout of Non-Clock Nets 2.78

Maximum Operational Frequency 249.128 MHz

Path Delay 6.959 ns

Memory Usage 210.8 MB

Static Power Consumption 0.081 W
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to implement it by a single output combination. It can be used for process isolation in any reconfigurable
processing fabric architectures (RPFs) [18]. It can be used for designing more efficient sampled correlator
[19]. To avoid race conditions in asynchronous digital systems a hybrid design structure can be made which
combines synchronous (i.e. proposed technique) and asynchronous digital design [8]. In the proposed scheme
for device portability, the speed of operation of the system is proportional to the clock frequency of GPU.
Also, it consists of only a single input port and user defined output ports, therefore, it may be used for
multiplexing operations.
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