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Abstract

Selecting optimal level of retentions for reinsurance treaties has been a major concern for insurance companies. 
It is important to choose a risk measure that describes insurer’s vulnerability to insolvency. In this paper, by 
lowering the ruin probability and assuming the initial capital of zero and based on various safety loading factors 
of insurance and reinsurance premiums, optimal retentions in cases of proportional and non-proportional 
treaties are found.

We apply the data from fire insurance department of Mellat insurance company in Iran to examine the theory. 
For the purpose of homogeneity of data, all fire insurance policies are collected from homeowner’s fire insurance 
coverage. For simplicity, commissions and expenses of insurance company are excluded.

Optimal retentions are found in the case of proportional reinsurance. Our findings show that when safety 
loading factors of ceding company and Reinsurance Company approach to each other, it is better for insurance 
company to cede more, and as the distance between safety loading factors increase, the ceding company should 
cede less. In the case of excess of loss reinsurance, the results are not stable but after a critical point in safety 
loading factors, stable results are derived.

Keywords: Optimal retentions, Ruin probability, Reinsurance, Lundberg’s upper bound, Zero initial capital.

Introduction and Literature Review1. 

Many researchers such as Bühlmann (1970), Grandell (1991), and Asmussen (2000) have comprehensively 
worked on classical Cramer-Lundberg framework and offered this framework for targeting ruin probability. 
Centeno (1985) calculated the optimal retention based on minimizing skewness coefficient of insurer’s 
retained risk subject to constraints on variance and expected value of retained risk. However Centeno 
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(1986) and Dickson (2005) suggest to target an upper bound of ruin probability instead of targeting the 
exact ruin probability level. They chose the adjustment coefficient as a measure for optimizing reinsurance 
cover purchased. However, Gajek (1999) in its research focused on comparing various premium calculation 
principles and its effect on optimal retention. Some other researchers worked on approximations instead 
of upper bound. De Vylder et. al., (1988) by use of some approximations provided a numerical algorithm 
for calculating finite time ruin probability in the case of discrete time risk process. Dickson & Waters 
(1991) presented an algorithm for calculating finite time survival probability and applied it to infinite time 
survival probability. However, Panjer & Wang (1993) in their work shown that most of recursive algorithms 
are unstable. Dickson et. al., (1995) in its work presented more stable recursive algorithms comparing to 
previous ones. Gerber et. al., (1987) worked on both the probability and severity of the ruin. Picard (1994) 
worked on the maximum severity of ruin. Also, in the concept of distribution of surplus process Dickson 
(1992) provided the distribution of surplus process prior to ruin and Willmot et. al., (1998) extended the 
research on this area based on properties of the distribution of surplus process before and after ruin. The 
Laplace transform of ruin which obtains the probability density function of time of ruin in exponential 
claims is used in the work of Gerber & Shiu (1998) and Schiff (1999) and the inversion of Laplace transform 
is suggested in the work of Drekic & Willmot (2003) and Dickson et. al., (2003).

Other researchers focused on revising the limiting assumptions of classical Lundeberg’s framework. 
The classical Lundberg’s framework assumed that the claim arrival process is homogenous Poisson process. 
But this is not the case in which the occurrence of claim has periodic or seasonal behavior. Parisi and Lund 
(2000) focused on annual arrival cycle and return period properties of land falling Atlantic Basin hurricanes. 
Based on non-homogenous Poisson process they modeled the seasonality of hurricane arrival time. Garrido 
et. al., (2004) suggested doubly periodic Poisson model with short-term and long-term trends of seasonality 
of hurricanes. Charpentier (2010) worked on optimal reinsurance issues and its pitfalls. In his paper he 
showed by means of deriving an efficient Monte Carlo algorithm there is possible to show that although 
an insurance company purchases non-proportional reinsurance cover, its ruin probability would increase. 
This could happen when the claim arrival process follows non-homogenous Poisson process. In this paper 
we apply Cramer-Lundberg framework on real data. The idea of the paper follows from Dickson (2005). 
We try to graphically trace the behavior of adjustment coefficient according to different combinations of 
safety loading factors of insurer and reinsurer in the case of quota-share and excess of loss treaty and by 
doing so, optimal retentions are found.

The Model2. 

In the classical risk model, {U(t)}t ≥ 0 is denoted as surplus of an insurer, in which, u ≥ 0 is the insurer’s 
surplus at time 0, and c is insurer’s rate of premium income per unit time which is assumed to be received 
continuously and is based on expected value principle with q > 0 which is insurer’s safety loading factor. 
Also it is assumed {N(t)}t ≥ 0 is a counting process for number of claims occurred in a fixed time period 
[0, t] which is a Poisson process with parameter l. The amounts of individual claims {Xi}•

i = 1 are assumed 
to be a sequence of independent and identically distributed random variables (i.i.d.) so that Xi is denoted 
as the amount of ith claim. The surplus process at time t is described as:

	 U(t) = u + ct - S(t)	 (1)
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If we denote m1 as the mean individual claim amount, in the above model it is assumed c > lm1, i.e. 
the premium income exceeds the expected amount of aggregate claim per unit of time. The premium 
income is defined as:

	 c = (1 + q)lm1	 (2)

The ultimate ruin probability in infinite time can be defined as:

	 y(u) = Pr(U(t) < 0 for t > 0).	 (3)

This equation states that y(u) is the probability that an insurer’s surplus falls below zero due to exceed 
of claims outgo relative to initial surplus plus premiums received.

In classical risk process the adjustment coefficient which is denoted by R is defined as a risk measure 
for surplus process. This measure considers two factors in the surplus process, aggregate amount of claims 
and premiums received, and is defined to be the unique positive root of equation 4.

	 1 + (1 + q) m1 R = Mx(R)	 (4)

in which mi is (X
i
1).

Then the adjustment coefficient is needed in Lundberg’s inequality for risk process is stated in equation 5.

	 y(u) £ exp{-Ru}	 (5)

where R is adjustment coefficient.

The proof of inequality (5) is provided in various forms. Gerber (1979) and Rolski et. al., (1999) proved 
it by use of martingales. Also other forms of proofs are given in Dickson (2005).

In the case that insurer purchases reinsurance, we assume reinsurance premium is paid continuously at 
a constant rate and risk process becomes net of reinsurance surplus process {U*(t)}t ≥ 0, and is given by:

	 U X
N

* * *
( )

( )t u c t i
i

t

= + -
=
Â

1

in which X*
i denotes the amount the insurer pays on the ith claim, net of reinsurance and c* is the insurer’s 

premium income per unit time net of reinsurance. If we assume that c* > lE[X*
1] and MX*

1
 exists, the net 

of reinsurance adjustment coefficient is given such that

	 l + c*R* = lE[exp{R*X*
1}].

It can be seen that the insurer’s ultimate ruin probability is bounded above by exp{-R*u}. If we 
denote X as the amount of an individual claim with X ~ F and F(0) = 0 we can define h as a reinsurance 
arrangement in which when a claim x occurs the reinsurer contributes the amount of h(x) where 0 £ h(x) 
£ x. In the case of proportional reinsurance h(x)  = ax where 0 £ a £ 1. If the insurance company arranges 
an excess of loss reinsurance with retention level M, this means the insurer pays min(X, M) in occurrence 
of any claim. In this case h(x) = min(X, M). Then in order to compare both reinsurance arrangements it 
should be assumed that

	 E[min(X, M)] = E[a(X)].	 (6)
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The assumption in equation 6 states the mean individual claim net of reinsurance should be put equal 
in both reinsurance arrangements. This is a necessary condition for our comparison. The next important 
assumption is that equation 2 which defines the insurance premium would become as equation 7.

	 c* = (1 + q)lE[X] - (1 + e)lE[X - h(X)],	 (7)

in which

	 c* > lE[h(X)].	 (8)

In equation 8, c* is the difference between premium collected by insurance company and the reinsurance 
premium. e is the safety loading factor that reinsurance company charges in order to accept the risks from 
cedent. Also it is assumed that in equation (7) e ≥ q > 0 . This assumption ensures that the net adjustment 
coefficient exists along with the assumption that relevant moment generating function exists. It is necessary 
to remind that h represents any reinsurance arrangement since based on equation (6) the premium of both 
reinsurance treaties are kept equal.

2.1.	 Proportional Reinsurance

In the case of effecting proportional reinsurance, the insurer only pays proportion a of each claim. Then 
the insurer’s net of reinsurance premium income per unit time would be as equation 8.

	 c* = (1 + q)lE[X] - (1 + e)l(1 - a)E[X]	 (9)

with the condition that c* > laE[X]. Based on this condition it can be easily proved that

	 a > -1
q
e

	 (10)

which means q < e is a crucial condition for insurance company to purchase reinsurance coverage. If this 
condition doesn’t meet then the insurance company retains all of the risk for itself.

The equation (4) in the case of purchasing proportional reinsurance would look like as equation 10.

	 l l l+ = =
•

Úc a a f x dxp p p
* [exp{ }] exp{ } ( )( ) ( )R E R X R X

0

	 (11)

in which Rp denote the net adjustment coefficient based on proportional reinsurance arrangement.

2.2.	E xcess of Loss Reinsurance

In the case of purchasing excess of loss reinsurance with retention level M the insurer’s net of reinsurance 
premium income per unit time is as follows:

	 c x f x dx* ( ) ( )[ ] ( ) ( )= + - + -
•

Ú1 1q l leE X M
M

The adjustment coefficient based on equation (4) in the case of excess of loss reinsurance would 
become as equation 11.



Optimal Retentions with Ruin Probability Target in the Case of Fire Insurance in Iran

International Journal of Applied Business and Economic Research647

	 l + c* Re =	lE[exp{Re min(X, M)}]

	 =	 l exp{ } ( ) exp{ }( ( )) .R R M F M
M

e ex f x dx + -
Ê

Ë
Á

ˆ

¯
˜Ú 1

0

	 (12)

The proof of this equation is given in Dickson 2005.

	 Mc - S1
(-R) =	1

	 eRc =	MS1
(R) = E(eRS1) fi 1 = e-RcE(eRS1 - Rc) = E(e-R(c - S1))

For the first claim that occur and for simplicity it is put l = 1. This equality is the cornerstone for 
our work.

If we define function h(R) as a function of adjustment coefficient then :

	 h(R) = E(e-R(lc - Xi)) = 1	 (13)

It should be noted that the principle of premium calculation used in this work is expected value 
principle. This premium must satisfy the positive safety loading constraint E[Xi - cl] < 0 in the considered 
time interval, because if the premiums collected do not exceed the amount of losses, ruin has occurred in 
the time interval.

Also in this thesis it is assumed the initial capital of insurance company is zero. The initial capital has 
considerable effect on decreasing the ruin probability of insurance company and more capital leads to less 
demand for reinsurance coverage. By assuming initial capital of zero we can better analyze the portfolio of 
losses. In this way, the amount of premium is calculated based on expected value of claims. Then based 
on two factors, premium safety loading factor of insurance company and premium safety loading factor 
of reinsurance company, the optimal retention for both proportional and non-proportional reinsurance 
treaties is calculated and compared.

∑	 In the case of proportional reinsurance equation 12 becomes:

	 h(R, a) = E(e-R(lc(a) - aXi)) = 1	 (14)

	 where, a is the retention rate and c(a) is the premium rate function.

∑	 In the case of excess of loss reinsurance equation 12 becomes:

	 h(R, a) = E(e-R(lc(a) - min(Xi, a)) = 1	 (15)

	 The proofs of equation 12 and its modifications in equation 13 and 14 are provided in Bowers 
(1997).

Empirical Analysis3. 

In order to get better understanding of application of ruin theory, real data from home owner’s fire insurance 
policies are chosen. The data includes 2723 insurance policies that are purchased within year 2008 form 
Mellat insurance company in Iran. In order to have homogenous data, we consciously chose fire insurance 
policies that cover similar risks, such as insurance policies cover the risk of fire for apartments, domiciles, 
condominiums, and suites. From above policies, 198 items are caused losses and the insurance company has 



Ghadir Mahdavi and Omid Ghavibazu

International Journal of Applied Business and Economic Research 648

indemnified for those losses. For illustrative purposes the claims amounts are divided by 10 million Rials 
and all descriptive statistics and parameter estimations are shown. Table 1 provides descriptive statistics 
of data.

Table 1 
Descriptive statistics of claims

Mean Standard Deviation Minimum Maximum Range Skewness Kurtosis
Claims 0.79 0.86 0 4.9 4.9 2.19 5.77

Figure 1: Descriptive statistics of claims

	 	
	 (a)	 (b)

(c)
Figure 1: Descriptive statistics of claims 

(a) Histogram of claims data. N = 198. Range = 0.5 
(b) Density estimates of claims data. N = 198. Range = 0.5 

(c) Empirical cumulative distribution function. N = 198. Range= 0.5

To obtain intuitive knowledge of the distribution of loss amounts, the histogram and density estimate 
of claims data and empirical cumulative distribution function is given in Figure 1. As can be seen the data is 
skewed and in order to find the best distribution, the parameters for two famous distributions, exponential 
and gamma are estimated by maximum likelihood method in Table 2.
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Table 2 
Maximum likelihood estimation to fit claims distribution

Parameters
Gamma a = 0.9723027, l = 1.22742328
Exponential l = 1.26238761

The next step in fitting the data is to examine which distribution is the best fit for our data. This is 
done by probability distribution (Q-Q) plots. The (Q-Q) plots for exponential and gamma distribution 
is depicted in Figure 2. However, both of these distributions show stable results and make the choice of 
best fit difficult.

In Table 3 it is shown that according to various Goodness of Fit tests such as Kolmogrov-Smirnov 
test, Anderson-Darling test and Chi-square test, the best distribution for the data is exponential distribution. 
So we choose exponential distribution and continue our empirical work based on that.

Figure 2: Q-Q Plots of Loss Amounts Distribution

	 	
	 (a)	 (b)

Figure 2: Q-Q Plots of Loss Amounts Distribution 
(a) Gamma with parameters a = 0.9723, l = 1.2274 

(b) Exponential with parameter l = 1.2623

Table 3 
P-values of goodness-of-fit

Kolmogrov-Smirnov Anderson-Darling Chi-square
Gamma 0.3305 0.6118 0.123

Exponential 0.4638 0.6632 0.17

As is shown in Table 3 based on goodness of fit tests, the best distribution fitted to our data is 
exponential distribution with parameter l = 1.2623. In what follows, we try to find optimal retention in 
Quota-share treaties and excess of loss treaties based on various combinations of safety loading factors 
of insurance company and reinsurance company. In following tables q indicates safety loading factor of 
insurance company premium, e indicates safety loading factor of reinsurance company premium, a is 
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retention of insurance company in the case of quota-share treaty and M is retention of insurance company 
in the case of excess of loss reinsurance treaty.

In order to illustrate the effect of q and e on optimal retention, in each section three tables are provided. 
First the amount of q is kept constant and the effect of increasing e will be examined. Then the amount of 
e is kept constant and the effect of various q will be examined. Finally, different combinations of q and e 
are examined with 0.05 gap between amount of q and e. In first two tables of each kind of treaty it is tried 
to see the direct effect of changing loading factors. This is the reason that in each table one of loading 
factors is kept constant. The third table is provided to see keeping the differences between both loading 
factors constant, by increasing both loading factors whether the amount of retention increases. Also we 
want to see that whether results are stable in both kinds of treaties.

In Table 4 the amount of q is fixed and e increases. As the amount of e rises the reinsurance coverage 
becomes expensive for this portfolio of losses. So it is better for insurance company to retain higher 
percentage of losses for itself. Figure 3 illustrates adjustment coefficient on vertical axis and amount of 
retention on horizontal axis. The optimal point for retention is where the amount of adjustment coefficient 
is maximized and consequently the ruin probability is minimized.

Table 4 
q is fixed. Optimal proportional reinsurance

q e a R
0.2 0.25 0.39 2.207127e-01
0.2 0.3 0.64 1.556398e-01
0.2 0.4 0.93 1.329532e-01
0.2 0.5 1 --
0.2 0.7 1 --
0.2 0.9 1 --

Figure 3: q is fixed. Optimal proportional reinsurance

	 	
	 (a)	 (b)
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	 (c)	 (d)

	 	
	 (e)	 (f)

Figure 3: Optimal proportional reinsurance 
(a) q is fixed at 0.2, e = 0.25, Optimal a = 0.39 
(b) q is fixed at 0.2, e = 0.3, Optimal a = 0.64 
(c) q is fixed at 0.2, e = 0.4, Optimal a = 0.93 

(d) q is fixed at 0.2, e = 0.5, Optimal a = 1 
(e) q is fixed at 0.2, e = 0.7, Optimal a = 1 
(f) q is fixed at 0.2, e = 0.9, Optimal a = 1

In Table 5 e is fixed and by increasing safety loading factor of insurance company the retention 
decreases since reinsurance coverage becomes cheaper and it is better for cedant to retain lower percentage 
of losses. Also as q increases the insurance company will have more funds to repay the losses and it can 
be seen from last column of Table 5 that the ruin probability of whole portfolio decreases. The optimal 
retentions are illustrated in Figure 4.
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Table 5 
e is fixed. Optimal proportional reinsurance

q e a R
0.15 0.4 --- ---
0.2 0.4 0.93 1.329532e-01
0.25 0.4 0.7 1.772690e-01
0.3 0.4 0.47 2.658976e-01
0.35 0.4 0.24 5.317588e-01
0.37 0.4 0.15 8.860625e-01

Figure 4: Optimal proportional reinsurance

Based on Table 4 and 5, it can be seen that as the distance between q and e increases, it is better for 
insurance company to retain more percentage of the losses for itself. In other words, purchasing expensive 
quota-share treaty affects the insurance company’s vulnerability to ruin and it is optimal reinsurance occurs 
in the cases in which, the cedent retains more of the losses for itself. However, when the distance decreases, 
optimal retention occurs when the insurer cedes more percentage of the losses to reinsurer.

	 	
	 (a)	 (b)

	 	
	 (c)	 (d)
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	 (e)	 (f)

Figure 4: Optimal Proportional Reinsurance 
(a) q = 0.15, e is fixed at 0.4, Optimal a = 1 

(b) q = 0.2, e is fixed at 0.4, Optimal a = 0.93 
(c) q = 0.25, e is fixed at 0.4, Optimal a = 0.7 
(d) q = 0.3, e is fixed at 0.4, Optimal a = 0.47 
(e) q = 0.35, e is fixed at 0.4, Optimal a = 0.24 
(f) q = 0.37, e is fixed at 0.4, Optimal a = 0.15

In table 6 the distance between q & e is kept constant. The reason to do so is that the effect of 
increasing both q & e on ruin probability and optimal retention being examined. Although the insurance 
company in all the forms purchases reinsurance coverage with 0.05 difference in loading factor, by growth 
in loading factor it is better for insurance company to cede more percentage of portfolio to reinsurance 
company. Accordingly , by increasing loading factors that are collected from policyholders, the adjustment 
coefficient increases and consequently the ruin probability decreases. In Figure 5 it can be seen that as q & 
e increase the optimal point for adjustment coefficinet shifts to left and this illustrates that retention level 
of insurance company gradually decreases.

Table 6 
The distance bet. q & e is fixed at 0.05. Optimal proportional reinsurance

q e a R
0.15 0.2 0.49 1.443196e-01
0.2 0.25 0.39 2.207127e-01
0.25 0.3 0.32 3.112504e-01
0.3 0.35 0.28 4.150975e-01
0.35 0.4 0.24 5.317588e-01
0.4 0.45 0.21 6.600351e-01

Figure 5: Optimal proportional reinsurance.

The empirical work is continued in the case of Excess of loss reinsurance. In order to compare the 
results between proportional reinsurance and non-proportional reinsurance safety loading factors will be 
provided identical to the case of porportional reinsurance and then the results are illustrated.
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	 (a)	 (b)

	 	
	 (c)	 (d)

	 	
	 (e)	 (f)

Figure 5. Optimal proportional reinsurance 
(a) q = 0.15, e = 0.2, The distance bet. q & e is fixed at 0.5. Optimal a = 0.49 
(b) q = 0.2, e = 0.25, The distance bet. q & e is fixed at 0.5. Optimal a = 0.39 
(c) q = 0.25, e = 0.3, The distance bet. q & e is fixed at 0.5. Optimal a = 0.32 
(d) q = 0.3, e = 0.35, The distance bet. q & e is fixed at 0.5. Optimal a = 0.28 
(e) q = 0.35, e = 0.4, The distance bet. q & e is fixed at 0.5. Optimal a = 0.24 
(f) q = 0.4, e = 0.45, The distance bet. q & e is fixed at 0.5. Optimal a = 0.21
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Table 7 
q is fixed. Optimal excess of loss reinsurance

q e M R
0.2 0.25 0.85 >1
0.2 0.3 0.7 >1
0.2 0.4 0.9 6.735642e-01
0.2 0.5 1.3 5.135373e-01
0.2 0.7 2.1 3.704025e-01
0.2 0.9 3.05 2.905998e-01

In Table 7, q is kept constant and by increasing safety loading factor of reinsurance coverage, e, the 
price of purchasing excess of loss reinsurance will be increased. As can be seen by increasing e from 0.25 
up to level 0.3 optimal retention decreases and then after level 0.3 to level 0.9 by increasing e the optimal 
retention decreases. The Table 7 shows that up to level of e = 0.3 this method behaves irrational since we 
expect that by increasing e, the cedent should cede more of the losses. However, amount of 0.3 for e is a 
turning point at which by increasing the price of excess of loss reinsurance, it is beneficial for insurance 
company to keep more of the losses for itself. From this point, the behavior of adjustment coefficient 
would be identical to the case of quota-share treaty. The behavior of adjustment coefficient regarding 
changes in e is depicted in Figure 6.

Figure 6: Optimal excess of loss reinsurance

	 	
	 (a)	 (b)

	 	
	 (c)	 (d)



Ghadir Mahdavi and Omid Ghavibazu

International Journal of Applied Business and Economic Research 656

	 	
	 (e)	 (f)

Figure 6: Optimal Excess of Loss Reinsurance 
(a) q is fixed at 0.2, e = 0.25, Optimal M = 0.85 
(b) q is fixed at 0.2, e = 0.3, Optimal M = 0.7 
(c) q is fixed at 0.2, e = 0.4, Optimal M = 0.9 
(d) q is fixed at 0.2, e = 0.5, Optimal M = 1.3 
(e) q is fixed at 0.2, e = 0.7, Optimal M = 2.1 
(f) q is fixed at 0.2, e = 0.9, Optimal M = 3.05

Now in Table 8 amount of e is fixed and q increases gradually. It can be seen that as the gap between 
q and e decreases at first, optimal retention decreases. Up to the point q reaches to 0.25 optimal retention 
decreases. The reason could be since q increases up to the point 0.25, the amount of increase is not enough 
to pay the losses. But when q grows more, the cedent becomes capable of retaining more of the losses and 
because of that the retention increases. Again the decrease of retention M before turning point q = 0.25 
seems to be illogical while after that, by increasing q there is more tendency to keep more of the losses for 
insurance company. Optimal retentions for each level are illustrated in Figure 7.

Table 8 
e is fixed. Optimal excess of loss reinsurance

q e M R
0.15 0.4 1.25 4.757499e-01
0.2 0.4 0.9 6.735642e-01
0.25 0.4 0.6 9.946662e-01
0.3 0.4 0.95 >1
0.35 0.4 1.15 >1
0.37 0.4 1.25 >1

Figure 7: Optimal excess of loss reinsurance

Now by keeping the distance between q & e constant as 0.05 optimal retention is illustrated in Figure 8. 
It can be seen that as loading factors increases it is better for insurance company to retain more of the 
losses and cede less. This is a reasonable result since insurance company’s safety loading factor increases 
and because of that, the insurance company has more funds to pay the losses and less need to purchase 
reinsurance. Optimal retentions are provided in Table 9.



Optimal Retentions with Ruin Probability Target in the Case of Fire Insurance in Iran

International Journal of Applied Business and Economic Research657

	 	
	 (a)	 (b)

	 	
	 (c)	 (d)

	 	
	 (e)	 (f)

Figure 7: Optimal Excess of Loss Reinsurance 
(a) q = 0.15, e is fixed at 0.4, Optimal M = 1.25 
(b) q = 0.2, e is fixed at 0.4, Optimal M = 0.9 
(c) q = 0.25, e is fixed at 0.4, Optimal M = 0.6 
(d) q = 0.3, e is fixed at 0.4, Optimal M = 0.95 
(e) q = 0.35, e is fixed at 0.4, Optimal M = 1.15 
(f) q = 0.37, e is fixed at 0.4, Optimal M = 1.25
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Table 9 
The distance bet. q & e is fixed at 0.5. Optimal excess of loss reinsurance

q e M R
0.15 0.2 0.75 >1
0.2 0.25 0.85 >1
0.25 0.3 0.95 >1
0.3 0.35 1.1 >1
0.35 0.4 1.2 >1
0.4 0.45 1.3 >1

Figure 8: Optimal excess of loss reinsurance.

Another important result is shown in table 10. In this table adjustment coefficients of previous 
combinations for both proportional and excess of loss reinsurance are brought together in one table in 
order to compare the ruin probability of both of these reinsurance coverages.

As is shown in Table 10 in all the combinations of q & e adjustment coefficient is higher in case of 
excess of loss reinsurance. It should be stated that by considering equal premium for both proportional and 
excess of loss reinsurance, adjustment coefficient for excess of loss coverage is higher and consequently 
ruin probability in the case of excess of loss reinsurance is lower compared to the case of proportional 
coverage. This result is congruent with results in Dickson 2005.

	 	
	 (a)	 (b)

	 	
	 (c)	 (d)
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	 (e)	 (f)

Figure 8: Optimal Excess of Loss Reinsurance 
(a) q = 0.15, e = 0.2, The distance bet. q & e is fixed at 0.5. Optimal M = 0.75 
(b) q = 0.2, e = 0.25, The distance bet. q & e is fixed at 0.5.Optimal M = 0.85 
(c) q = 0.25, e = 0.3, The distance bet. q & e is fixed at 0.5. Optimal M = 0.95 
(d) q = 0.3, e = 0.35, The distance bet. q & e is fixed at 0.5. Optimal M = 1.1 
(e) q = 0.35, e = 0.4, The distance bet. q & e is fixed at 0.5. Optimal M = 1.2 
(f) q = 0.4, e = 0.45, The distance bet. q & e is fixed at 0.5, Optimal M = 1.3

Table 10 
Adjustment Coefficient Comparison

q e R(proportional) R(XL)
0.2 0.25 2.207127e-01 >1
0.2 0.3 1.556398e-01 >1
0.2 0.4 1.329532e-01 6.735642e-01
0.2 0.5 -- 5.135373e-01
0.2 0.7 -- 3.704025e-01
0.2 0.9 -- 2.905998e-01
0.15 0.4 -- 4.757499e-01
0.25 0.4 1.772690e-01 9.946662e-01
0.3 0.4 2.658976e-01 >1
0.35 0.4 5.317588e-01 >1
0.37 0.4 8.860625e-01 >1
0.15 0.2 1.443196e-01 >1
0.25 0.3 3.112504e-01 >1
0.3 0.35 4.150975e-01 >1
0.4 0.45 6.600351e-01 >1

Ruin probability has been a powerful tool in analyzing a portfolio of risks. By utilizing ruin theory 
the probability of insolvency of a risk portfolio can be calculated. The use of Cramer-Lundberg’s upper 
bound simplifies the estimation of maximum probability of ruin and helps to control loading factors that 
an insurance company should charge on insurance policies in order to make sure losses would not cause 
insolvency for the company. This theory is also used in risk transfer mechanisms such as reinsurance, and 
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from insurer’s point of view, it has helped in supplying the necessary reinsurance coverage for a specific 
insurance portfolio.

Conclusions4. 

In this paper based on real data and utilizing ruin theory, optimal retentions for both proportional and 
excess of loss treaties were found. It was also shown that by increasing both safeties loading factor of 
cedent and Reinsurance Company, optimal retention in both kinds of reinsurance treaties shifts upward 
and the cedent can retain more of the losses.

In the case of proportional reinsurance, as the price of reinsurance coverage rises there is more tendency 
to retain the risks and as the prices of both insurance and reinsurance coverage are nearly the same, it is 
economical for insurance company to cede more of the risk to reinsurance carrier.

In the case of excess of loss reinsurance, the results were not completely stable. When loading factor 
of reinsurance company increases there is a turning point before which the amount of monetary retention 
decreases. However after that turning point, reinsurance coverage becomes expensive and retention increases. 
In the case of increasing loading factor of insurance company, there is also a turning point before which 
monetary retention decreases and after that point when loading factor of insurance company increases 
amount of retention increases. From these two results it can be implied when loading factor of cedent and 
Reinsurance Company is near each other or when they are far from each other, the retention level rises.

Also based on adjustment coefficients found in all the cases, the adjustment coefficient for excess of 
loss reinsurance is higher comparing to proportional reinsurance. This means excess of loss reinsurance in 
all the combinations leads to lower ruin probability for insurance company. In other words, keeping the 
premiums the same for both treaties, excess of loss treaties provide lower probability of ruin.
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