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Abstract: The measures of weighted information play a significant role in the 
literature of information theory because of the importance of occurrence of events. In 
the present communication, we have introduced new generalized model representing 
weighted information theoretic measure based upon discrete probability distribution 
and studied its many desirable properties in detail.
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1. Introduction
 After the introduction of the concept of entropy by Shannon [8], it was realized 
that entropy is a property of any stochastic system and the concept is now used 
widely in many fields. The tendency of the systems to become more disordered 
over time is described by the second law of thermodynamics, which states that the 
entropy of the system cannot spontaneously decrease. Today, information theory is 
still principally concerned with communication systems, but there are widespread 
applications in statistics, information processing and computing.

This entropy measures the amount of uncertainty contained in a probabilistic 
experiment and is not a single monolithic concept. It can appear in several guises. 
It can arise in what we normally consider a probabilistic phenomenon. On the 
other hand, it can also appear in a deterministic phenomenon where we know that 
the outcome is not a chance event, but we are fuzzy about the possibility of the 
specific outcome. This type of uncertainty arising out of fuzziness is the subject 
of investigation of the relatively new discipline of fuzzy set theory. We shall first 
take up the case of probabilistic uncertainty associated with the probability of 
outcomes of the random experiments. This uncertainty is called entropy, since this 
is the terminology that is well entrenched in the literature. Shannon [8] introduced 
the concept of information theoretic entropy by associating uncertainty with every 

probability distribution ( )npppP ....,,, 21=  and found that there is a unique 
function that can measure the uncertainty, is given by 
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The probabilistic measure of entropy (1.1) possesses a number of interesting 
properties. 

Recently, Yu [9] has presented some entropy comparison results concerning 
compound distributions on non-negative integers. The main result shows that, 
under a log-concavity assumption, two compound distributions are ordered in 
terms of Shannon’s [8] entropy if both the numbers of claims' and the `claim 
sizes' are ordered accordingly in the convex order. Several maximum/minimum 
entropy theorems follow as a consequence. Most importantly, two recent results 
on maximum entropy characterizations of compound poisson and binomial 
distributions are proved under fewer assumptions and with simpler arguments. 
Immediately, after Shannon, research workers in many fields saw the potential of 
application of this entropy and a large number of other information theoretic 
measures were derived. It was Renyi [7] who for the first time introduced entropy 
of order  given by the following mathematical expression: 
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Golshani, Pasha and Yari [3] established the definition of the conditional Renyi 
entropy and showed that the so-called chain rule holds: 
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Here the iX  components of a random variable and 0( 1)    is a 
parameter of the Renyi entropy. The basic definition is based on the earlier work 

of Renyi which showed that  1 ( log )i i
i

f p f p   leads to the Shannon [6] 

entropy for ( )f x x  and the Renyi [7] entropy for (1 )( ) 2 xf x   and these 
two are the only two possible for additive properties. Havrada and Charvat [4] 
introduced first non-additive entropy, given by 
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Kapur [5] introduced a generalized measure of entropy of order ‘’ and type 
‘’, given by 
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Some other pioneer who made the study of entropy theory rigorous include 
Dehmer and Mowshowitz [2], Lacevic and Amaldi [6], Kapur [5] etc.  

In section 2, we have introduced a new generalized information theoretic 
measure based upon discrete probability distribution
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  with the help of weighted information 

introduced by Belis and Guiasu [1]. 

2. A NEW MEASURE OF WEIGHTED ENTROPY BASED UPON 
DISCRETE PROBABILITY DISTRIBUTION 

In this section, we introduce a new measure of weighted entropy given by the 
following expression: 
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1 2 1 2( , ,..., ; , ,..., )n nH p p p w w w  

The measure (2.1) satisfies the following properties: 

(i) It is continuous function of ),();...;,();,( 2211 nn wpwpwp . 
(ii) It is permutationally symmetric function of

),();...;,();,( 2211 nn wpwpwp . 
(iii) 0),...,,;,...,,( 2121 nn wwwpppH  
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This property says that entropy does not change by the inclusion of an 
impossible event with probability zero. 

(v)  Since ),...,,;,...,,( 2121 nn wwwpppH  is an entropy measure, its 
maximum value must occur. To find the maximum value, we proceed as 
follows: 
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Then, we have 
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and so on 
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(vi)  The maximum value is an increasing function of n. Let ( )f n be 
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Hence, maximum value is an increasing function of n and this property is 
most desirable. Under the above properties, we observe that the proposed 
measure (2.1) is a valid measure of weighted entropy. 
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0 1⋅ ( ),K P Wb 0.043922 0.089503 0.119857 0.133942 0.15 0.133942 0.119857 0.089503 0.043922\

0 2⋅ ( ),K P Wb 0.04181365 0.10022819 0.16354702 0.22499447 0.27791292 0.22499447 0.16354702 0.10022819 0.04181365

0 9⋅ ( ),K P Wb 0.030926 0.074903 0.124691 0.173632 0.21532 0.173632 0.124691 0.074903 0.030926

2 ( ),K P Wb 0.043922 0.089503 0.119857 0.133942 0.15 0.133942 0.119857 0.089503 0.043922
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