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ABSTRACT

Ensemble learning is a machine learning technique that takes the fusion or ensemble
of many homogeneous or heterogeneous machine learning models to achieve better
predictive performance over each individual of the learning models. Considerations of
computational cost, memory usage and efficiency discourages an unnecessarily large
ensemble. Selecting a subset of the available learning models is called ensemble pruning.
In this paper, we present an improved algorithm for the existing semi-definite
programming (SDP) pruning. The original SDP pruning first solves a semi-definite
programming formulation for the preliminary selection of the promising learning models
and then applies the re-sizing step for reducing the preliminary selection to a desired
size. The re-sizing step is performed in a greedy fashion toward the increasing direction
of the diversity among the selected learning models. The ensemble diversity measure is
inversely proportional to the number of the classification errors commonly made by
each pair of the selected learning models, which has not been shown to be among the
best measures for the overall classification accuracy of the ensemble. Instead of
minimizing the total pairwise prediction errors or equivalently maximizing the ensemble
diversity, we propose to minimize the overall prediction error of the whole ensemble to
improve the accuracy of the SDP ensemble pruning algorithm. Our numerical
experiments showed the significant performance improvement of the SDP pruning
algorithm with the revision, which makes it outperform the state-of-the-art ensemble
pruning algorithms as well as the unpruned full ensemble model for many classification
benchmark datasets.
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1. INTRODUCTION

An ensemble is a collection of individually trained
learners that are combined together to improve the
prediction accuracy. The individual learners known as
base learners are usually combined using different
methods such as bagging [1] and boosting [2]. The
general idea of taking an ensemble of multiple base
learners have been shown effective in improving the
prediction accuracy in that the ensemble is often more

the base learners is huge or when the ensemble should
deal with large datasets, the expensive computation
cost of evaluating the full ensemble can become an
serious issue especially when it is applied for stream
mining [4, 5]. In this case, using a subset of the full
ensemble is more computationally favorable. In
addition, using a subset of the full ensemble has been
demonstrated to provide better prediction accuracy over
using the full ensemble for some cases [6, 7].

accurate than the best learner in the ensemble [3].
Ensemble methods typically work in two phases;
the first phase is to generate individual base learners,
and the second phase is to combine all the base learners
to make a prediction. The combination of all the base
learners is called a full ensemble. When the number of

The low computation complexity and the improved
prediction accuracy of using a small size ensemble have
all necessitated the need for selecting a representative
subset of the en- tire collection of base learners. The
problem of selecting the representative subset is known
as ensemble pruning, ensemble selection, selective
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ensembling and ensemble thinning. In this paper, we
are more concerned about the ensemble pruning for a
general classification problem. We use the term base
classifier instead of using a base learner.

Several pruning algorithms have been developed
over the past few decades. They can be grouped into
three main categories based on the similarity in their
approaches, ordering based pruning, clustering based
pruning, and optimization based pruning. The ordering
based methods first rank base classifiers using a certain
rank criterion and greedily selects a subset of the better
ranked base classifiers. Kappa pruning [8] and
orientation pruning [9] fall into this category. The
clustering based methods first group all base classifiers
into several clusters by their similarity and select a
subset of representatives from each cluster to form an
ensemble. The hierarchical agglomerative clustering
[10] and the k-means clustering, [11] are the popular
choices for the clustering task. Last the optimization
based pruning formulates the ensemble pruning as an
optimization-based subset selection problem which
includes the GASEN algorithm [7], the probabilistic
pruning techniques [12, 13] and the semi-definite
programming (SDP) pruning [14].

The SDP pruning algorithm [14] is based on a global
optimization approach unlike most of the other methods
which are mostly based on a greedy search and other
heuristics that are led to local optimality. Let us brief
the original SDP pruning first. The SDP pruning
algorithm formulates an ensemble pruning problem as
a binary optimization problem of selecting a subset of
base classifiers and relaxes the binary optimization
problem to a semi-definite programming problem,
which can be solved in a polynomial time. Due to the
relaxation, the resulting subset does not have a desired
size, so an additional re-sizing step should be applied
to further reduce the subset to a desired size. The re-
sizing step is performed in a greedy fashion that reduces
the subset toward the increasing direction of a certain
criterion. A part of the criterion used is the degree of
the diversity among the selected base classifiers. It has
been believed that an ideal ensemble is one having a
large diversity of accurate base learners [15].

The diversity criterion used in the re-sizing step of
the SDP pruning actually counts the total number of
the classification errors made commonly by each pair
of the base classifiers in the selected ensemble, which
has not been shown to be among the best measures
for the overall classification accuracy of the ensemble
but is closer to a total pairwise classification error; see
our discussion in Section 3. To improve the SDP pruning
algorithm, the criterion can be replaced with a better
ensemble selection criterion that quantifies the overall

classification error of the selected ensemble. In this
paper, we propose to use an ensemble accuracy measure
as a selection criterion in the resizing step of the SDP
pruning algorithm. We considered many different
accuracy and diversity measures of an ensemble for
the selection criterion. Our numerical study showed
that using a weighted voting accuracy gave the better
prediction results for many publicly available
benchmark datasets; see Section 5.1. Hence, we propose
to use a weighted voting accuracy in the re-sizing step.
The proposed revision outperforms the state-of-the-art
ensemble pruning methods as well as the full ensemble.

The paper is organized as follows. Section 2 briefly
introduces the original SDP pruning method, and
Section 3 discusses the potential issue in the re-sizing
step of the SDP pruning method. Section 4 presents
our revised SDP pruning method and Section 5 presents
the numerical comparison of our method with the
current state-of-the-art. Last, Section 6 concludes the

paper.

2. ENSEMBLE PRUNING AS BINARY QUADRATIC
PROBLEMS

Given a set of L base classifiers, an ensemble pruning
problem can be regarded as a subset selection problem
that selects the best subset of size M. It has been
believed that an ideal ensemble is one having a large
diversity of accurate base learners [15]. Many literatures
used different criteria quantifying the overall
classification accuracy of an ensemble [8, 16, 17] and
the diversity of an ensemble [18, 19, 20].

The SDP pruning algorithm [14] proposed to use a
new subset selection criterion, which are based on a
combination of the accuracy of individual base
classifiers and the diversity of an ensemble. The
accuracy part is measured by the total number of the
classification errors made by the individual classifiers
in an ensemble, while the diversity part is measured
by adding the pairwise statistical correlation in the
output vectors of classifiers i and j over all possible
pairs of the classifiers in an ensemble. When the result
of classifier i on N training data is recorded by a binary
vector v, with (v), = 1 if the classifier is incorrect on
the kth training case, the selection criterion is to
minimize the individual misclassification error plus the
pairwise correlation,

L L
D Gax+ Y, Gyxx,, (1)
i=1 i,j=L;i%j
where x, = 1 implies classifier i is chosen, G, = 17 v/
N quantifies the misclassification rate of classifier i,
and G, quantifies the normalized pairwise correlation
of v and v,
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The minimization problem is formulated as a 0-1
binary quadratic problem,

min xT Gx
st. 1™x =M
x € {0, 1}, (3)

where x is a column vector of binary variables x,, and
the matrix G is the matrix of G,'s. The approach was
originally applied for classification problems and was
later extended for regression problems by Hernandez-
Lobato et al. [21]. Solving the binary quadratic problem
is a NP-hard problem. Zhang et al. [14] solved its semi-
definite programming (SDP) relaxation. The solution
of the relaxation problem is not binary-valued, so a
randomization-based rounding method should be
applied to convert the non-binary solution into a binary-
valued one [22]. However, by the nature of the rounding
method, the size of the finally selected subsets (or
equivalently the number of non-zero elements in the
solution x) is not equal to a desired size M. Thus, when
the desired size was not obtained, a re-sizing step
should be applied to reduce the number of the non-
zero elements in x to the desired size. The procedure
for the SDP ensemble pruning algorithm is shown in
Algorithm 1. The re-sizing step is performed in a greedy
fashion. However, the greedy selection part is applied
after the global optimization (3) is solved for selecting
promising base classifiers, so the algorithm generally
obtains a less greedy solution than pure greedy-based
algorithms do.

Algorithm 1. SDP Pruning Algorithm
Input: matrix G, a desired size of ensemble M

Output: Pruned ensemble

Step 1. SDP: Solve the SDP relaxation of problem (3)
to obtain the solution x.

Step 2. Randomized rounding:

Use a randomization approximation scheme [22] to
round-off x to a binary-valued vector; If the ith element
of the rounded vector is 1, it implies that the ith learner
is selected in the ensemble.

Step 3. Re-sizing: The ensemble obtained by Step 2 is
re-sized to M through a greedy ensemble selection
algorithm that starts with the ensemble obtained by
Step 2 and iteratively adds or deletes the base learners
one-by-one so that the resulting ensemble reduces the
objective value of problem (3) most.

3. DISCUSSION ON THE DIVERSITY MEASURE
CRITERION IN THE SDP PRUNING ALGORITHM

We notice that the pairwise correlation term v/ v, in

equation (2) is nothing but the number of the common
classification errors made by both of classifiers i and j
for the training dataset. Please note that is an N-
dimensional binary vector with (v), = 1 only if
classifier i makes a wrong classification on the kth

training case. The term v;v, counts the number of

common wrong classification cases. In the other words,
the diversity term G, of the SDP pruning algorithm
essentially quantifies the total pairwise classification
error which implies the total number of the
classification errors made by each pair of the selected
classifiers. Although the pairwise classification error
might be related to the overall classification error of
the ensemble of the selected classifiers, the correlation
is not very strong. As a simple example, we can imagine
an ensemble of five binary classifiers combined by a
majority voting, and suppose that only the first three
classifiers are correct for a training case and the other
classifiers are incorrect. In this example, the total
pairwise classification error is one since classifiers 4
and 5 make a common error. However, the ensemble
of the five classifiers would not make any classification
error on the training case because the majority of the
individual classifiers are correct, so the overall
classification error of the ensemble should be zero.

Solving the SDP pruning with the guidance of the
diversity term may result in an ensemble of improved
classification accuracy up to certain degree but would
not lead to an ensemble of highest classification
accuracy, which is the ultimate goal of taking an
ensemble. This motivated us the replacement of the
subset selection criterion in the SDP pruning algorithm
with a different criterion. We had exhaustively search
for the selection criteria used for ensemble pruning
in literature. Some are based on the classification
accuracy of an ensemble [8, 16, 17], and the others
are based on diversity measures of an ensemble such
as margin distance and complementariness [18],
concurrency [19], focused selection diversity [20], the
disagreement measure [23], the double fault
measure[24] and the weighted error count and correct
value [25].

We realized that most of the diversity measures
applied in the literature quantify the pairwise
classification errors like the diversity term G, of the
SDP pruning algorithm. For example, the disagreement
measure [23] quantifies: for every pair of classifier i
and j,
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10 + nOl
Disagreement Measure =

N-v/v,+N-v/v,
N

2v]v,
N
where n'° =the number of instances where classifier
is correct and classifier j is wrong, and n®=the
number of instances where classifier i is wrong and
classifier j is correct. The double fault measure

quantifies

vy

j

Double Fault =1—-

Both of the measures are determined by the
. T . A
quantity v,v,. Therefore, applying such ditGerent

diversity measures in the SDP ensemble pruning
algorithm will not improve the performance of the
algorithm significantly, which was also shown by our
numerical study in Section 5. We propose to use a
classification accuracy-based criterion instead.

4. REVISING THE RE-SIZING STEP OF THE SDP
PRUNING WITH A BETTER ENSEMBLE
ACCURACY MEASURE

We propose to replace the ensemble selection criterion
of the SDP pruning algorithm with an overall ensemble
accuracy criterion, a weighted voting accuracy or
majority voting accuracy of an ensemble, which is
defined as follows. Suppose that we have L base
classifiers, where the m th classifier takes an input
vector u and returns a binary vector C_ (u); when a K-
class classification is dealt, the output vector follows
an one-of-K representation, i.e. it is a K-dimensional
vector in which one of the elements is equal to one
and all other elements are 0. Let S denote a subset of
{1,..., L} that represents an ensemble of the subset of
the L base classifiers. Given a training data D = {(u,
y); vy, € {0, 1}, i = 1,..., N}, the weighted voting
accuracy of S is defined by

N

WVA(S; D) = 1—%2{3@ ¢maxel[z W, Cy (ul-)n,

i=1 meS

and the majority voting accuracy is defined by

MVA(S;D) =1 —%i[{yi ¢maxel[z Cm(ui)jj,

meS

where maxel(s) is the index of the element in an input
vector s that has the maximum value among all the

elements ins, and w_ is the weight for the mth classifier
that is typically proportional to the classification
accuracy of the mth classifier.

We acknowledge that if one replaces the objective
function of the SDP pruning algorithm in optimization
(3) with either WVA(S; D) or MVA (S; D), the
optimization problem becomes a combinatorial
problem that cannot be relaxed to a semi-definite
programming form because either a weighted voting
accuracy or a majority voting accuracy is neither a
linear function or a quadratic function of S.
Maximizing WVA (S; D) or MVA (S; D) over all possible
M-combinations with no relaxation is too
computationally expensive. A simple greedy solution
or the linear relaxation solution of the problem may
not result in a good solution.

Instead of solving the combinatorial problem for
maximizing WVA(S; D) or MVA (S; D), we still solve
the original SDP problem (3) for selecting promising
base classifiers as a preliminary step, and the new
selection criterion WVA (S; D) or MVA (S; D) is applied
to re-size the preliminary selection to a desired size.
Our new re-sizing step is described as follows. Suppose
that M1 classifiers were chosen by Steps 1 and 2 of the
original SDP pruning algorithm. As we discussed, MI
is typically not equal to a desired size M. If M1 is less
than a desired size M, one should choose and add
additional classifiers to the ensemble by the forward
selection algorithm in Algorithm 2. If M1 is larger than
M, we reduce the initial selection to the ensemble of
size M by the backward subtraction algorithm in
Algorithm 3.

Input: H = {1,...,L}, indices for all base

classifiers
o

w,,,= the weight of base classifier m M = the
desirable ensemble size
Output: S is a subset of H.
Step 1. Initialize S to be a set of the indices for the
M1 classifiers selected by Step 1 and Step
2 of Algorithm 1.
2. while size(S) # M do

m, = argmaX,ecms WVA(S U

...... \©

2]
-
(e}
"=
N

e
N

m}; D
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classifiers

Input: = {1,...,L}, indices for all base

5. NUMERICAL STUDY

We evaluate the performance of our revised SDP
pruning algorithm against the unpruned ensemble, the
best individual classifier, kappa pruning [8], diversity
pruning [8], and the original SDP pruning [14] for a
number of publicly available bench-mark datasets,
where the unpruned ensemble implies the full ensemble
of all base classifiers with no pruning, and the best
individual implies the classifier in the full ensemble
that obtains the smallest training error. We implemented
the kappa pruning, the diversity pruning and the SDP
pruning for comparison. In implementing the SDP
pruning algorithm, we used the CVX toolbox [26] for
solving convex optimization problems with the SDPT3
solver [27].

Table 1: Benchmark datasets

Datasets # of cases # of attributes # of classes
haberman 306 4 2
sonar 208 61 2
SpectHeart 267 23 2
tic-tac-toe 958 10 2
Glass 214 10 6
abalone 4177 9 3
car 1728 7 4
cme 1473 10 3
iris 150 5 3
Dermatology 358 35 6
mfeat-mor 2000 7 10
mfeat-pix 2000 241 10
optdigits 5620 65 10
page 5473 11 5

contd. table 1

Datasets # of cases # of attributes # of classes
pendigits 10992 17 10
sat 6435 37 6
segmentation 2310 20 7
semeion 1593 257 10
thyroid 215 6 3
Vehicle 846 19 3
vertebral 310 7 3
vowel 528 11 11
waveforms 5000 41 3
wine 178 14 3
databanknote 1372 5 2
bloodtrans 748 5 2
climate 540 19 2
ILPD 583 11 2
ionosphere 351 35 2
spambase 4601 58 2
wholesalecustomerl 440 8 2
australian 690 15 2
wdbcel 569 32 2
wpbcl 198 33 2
ecoli 336 8 8
Z00 101 17 7
balance 625 5 3
pima 768 9 2

A total of 38 classification datasets from the UCI
repository were used as benchmark datasets in our
numerical experiments as shown in Table 1. Each of
the datasets is randomly split into training data D, and
test data D, with the training data containing 70% of
whole data. A classification and regression tree with
single split was used as a base classifier. An ensemble
of L single split classification and regression trees were
generated by the standard procedure of the Adaboost.
M1 [2]. Next, we applied the kappa pruning [8],
diversity pruning [8], the original SDP pruning [14]
and our revised SDP pruning on the ensemble to
generate an ensemble of size L. x p, where p is a
fractional number less than 1. For given choices M €
{50, 100, 200} and p € {0.1, 0.25, 0.5}, each of the
methods outputs S < {1, 2, ..., L} that is a set of the
indices for the selected base classifiers. The output S
was evaluated in terms of the classification accuracy
with test data D,, which is a collection of predictor u,
and the corresponding class label y. When base
classifier m takes u, and return output C (u) in a
one-of-K representation, the overall classification
accuracy of S is measured by either the weighted voting
accuracy,
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where |D,| is the number of the elements in the set D,,
and w_ is the weight for the base classifier m; the
weights were obtained during the Adaboost. M1
procedure.
We repeated the random data split and the
evaluation procedure ten times and took the averages
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and the sample standard deviations of MVAs or WVAs
over the ten runs. The WVA statistics for M = 100 and
p = 0.25 are summarized in Table 2. Based on the
statistics, we compared the performance of our method
with that of the five different ensemble methods, kappa
pruning, diversity pruning, the original SDP pruning,
the best individual, and the unpruned full ensemble.
The comparison was summarized as the win-loss-tie
(W/L/T) statistics at the bottom of the table. The
absolute W/L/T for each table column counts the
number of win, loss and tie cases of our method against
the method corresponding to the table column in terms
of the average WVA, and the significant W/L/T is the

Table 2: Comparison of weight voting accuracy (WVA) in between our method and one of the kappa pruning, diversity pruning,
the original SDP pruning, the best individual, and the original ensemble with no pruning. The number in each cell is the average
WVA =+ standard deviation of WVA over ten experimental runs. The absolute W/L/T (Win/Loss/Tie) for each table column
counts the number of win, loss and tie cases of our method against the method corresponding to the table column in terms of the
average WVA, and the significant W/L/T is the same count based on a simple t-test on the significance of the ditierence in the

average WVA.

Datasets Our Method Kappa Diversity sDp Best Individual Unpruned
haberman 76.96 + 3.11 73.91 + 6.57 73.70 + 4.89 75.87 + 3.47 7746 + 2.11 7544 + 4.18
sonar 90.79 + 2.07 93.65 + 2.51 75.87 + 4.11 92.06 + 3.89 77.62 + 534 94.92 + 2.07
SpectHeart 76.05 + 2.97 71.36 + 3.43 73.09 + 2.68 75.56 + 2.37 73.62 + 3.30 72.59 + 2.68
tic-tac-toe 79.10 + 3.02 77.36 + 2.73 76.74 + 1.68 76.60 + 2.72 70.59 + 2.67 79.93 + 2.28
Glass 67.08 + 3.37 52.62 + 2.96 66.46 + 3.51 65.23 + 5.72 51.36 + 2.70 52.62 + 2.96
abalone 61.31 + 1.15 60.41 + 1.30 61.09 + 0.66 60.77 + 1.40 57.79 + 0.58 60.53 + 1.15
car 85.24 + 0.78 69.63 + 0.77 70.06 + 0.57 84.16 + 2.23 69.64 + 0.00 79.69 + 1.50
cme 55.48 + 2.63 48.10 + 1.61 51.81 + 1.56 52.22 + 1.48 46.01 + 0.55 51.95 + 1.64
iris 98.22 + 0.99 98.22 + 0.99 98.22 + 0.99 98.22 + 0.99 66.67 + 0.00 98.22 + 0.99
Dermatology 95.56 + 2.88 84.81 + 3.25 93.15 + 3.1 91.30 + 3.04 51.84 + 0.36 95.00 + 2.23
mfeat-mor 39.70 + 2.19 29.53 + 1.60 39.53 + 2.15 39.90 + 2.10 20.87 + 0.08 39.53 + 2.15
mfeat-pix 45.77 + 2.49 40.27 + 2.77 44.20 + 2.27 4530 + 2.51 19.98 + 0.18 40.27 + 2.77
optdigits 70.88 + 1.68 43.67 + 1.07 63.96 + 0.59 66.71 + 2.50 20.30 + 0.05 67.99 + 0.45
page 96.31 + 0.40 93.34 + 0.39 91.05 + 0.56 94.50 + 0.90 92.85 + 0.33 93.79 + 0.38
pendigits 56.82 + 0.79 30.07 + 0.36 50.98 + 2.31 55.00 + 1.71 20.56 + 0.02 52.97 + 0.79
sat 81.30 + 1.43 72.07 + 1.03 7485 + 1.14 78.17 + 1.86 44.16 + 0.17 79.31 + 0.94
segmentation 88.31 + 1.02 80.14 + 1.45 75.01 + 5.75 82.86 + 2.05 29.19 + 0.00 81.76 + 0.58
semeion 36.19 + 1.96 19.04 + 1.65 32.72 £ 2.36 3598 + 2.35 19.88 + 0.26 3234 £ 2.42
thyroid 99.69 + 0.69 99.08 + 0.84 97.54 + 0.84 98.15 + 1.69 83.62 + 1.62 99.69 + 0.69
Vehicle 70.31 + 1.49 68.66 + 1.64 66.69 + 2.09 68.90 + 1.91 57.70 + 1.46 68.66 + 1.64
vertebral 83.66 + 2.89 82.15 + 2.23 67.53 + 4.39 82.80 + 3.04 76.14 + 0.66 82.37 + 2.36
vowel 39.37 + 5.12 2591 + 4.16 36.73 + 4.55 36.98 + 5.23 19.83 + 0.74 32.58 + 5.60
waveforms 81.57 + 0.99 79.28 + 0.91 77.92 + 2.60 80.21 + 1.32 57.17 + 0.51 81.76 + 0.91
wine 99.63 + 0.83 96.67 + 2.75 97.41 + 1.66 08.52 + 2.03 72.50 + 1.11 97.78 + 1.55
databanknote 99.32 + 0.67 99.17 + 0.41 67.38 + 1.35 96.94 + 0.93 85.03 + 1.86 100.00 + 0.00
bloodtrans 81.78 + 2.81 80.89 + 3.54 7644 + 3.19 81.33 + 3.30 74.96 + 0.73 80.89 + 3.54
climate 96.30 + 1.51 97.41 + 0.80 89.75 + 4.04 96.05 + 0.34 91.80 + 0.38 97.90 + 1.03
ILPD 73.26 + 1.95 7246 + 4.30 69.26 + 2.47 74.51 + 2.73 7243 + 0.90 76.11 + 3.29
ionosphere 96.79 + 2.17 94.91 + 1.58 48.87 + 4.97 94.15 + 1.23 85.13 + 1.87 97.74 + 1.43
spambase 92.34 + 0.73 92.40 + 0.63 76.84 + 1.17 91.77 + 0.80 79.12 + 0.59 93.38 + 0.78
wholesalecustl 9348 + 1.74 90.91 + 2.40 79.09 + 8.58 9242 + 2.34 90.68 + 2.10 9242 + 2.78
australian 88.94 + 1.23 88.36 + 1.50 49.71 + 5.47 88.17 + 1.21 85.65 + 1.70 87.50 + 1.23
wdbcl 99.06 + 0.32 98.48 + 0.67 80.23 + 7.80 98.95 + 0.64 92.72 + 1.19 99.06 + 0.32
wpbcl 90.00 + 5.00 88.33 + 5.89 86.33 + 4.31 87.67 + 5.35 76.88 + 1.29 95.00 + 2.36
ecoli 84.16 + 3.64 63.37 + 2.89 79.80 + 3.81 7644 + 3.73 64.83 + 1.06 76.04 + 3.08
Z00 87.10 + 9.68 82.58 + 10.60 82.58 + 10.60 85.16 + 12.20 62.15 + 0.99 82.58 + 10.60
balance 87.98 + 1.94 81.49 + 3.43 82.02 + 4.31 88.62 + 2.18 68.11 + 2.95 86.70 + 2.58
pima 77.49+1.73 7541 +2.26 76.71 +1.87 76.31 +1.61 78.53 +2.61 77.49+1.73
Absolute W/L/T 33/4/1 37/0/1 33/4/1 37/1/0 25/10/3
Significant W/L/T 22/2/14 28/0/10 14/0/24 34/0/4 16/6/16
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same count based on a simple t-test on the significance
of the difference in the average WVA. Our method
outperformed all of the compared methods including

the unpruned full ensemble.

We also compared our method and the state-of-
the-art with the unpruned full ensemble in terms of

the significant W/L/T statistics. Table 3 shows the
comparison for different experimental settings. Our
method outperformed the unpruned ensemble, while
the kappa pruning and the diversity pruning
underperformed the unpruned ensemble. The original
SDP pruning algorithm, while being better than the

Table 3: Significant W/L/T statistics of our method and the state-of-the-art against the unpruned ensemble for different experimental
settings. n =the size of original ensemble and k =the size of the selected ensemble.

n,k Kappa Diversity SDpP Our method
50,5 1/32/6 3/27/9 8/18/13 12/13/14
50,12 2/31/6 6/21/12 9/14/16 13/10/16
50,25 5/20/14 7/9/13 14/8/17 18/5/16
100,10 1/32/6 5/25/9 5/15/19 11/4/14
100,25 6/20/12 7/24)7 9/9/20 21/3/14
100,50 4/21/14 6/23/10 10/7/22 16/7/16
200,20 0/33/5 4/28/6 5/18/15 17/7/14
200,50 4/21/13 5/27/6 7/9/22 18/3/17
200,100 5/21/12 4/23/1 5/6/27 1774717

Table 4 Comparison of majority voting accuracy (MVA) in between our method and one of the kappa pruning, diversity pruning,
the original SDP pruning, the best individual, and the original ensemble with no pruning. The number in each cell is the average
MVA =+ standard deviation of MVA over ten experimental runs.

Datasets Our Method Kappa Diversity sDp Best Individual Unpruned
haberman 75.65 + 3.89 7044 + 2.48 53.48 + 14.89 75.65 + 2.62 75.28 + 1.49 70.22 £ 4.71
sonar 86.35 + 4.29 80.64 + 4.40 65.08 + 3.72 83.81 + 4.68 76.02 + 2.80 81.91 + 4.71
SpectHeart 70.62 + 1.601 63.21 + 3.20 54.32 + 3.60 69.63 + 2.84 73.64 £ 2.62 57.04 + 3.43
tic-tac-toe 78.82 + 2.39 71.94 + 5.71 58.26 + 3.60 76.81 + 3.36 69.28 + 2.06 7847 + 3.63
Glass 54.77 + 8.33 44.00 + 10.80 48.31 + 10.41 51.38 + 8.26 48.48 + 3.53 46.15 + 4.74
abalone 60.57 + 1.41 57.03 + 1.16 57.83 + 1.34 59.30 + 0.77 57.89 + 0.89 55.25 + 1.00
car 82.27 + 3.98 56.53 + 1.97 61.31 + 11.76 83.28 + 3.49 70.36 + 0.601 42.27 + 1.56
cme 55.16 + 1.56 42.31 + 2.68 50.36 + 2.26 54.03 + 1.49 46.37 + 0.97 51.27 + 2.70
iris 76.00 £ 14.09 66.22 + 3.98 47.11 + 12.31 80.44 + 13.91 68.19 + 1.44 66.22 + 3.98
Dermatology 62.41 + 14.85 13.89 + 3.53 33.89 + 13.71 62.04 + 13.16 49.19 + 1.06 16.30 + 2.82
mfeat-mor 17.07 + 1.55 17.03 + 1.51 17.03 + 1.55 17.20 + 1.64 21.09 + 0.60 17.03 + 1.51
mfeat-pix 23.80 + 3.97 17.67 + 0.59 19.63 + 6.24 21.73 + 4.09 2037 + 0.47 17.67 + 0.59
optdigits 44.55 + 6.36 23.13 £ 5.75 38.33 £ 10.55 40.51 + 5.77 20.40 + 0.43 26.26 £ 4.40
page 95.20 + 0.67 89.57 + 1.13 62.28 + 17.39 94.64 + 0.36 93.47 + 0.32 74.18 + 20.02
pendigits 3293 + 5.91 19.85 + 0.23 22.92 £ 9.69 27.60 £ 6.60 20.76 + 0.27 20.81 + 7.47
sat 70.84 + 2.68 23.86 + 1.07 60.80 + 3.53 61.14 + 7.67 44.09 + 0.42 39.67 + 9.03
segmentation 41.62 + 10.42 21.36 + 8.12 27.39 + 13.61 35.04 + 12.18 2933 + 0.46 22.60 £ 6.49
semeion 23.26 £ 2.92 19.16 + 1.05 19.71 + 3.28 22.80 + 4.87 19.90 + 0.51 19.16 + 1.05
thyroid 84.31 + 2.53 79.08 + 8.74 82.15 + 6.40 84.61 + 3.61 83.31 + 1.83 75.69 + 10.63
Vehicle 62.76 + 4.87 51.50 + 0.85 57.80 + 5.69 60.95 + 3.45 57.38 £ 1.91 51.50 + 0.85
vertebral 78.92 + 3.37 76.56 + 2.07 58.49 + 7.92 77.63 + 3.98 79.28 + 1.70 66.24 + 3.19
vowel 23.27 £ 3.24 14.34 £ 2.79 18.36 + 6.45 20.50 + 7.21 18.59 + 0.48 13.46 + 2.38
waveforms 80.20 + 0.49 69.11 + 4.13 79.80 + 0.78 79.64 + 0.91 57.72 + 0.43 71.81 + 1.72
wine 97.04 + 1.66 9037 + 7.79 93.70 + 2.81 96.30 + 3.93 69.23 + 1.14 74.07 + 18.84
databanknote 99.17 + 0.37 97.04 + 1.18 75.34 + 5.24 97.48 + 0.74 86.11 + 1.17 99.56 + 0.36
bloodtrans 80.89 + 1.04 74.49 + 5.03 57.60 + 11.92 79.73 + 2.56 76.00 £ 0.88 7324 + 6.04
climate 94.20 + 1.42 90.49 + 2.33 57.16 + 8.08 94.07 + 1.42 91.59 + 0.78 92.47 + 2.02
ILPD 74.40 £ 2.75 67.09 + 5.81 5291 + 7.54 70.97 £ 2.90 71.15 + 1.51 60.11 + 5.32
ionosphere 93.21 + 2.15 93.77 + 2.55 77.55 + 7.17 92.83 + 2.17 85.43 + 1.55 93.96 + 1.96
spambase 92.89 + 0.84 91.14 + 1.11 61.55 + 11.89 92.57 + 1.29 78.53 + 0.76 84.40 £ 5.19
wholesale 90.00 + 1.46 84.09 + 6.38 62.27 + 15.13 90.00 + 1.12 89.87 + 1.10 81.67 + 6.32
customerl

australian 85.77 + 1.94 82.60 + 1.94 61.15 + 7.03 85.67 + 2.66 86.13 + 2.06 78.65 + 3.20
wdbcel 97.78 + 0.76 96.37 + 1.05 66.90 + 4.31 97.78 + 0.49 92.57 + 1.09 96.96 + 1.12
wpbcl 81.00 + 2.24 71.33 + 7.58 60.33 + 9.08 80.00 + 2.04 77.89 + 2.63 71.67 + 5.89
700 76.77 + 10.05 70.32 + 10.05 67.74 + 23.04 72.90 + 8.72 64.32 + 6.22 12.90 + 2.28
balance 87.02 + 1.22 81.92 + 2.71 85.00 + 2.99 87.34 + 1.57 65.72 + 0.79 85.75 + 1.74
pima 76.88 + 2.09 72.64 + 3.60 49.35 + 4.46 76.71 + 1.69 73.06 =+ 1.52 7.27 £ 9.49
Absolute W/L/T 36/2/0 38/0/0 30/5/3 34/4/0 35/3/0
Significant W/L/T 33/0/5 31/0/7 6/0/32 297277 33/1/4
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Table 5: Weight voting accuracy performance of the SDP pruning with the revised re-sizing step with different selection criteria.
The W/L/T statistics are the comparison of the original SDP against the methods corresponding to the table columns

Datasets sDp WVA Double Fault Weighted Error Count Disagreement
haberman 75.87 + 3.47 76.96 + 3.11 75.65 + 2.38 77.17 + 2.77 7630 + 3.11
sonar 92.06 + 3.89 90.79 + 2.07 86.98 + 3.05 92.06 + 4.49 91.11 + 2.41
SpectHeart 75.56 + 2.37 76.05 + 2.97 72.59 + 5.19 72.35 + 6.09 72.59 + 4.57
tic-tac-toe 76.60 + 2.72 79.10 + 3.02 74.93 + 1.02 77.15 + 2.42 76.94 + 1.19
Glass 65.23 + 5.72 67.08 + 3.37 51.69 + 4.82 51.69 + 4.82 49.85 + 6.67
abalone 60.77 + 1.40 61.31 + 1.15 59.98 + 1.06 59.74 + 0.96 59.62 + 1.00
car 84.16 + 2.23 85.24 + 0.78 78.57 + 1.20 80.46 + 0.87 80.46 + 0.87
cme 52.22 + 1.48 55.48 + 2.63 49.68 + 2.80 52.81 + 2.68 54.30 + 1.75
iris 98.22 + 0.99 98.22 + 0.99 98.67 + 1.22 08.22 + 2.90 98.67 + 1.22
Dermatology 91.30 + 3.04 95.56 + 2.88 85.93 + 4.41 92.78 + 4.87 93.15 + 5.14
mfeat-mor 39.90 + 2.10 39.70 + 2.19 20.83 + 0.57 20.70 + 0.72 20.83 + 0.57
mfeat-pix 4530 + 2.51 45.77 + 2.49 47.10 + 2.07 47.20 + 2.09 47.27 + 2.11
optdigits 66.71 + 2.50 70.88 + 1.68 69.11 + 2.17 69.13 + 0.88 69.30 + 1.50
page 94.50 + 0.90 96.31 + 0.40 93.63 + 0.49 94.30 + 0.60 93.58 + 0.44
pendigits 55.00 + 1.71 56.82 + 0.79 53.01 + 1.29 54.45 + 0.91 54.03 + 1.96
sat 78.17 + 1.86 81.30 + 1.43 78.27 + 1.01 79.05 + 1.63 78.55 + 1.99
segmentation 82.86 + 2.05 88.31 + 1.02 82.37 + 0.60 83.41 + 1.36 82.83 + 0.64
semeion 3598 + 2.35 36.19 + 1.96 3393 + 2.88 36.86 + 3.1 37.16 + 2.46
thyroid 98.15 + 1.69 99.69 + 0.69 96.31 + 2.33 97.85 + 0.84 96.31 + 0.84
Vehicle 68.90 + 1.91 70.31 + 1.49 65.35 + 1.55 65.12 + 1.84 65.59 + 1.38
vertebral 82.80 + 3.04 83.66 + 2.89 79.36 + 2.33 85.16 + 3.17 81.72 + 4.37
vowel 36.98 + 5.23 39.37 + 5.12 31.20 + 3.46 31.57 + 3.00 3044 + 1.30
waveforms 80.21 + 1.32 81.57 + 0.99 7843 + 1.53 80.45 + 0.87 80.28 + 1.53
wine 08.52 + 2.03 99.63 + 0.83 98.52 + 1.55 99.63 + 0.83 99.63 + 0.83
databanknote 96.94 + 0.93 99.32 + 0.67 97.09 + 1.03 96.80 + 1.10 96.46 + 1.43
bloodtrans 81.33 + 3.30 81.78 + 2.81 7644 + 3.13 79.11 + 1.37 77.96 + 1.93
climate 96.05 + 0.34 96.30 + 1.51 96.17 + 1.77 97.28 + 1.20 95.93 + 1.42
ILPD 74.51 + 2.73 73.26 + 1.95 73.83 + 2.54 74.97 + 3.09 76.00 + 3.31
ionosphere 94.15 + 1.23 96.79 + 2.17 90.19 + 2.07 92.45 + 3.59 91.70 + 3.68
spambase 91.77 + 0.80 92.34 + 0.73 92.30 + 0.52 92.01 + 0.49 91.90 + 0.50
wholesalecust1 9242 + 2.34 9348 + 1.74 92.73 + 1.74 93.79 + 1.73 93.18 + 1.86
australian 88.17 + 1.21 88.94 + 1.23 87.21 + 1.30 87.79 + 1.11 87.79 + 0.73
wdbcl 98.95 + 0.64 99.06 + 0.32 97.89 + 0.78 97.89 + 0.67 08.25 + 0.58
wpbcl 87.67 + 5.35 90.00 + 5.00 88.00 + 2.98 88.00 + 5.06 87.67 + 3.03
ecoli 7644 + 3.73 84.16 + 3.64 80.00 + 3.60 81.58 + 3.87 77.23 + 4.43
Z00 85.16 + 12.20 87.10 + 9.68 91.61 + 5.86 91.61 + 1.77 91.61 + 1.77
balance 88.62 + 2.18 87.98 + 1.94 82.02 + 1.38 85.64 + 2.52 85.53 + 2.53
pima 76.71 + 1.87 7749 + 1.73 7749 + 1.98 76.80 + 2.02 77.58 + 1.69
Absolute W/L/T 4/33/1 25/12/1 16/20/2 20/17/1

Significant W/L/T 0/14/24 1772719 9/4/25 12/3/23

other two benchmark ensemble pruning method, does
not perform better than the unpruned ensemble. For
many of the test datasets, the original SDP pruning
algorithm actually ties with the unpruned ensemble;
this was also discussed in Zhang et al. [14].

Table 4 shows the MVA statistics for the compared
methods for M= 100 and p =0.25. For this comparison,
the majority voting accuracy was used as a criterion of
selecting base classifiers in our method. We could
observe a few findings that are different from what
was observed in Table 2. First, for many datasets, the

unpruned ensemble is no better than the best individual
classifier. This implies that combining weak classifiers
by a majority voting scheme may not give much
performance gain over using a good individual classifier.
Second, although our method is still better than the
original SDP pruning algorithm in terms of the absolute
W/L/T statistics, they are comparable in terms of the
significant W/L/T, which means that the performance
gap between the two methods is not significant for
many datasets.
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5.1 Effect of different selection criteria in the greedy
re-sizing step of SDP pruning algorithm

In this section, we numerically study the efiect of using
different selection criteria in the greedy re-sizing step
of the SDP pruning algorithm. For the study, we
considered four different selection criteria, the
disagreement measure [23], the double fault measure
[24], the weighted error count and correct value [25],
and weighted voting accuracy measure (our method).
The first three measures and the measure used in the
original SDP pruning are ensemble diversity measures,
while a weighted voting accuracy is an ensemble
accuracy measure.

We computed the WVA performance of the SDP
pruning algorithm when each of the four ditierent
selection criteria is used. Table 5 summarizes the
results. Applying either the disagreement measure [23],
the double fault measure [24] or the weighted error
count and correct value [25] does not appear to improve
the original SDP pruning algorithm, while applying a
weighted voting accuracy improved the SDP pruning
algorithm significantly in terms of the WVA accuracy.
This supports our argument that using an ensemble
accuracy measure instead of using an ensemble
diversity measure in the re-sizing step improves the
performance of the SDP pruning algorithm more
significantly.

6. CONCLUSION

In this paper we proposed to revise the resizing step
of the SDP pruning algorithm for classification
problems. Given a set of many base classifiers, the
current SDP pruning algorithm first solves a semi-
definite problem of taking a subset of some promising
base classifiers as a preliminary selection and reduce
the size of the subset to a desired size through a greedy
algorithm. The greedy step discards some of the base
classifiers in the preliminary selection in a greed
fashion towards the increase of a chosen criterion.
We showed the criterion does not really reflect the
overall classification accuracy of the selected ensemble
so the greedy step can be guided for better accuracy
if a better criterion is chosen for the step. We proposed
to use a weight voting accuracy measure as a selection
criterion.

Our numerical study showed the new re-sizing step
improved the overall ensemble accuracy of the SDP
pruning algorithm. We also tested the performance of
the SDP pruning algorithm with different selection
criteria used in the re-sizing step. The test showed that
maximizing a weighted voting accuracy measure in the
re-sizing step produced better results than using the
other selection criteria.
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