
RANDOM MATRICES, CONTINUOUS CIRCULAR SYSTEMS

AND THE TRIANGULAR OPERATOR

ROMUALD LENCZEWSKI*

Abstract. Using suitably defined continuous analogs of the matricial cir-

cular systems and the direct integral of Hilbert spaces H =
∫⊕
Γ H(γ)dγ, we

study the operators living in H which give the asymptotic joint *-distributions

of complex independent Gaussian random matrices with not necessarily equal
variances of the entries. These operators are decomposed in terms of continu-

ous circular systems {ζ(x, y;u) : x, y ∈ [0, 1], u ∈ U} acting between the fibers

of H, the continuous analogs of matricial circular systems obtained when the
Gaussian entries are block-identically distributed. In the case of square matri-

ces with i.i.d. entries, we obtain the circular operators of Voiculescu, whereas

in the case of upper-triangular matrices with i.i.d. entries, we obtain the
triangular operators of Dykema and Haagerup. We apply this approach to

give a bijective proof of the formula for the moments of T ∗T , where T is a

triangular operator, using the enumeration formula of Chauve, Dulucq and
Rechnizter for alternating ordered rooted trees.

1. Introduction

Independent Gaussian random matrices with suitably normalized complex i.i.d.
entries are asymptotically free with respect to the normalized trace composed with
classical expectation. The limit mixed (*-) moments can be expressed in terms of
mixed (*-) moments of free circular operators. This fundamental result was shown
by Voiculescu [16], who also found a relation to free group factors [17].

Asymptotic freeness of Voiculescu was later generalized in many directions, in
particular, to the non-Gaussian random matrices by Dykema [3] and to Gaussian
band matrices by Shlyakhtenko [13]. In the latter case, where the Gaussian varia-
bles are not assumed to be identically distributed, scalar valued freeness [18] is
not sufficient to describe the asymptotics of matrices and one has to use freeness
with amalgamation over some subalgebra, a generalization of freeness, in which a
state is replaced by an operator-valued conditional expectation with values in this
subalgebra. This approach was later used by Benaych-Georges [1] in his study
of rectangular block random matrices, who introduced a rectangular analog of
Voiculescu’s R-transform [18]. Analytic methods like operator-valued transforms
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were also applied to the study of blocks of random matrices (most of these results
are mentioned in the recently published monograph of Mingo and Speicher [11]).

The main point of our approach is that our realizations of the limit joint
*-distributions of Gaussian random matrices are built from operators living in
Hilbert spaces rather than in Hilbert modules. Our combinatorics also has new
features since it is based on coloring noncrossing pair partitions rather than on
using nested evaluations which are needed when applying the conditional expecta-
tion and operator-valued free probability. Although one can translate our approach
to that of the operator-valued free probability, the new language provides a new
realization of limit distributions as well as connections to some nice results in
combinatorics. For instance, the combinatorics of colored partitions allows us to
find a connection between certain results on moments of the triangular operator
defined by Dykema and Haagerup [4] with known enumeration results for alter-
nating ordered rooted trees. The triangular operator got some attention in the
context of the famous invariant subspace problem in the papers of Dykema and
Haagerup on the so-called DT-operators and their decompositions [4,5], including
the circular operator of Voiculescu and the triangular operator T . The moments
of T ∗T were also found by Dykema and Haagerup in [4] and the more general

case of the moments of T ∗kT k was treated by Śniady [14], who used the so-called
generalized circular elements and the combinatorics of nested evaluations.

As far as matricial circular systems are concerned, they describe the asymp-
totics of blocks of independent Gaussian random matrices under partial traces. If
we are given an ensemble of independent non-Hermitian n × n Gaussian random
matrices {Y (u, n) : u ∈ U} with suitably normalized independent block-identically
distributed (i.b.i.d.) complex entries for each natural n, then the mixed *-moments
of their (in general, rectangular) blocks Sp,q(u, n) converge under normalized par-
tial traces to the mixed *-moments of certain bounded operators, which we write
informally

lim
n→∞

Sp,q(u, n) = ζp,q(u),

where u ∈ U and 1 ≤ p, q ≤ r and the operators ζp,q(u) are called matricial
circular operators [10]. Their counterparts in the operator-valued free probability
are operators of the form Fpc(u)Fq, where {c(u) : u ∈ U} is a family of circular
elements living in the Fock space over Hilbert A-module, where A is the algebra
of r × r diagonal matrices with canonical generators F1, . . . , Fr.

In this paper, we use continuous analogs of ζp,q(u), namely ζ(x, y;u), where,
roughly speaking, p/r → x, q/r → y as r →∞. The families of these operators are
called continuous circular systems. Using direct integrals involving these systems,
we obtain realizations of the asymptotic *-joint distributions of matrices Y (u, n)
in terms of operators of the form

ζ(g, u) =

∫ ⊕
Γ1

g(x, y)ζ(x, y;u)dxdy,

where Γ1 = [0, 1]× [0, 1] and g ∈ L∞(Γ1).
In particular, if g = χ∆, where ∆ = {(x, y) ∈ Γ1 : x < y}, then we obtain the

family of free triangular operators of Dykema and Haagerup [4]. We apply this
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approach to study the mixed *-moments of the triangular operators. In particular,
we provide a new and natural bijective proof of the formula for the moments

ϕ((T ∗T )n) =
nn

(n+ 1)!
,

shown by Dykema and Haagerup [4] by a different method, where T is a triangular
operator, using the nice enumeration result of Chauve, Dulucq and Rechnitzer [2]
for alternating ordered rooted tress. In this context, let us remark that there
is a more general bijective proof of Śniady [15], based on a certain algorithm of
counting total orders on directed trees.

The paper is organized as follows. In Section 2 we recall the notions related to
matricial circular systems. In Section 3, we introduce the direct integral of Hilbert
spaces, on which we define a family of creation and annihilation operators. In
Section 4, we introduce continuous circular systems as isometries between suitably
defined fiber Hilbert spaces. Mixed *-moments of matricial circular operators and
their convergence to the mixed *-moments of the operators decomposed in terms
of the continuous circular systems are discussed in Section 5. In Section 6, we
apply our approach to the triangular operators and we provide a bijective proof
of the formula for the moments of T ∗T .

We adopt the convention that the stars which indicate adjoints are written
closely to the main symbol, for instance ℘∗(g, u) and ℘∗(x, y;u) are the adjoints
of ℘(g, u) and ℘(x, y;u), respectively.

2. Matricial Circular Systems

Let [r] := {1, 2, . . . , r} and let U be a countable set. To each (p, q) ∈ J ⊂ [r]×[r]
and u ∈ U we associate a Hilbert spaceHp,q(u). Using this family of Hilbert spaces,
we can construct the matricially free Fock space of tracial type (see [7,9,10]).

Definition 2.1. By the matricially free Fock space of tracial type we understand
the direct sum of Hilbert spaces

M =
r⊕
q=1

Mq,

where each summand is of the form

Mq = CΩq ⊕
∞⊕
m=1

⊕
p1,...,pm
u1,...,un

Hp1,p2(u1)⊗Hp2,p3(u2)⊗ . . .⊗Hpm,q(um),

where Ωq is a unit vector for any q ∈ [r], endowed with the canonical inner product.
We denote by Ψq the state associated with Ωq.

Let us recall a number of basic facts and notions from [8,9,10].

(1) In the special case when each Hp,q(u) = Cep,q(u) for any p, q, u, where
ep,q(u) is a unit vector, the matricially free creation operators associated
with matrices B(u) = (bp,q(u)) of non-negative real numbers (covariance
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matrices) are bounded operators whose non-trivial action onto the canon-
ical orthonormal basis is

℘p,q(u)Ωq =
√
bp,q(u)ep,q(u),

℘p,q(u)(eq,t(s)) =
√
bp,q(u)(ep,q(u)⊗ eq,t(s)),

℘p,q(u)(eq,t(s)⊗ w) =
√
bp,q(u)(ep,q(u)⊗ eq,t(s)⊗ w),

for any p, q, t ∈ [r] and u, s ∈ U, where eq,t(s)⊗w is a basis vector. Action
onto the remaining basis vectors gives zero. The corresponding matricially
free annihilation operators are their adjoints denoted ℘∗p,q(u).

(2) Matricially free creation operators can be realized as operator-valued ma-
trices [10]. If we are given a C∗-probability space (A, φ) and a family of
free creation operators {`(p, q, u) : p, q ∈ [r], u ∈ U} with covariances
bp,q(u), respectively, which are *-free with respect to φ, and (e(p, q)) is the
array of matrix units in Mr(C), then

℘p,q(u) = `(p, q, u)⊗ e(p, q)

for any p, q ∈ [r] and u ∈ U. This equality holds in the sense that the
mixed *-moments of the operators ℘p,q(u) under the states Ψj agree with
the corresponding mixed *-moments of the above matrices under the states
Φj = φ ⊗ ψj , where ψj is the state associated with the canonical basis
vector e(j) of Cr, where j ∈ [r].

(3) The matricial circular operators are of the form

ζp,q(u) = ℘p,q(u
′) + ℘∗q,p(u

′′),

where u ∈ U = [t], p, q ∈ [r] and u′, u′′ are different copies of u. As we
showed in [9], they can be realized as operator-valued matrices

ζp,q(u) = c(p, q, u)⊗ e(p, q),

where p, q ∈ [r], u ∈ U, {c(p, q, u) : p, q ∈ [r], u ∈ U} is a family of free
generalized circular operators, i.e. c(p, q, u) = `(p, q, u′) + `∗(q, p, u′′). We
use the term ‘generalized’ since, in general, the covariances of the creation
operators are arbitrary. If all creation operators are standard, this is a
family of free circular operators. The corresponding family of arrays of
operators is called the matricial circular system.

3. Direct Integrals

We would like to construct a continuous analog of the matricially free Fock
space of tracial type. For that purpose, we will use the formalism of direct integrals
(for more on direct integrals, see, for instance, [6]). However, two different direct
integral decompositions of the considered Fock space and of the canonical operator
fields acting on this Fock space will be helpful.
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We begin with a decomposition which is a straightforward generalization of the
discrete matricially free Fock space of tracial type. For I = [0, 1], let

Γ =
∞⊕
n=0

Γn

be the direct sum of measure spaces, where Γn = In+1 is equipped with the
Lebesgue measure denoted dγn, and let us denote by dγ the corresponding direct
sum of measures on the set Γ.

Definition 3.1. By the continuous matricially free Fock space we understand the
direct integral of Hilbert spaces of the form

H =

∫ ⊕
Γ

H(γ)dγ,

where Hilbert spaces are associated to γ ∈ Γ as follows:

(1) if γ = x ∈ Γ0 = I, then

H(γ) = CΩ(x),

where Ω(x) is a unit vector,
(2) if γ = (x1, x2, . . . , xn+1) ∈ Γn and n ∈ N, then

H(γ) = H(x1, x2)⊗H(x2, x3)⊗ . . .⊗H(xn, xn+1),

where each H(x, y) is a separable Hilbert space, and each H(γ) is equipped
with the canonical inner product,

(3) the canonical inner product in H is then given by

〈F,G〉 =

∫
Γ

〈F (γ), G(γ)〉 dγ,

where F =
∫ ⊕

Γ
F (γ)dγ,G =

∫ ⊕
Γ
G(γ)dγ ∈ H are measurable square inte-

grable fields with the natural assumption that F (γ), G(γ) ∈ H(γ).

Remark 3.2. Let us collect certain basic facts about the Hilbert spaces defined
above.

(1) The continuous family of unit vectors {Ω(x) : x ∈ I} replaces the finite
set of vacuum vectors {Ω1, . . . ,Ωr} used in the discrete case. The corre-
sponding direct integral

H0 :=

∫ ⊕
I

H(x)dx ∼= L2(I)

will be called the vacuum space. In this paper, we will be mainly con-
cerned with the function on I which is constantly equal to one since it
corresponds to the canonical trace on the algebra of random matrices.
However, weighted traces will, in general, lead to different elements of
L2(I).
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(2) In the case when H(x, y) ∼= G for any (x, y) ∈ Γ1, where G is a separable
Hilbert space (with an orthonormal basis indexed by U), we also have
isomorphisms for higher order integrals

Hn :=

∫ ⊕
Γn

H(γ)dγn ∼= L2(Γn,G⊗n),

where n ≥ 1 and L2(Γn,G⊗n) denotes the Hilbert space of square in-
tegrable G⊗n-valued functions over the set Γn with respect to dγn (dγ
restricted to Γn). Thus, in this particular case, we have the isomorphism

H ∼= L2(I)⊕
∞⊕
n=1

L2(Γn,G⊗n).

(3) Fields F =
∫ ⊕

Γ
F (γ)dγ,G =

∫ ⊕
Γ
G(γ)dγ ∈ H have direct sum decomposi-

tions

F =
∞∑
n=0

Fn and G =
∞∑
n=0

Gn,

where Fn, Gn ∈
∫

Γn
H(γ)dγ in the natural sense. Under the above isomor-

phism assumptions, F0, G0 ∈ L2(I) and Fn, Gn ∈ L2(Γn,G⊗n) for n ≥ 1.
In most computations, it is enough to consider these to be of the form

Fn(γ) = f1(x1, x2)⊗ . . .⊗ fn(xn, xn+1),

Gn(γ) = g1(x1, x2)⊗ . . .⊗ gn(xn, xn+1),

for γ = (x1, . . . , xn+1) and n ≥ 1, with fi(xi, xi+1), gi(xi, xi+1) ∈ G for
any i.

(4) The canonical inner product in H decomposes as

〈F,G〉 =

∞∑
n=0

∫
Γn

〈Fn(γ), Gn(γ)〉 dγn

for any F,G ∈ H, and an analogous equation holds for squared norms.

This setting is suitable for introducing continuous analogs of sums of matricially
free creation operators

℘(u) =
r∑

p,q=1

℘p,q(u),

where the covariance of each ℘p,q(u) is assumed to be bp,q(u) ≥ 0, u ∈ U. In
particular, if bp,q(u) = dp for any p, q, u, where d1+· · ·+dr = 1, then {℘(u) : u ∈ U}
is a family of standard free creation operators. We would like to find a continuous
analog of these decompositions, using direct integrals.

The continuous analogs of the matricially free creation operators will be denoted
℘(f), where f is an essentially bounded G-valued function on Γ1, namely f ∈
L∞(Γ1,G), where the square Γ1 is equipped with the two-dimensional Lebesgue
measure.
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Definition 3.3. For given f ∈ L∞(Γ1,G), let us define bounded linear operators
℘(f) on H by

℘(f)

(∫ ⊕
I

F0(x1)dx1

)
=

∫ ⊕
Γ1

f(x, x1)F0(x1)dxdx1

for any F0 ∈ L2(I), and

℘(f)

(∫ ⊕
Γn

Fn(x1, . . . , xn+1)dx1 . . . dxn+1

)

=

∫ ⊕
Γn+1

f(x, x1)⊗ Fn(x1, . . . , xn+1)dxdx1 . . . dxn+1

for any Fn ∈ L2(Γn,G⊗n), where n ∈ N. In the special case when f = g ⊗ e(u),
where e(u) is some basis unit vector of G, under the identification L∞(Γ1,G) ∼=
L∞(Γ1)⊗ G, we will write ℘(g, u) instead of ℘(f).

In order to give formulas for the adjoints of ℘(f), we first need to define bounded
operators which multiply each F (γ) by an essentially bounded function k of the
first coordinate of γ. The explicit definition is given below.

Definition 3.4. For k ∈ L∞(I), define bounded linear operators

M(k, γ) : H(γ)→ H(γ)

for any γ = (x1, . . . , xn+1) ∈ Γn and n ≥ 0 by

M(k, γ)Fn(γ) = k(x1)Fn(γ),

and the associated decomposable operator by

M(k) :=

∫ ⊕
Γ

M(k, γ)dγ,

which is bounded on H.

The operator M(k) reminds the gauge operator on the free Fock space associ-
ated with the multiplication operator by k, but one important difference is that
M(k) is non trivial on the vacuum space unless k vanishes outside of the set of
measure zero. Moreover, we will use the shorthand notations

Fn(γ) = f1(x1, x2)⊗ . . .⊗ fn(xn, xn+1),

Fn−1(γ′) = f2(x2, x3)⊗ . . .⊗ fn(xn, xn+1),

where γ = (x1, . . . , xn+1) ∈ Γn, γ′ = (x2, . . . , xn+1) ∈ Γn−1 and each f(xi, xi+1)
is an element of the Hilbert space G.

Proposition 3.5. The adjoints of the operators ℘(f) are given by

℘∗(f)

∫ ⊕
I

F0(γ)dγ0 = 0

℘∗(f)

∫ ⊕
Γn

Fn(γ)dγn =

∫ ⊕
Γn−1

M(k, γ′)Fn−1(γ′)dγ′n−1
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where

k(x2) =

∫ 1

0

〈f1(x1, x2), f(x1, x2)〉dx1,

and 〈., .〉 is the canonical inner product in G.

Proof. The first formula is obvious since the range of ℘(f) is contained in the
orthogonal complement of L2(I). To prove the second formula, we can take Fn(γ)
and Gn(γ) to be simple tensors of the form

Fn(γ) = f1(x1, x2)⊗ . . .⊗ fn(xn, xn+1),

Gn(γ) = g1(x1, x2)⊗ . . .⊗ gn(xn, xn+1),

where γ = (x1, . . . , xn+1). Then

〈℘(f)

∫ ⊕
Γn−1

Gn−1(γ′)dγ′n−1,

∫ ⊕
Γn

Fn(γ)dγn〉

= 〈
∫ ⊕

Γn

f(x1, x2)⊗Gn−1(γ′)dγn−1,

∫ ⊕
Γn

Fn(γ)dγn〉

=

∫
Γn

〈f(x1, x2), f1(x1, x2)〉〈Gn−1(γ′), Fn−1(γ′)〉dx1 . . . dxn+1

=

∫
Γn−1

(∫
I

〈f(x1, x2), f1(x1, x2)〉dx1

)
〈Gn−1(γ′), Fn−1(γ′)〉dx2 . . . dxn+1

= 〈
∫ ⊕

Γn−1

Gn−1(γ′)dγ′n−1, ℘
∗(f)

∫ ⊕
Γn

Fn(γ)dγn(γ)〉,

where γ = (x1, . . . , xn+1) and γ′ = (x2, . . . , xn+1). The proof is completed. �

Corollary 3.6. For any f, f1 ∈ L∞(Γ1,G), it holds that

℘∗(f)℘(f1) = M(k),

where k is of the same form as in Proposition 3.5.

Remark 3.7. Let us consider some special cases and one property of the operators
studied above.

(1) It is easy to see that if the functions f, f1 do not depend on the second

coordinate, i.e. f(x1, x2) = f̃(x1) and f1(x1, x2) = f̃1(x1), then

k(x2) =

∫ 1

0

〈f̃1(x1), f̃(x1)〉dx1,

for any x2 and thus M(k) reduces to the multiplication by a constant and
thus we can write the relation

℘∗(f)℘(f1) = 〈f1, f〉 = 〈f̃1, f̃〉,

and thus the operators ℘(f), ℘∗(f) reduce to free creation and annihi-
lation operators, respectively, with the natural inner product for square
integrable G-valued functions.
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(2) In the above case, if we take two functions of the form: f1 = χΓ1
⊗e(u′) and

f2 = χΓ1 ⊗ e(u′′), where χΓ1 is the characteristic function of the square,
and denote the associated creation operators by ℘(u′), ℘(u′′), respectively,
then it is easy to see that {ζ(u) : u ∈ U}, where

ζ(u) = ℘(u′) + ℘∗(u′′)

and u′ 6= u′′, viewed as two ‘copies’ of u, is a family of free circular
operators (in other words, instead of the set U we have to consider a twice
bigger set of indices).

(3) If we use characteristic functions of the triangle and take f = χ∆ ⊗ e(u)
and f1 = χ∆ ⊗ e(u1), where ∆ = {(x, y) : 0 ≤ x < y ≤ 1} and e(u), e(u1)
are orthonormal basis vectors in G, then

k(x2) = δu,u1

∫ x2

0

dx1 = δu,u1
x2,

and thus M(k) reduces to the multiplication by x2 times the Kronecker
delta related to basis vectors, and thus the relation between the creation
and annihilation operators becomes

℘∗(f)℘(f1) = δu,u1
M(id),

which corresponds to the case when we deal with strictly upper triangu-
lar Gaussian random matrices and the operatorial limit is the triangular
operator.

(4) For simplicity, we will assume from now on that f = g ⊗ e(u) and that
g does not depend on u. Let us observe that if (gn) is a sequence of
functions from L∞(Γ1) which converges in norm to g ∈ L∞(Γ1), then the
corresponding sequences of operators considered above converge strongly
on H, namely s − limn→∞ ℘(gn, u) = ℘(g, u), s − limn→∞ ℘∗(gn, u) =
℘∗(g, u) and s− limn→∞M(gn) = M(g).

4. Continuous Circular Systems

Other decompositions of H are also relevant since they give useful decomposi-
tions of the operators of interest. We will introduce decompositions in which the
sets of fibers are relatively small (indexed by I), but the fibers themselves are ‘long’.
These decompositions allow us to introduce continuous analogs of matricial circu-
lar systems and interpret the operators of interest as integrals of two-dimensional
‘densities’.

Definition 4.1. For each x ∈ [0, 1], let us define the associated fiber Hilbert space
that begins with x:

N (x) :=

∫ ⊕
Γ(y)

N (γ)dγ̃

∼= CΩ(x)⊕
∫ ⊕
I

H(x, y)dy ⊕
∫ ⊕

Γ1

H(x, y)⊗H(y, z)dydz ⊕ . . . ,



234 ROMUALD LENCZEWSKI*

where Γ(x) = {(x, γ) : γ ∈ Γ} for any fixed x ∈ I, with γ̃({x}) = 1 and γ̃({x} ×
A) = λ(A) (the Lebesgue measure of A) for any A ⊂ Γ, and let

H =

∫ ⊕
I

N (x)dx,

be the associated direct integral decomposition. All Hilbert spaces involved are
equipped with canonical inner products.

Definition 4.2. In a similar fashion, for all (x, y) ∈ Γ1, define Hilbert spaces

N (x, y) := H(x, y)⊕
∫ ⊕

Γ0

H(x, y)⊗H(y, z)dz ⊕ . . . ,

equipped with the canonical inner products and let

H	H0 =

∫ ⊕
Γ1

N (x, y)dxdy,

be the associated direct integral decomposition, where Hilbert spaces involved are
equipped with canonical inner products.

Definition 4.3. Let us suppose that {e(y, z;u) : u ∈ U} is a countable orthonor-
mal basis of H(y, z) for each (y, z) ∈ Γ1. For any given x, y ∈ I and u ∈ U, define
isometries ℘(x, y;u) : N (y)→ N (x, y) by the direct integral extension of

℘(x, y;u)Ω(y) = e(x, y;u),

℘(x, y;u)e(y, z; s) = e(x, y;u)⊗ e(y, z; s),
℘(x, y;u)(e(y, z; s)⊗ w) = e(x, y;u)⊗ e(y, z; s)⊗ w,

for any x, y, z ∈ I and u, s ∈ U, where e(y, z; s)⊗w is a basis vector of some tensor
product H(y, z)⊗H(z, z1)⊗ . . .⊗H(zn−1, zn).

Remark 4.4. Equivalently, we could act with ℘(x, y;u) onto direct integrals in the
last two equations. For instance, the second equation would then take the form

℘(x, y;u)

∫ ⊕
I

g(y, z)e(y, z; s)dz =

∫ ⊕
I

g(y, z)(e(x, y;u)⊗ e(y, z; s))dz,

but it is more convenient to completely decompose the considered fibers since we
get simpler formulas which are in correspondence with the discrete case. As far
as this correspondence is concerned, in contrast to the discrete case, we do not
include scalars in the definition of ℘(x, y;u) in order to avoid lengthy formulas.
These scalars, playing the role of covariances, are included in the function g when
we deal with ℘(g, u) to the effect that |g(x, y)|2 is the continuous analog of bp,q(u)
(as we mentioned earlier, we shall assume for simplicity that these covariances do
not depend on u).

Proposition 4.5. For any x, y ∈ I and u ∈ U, let ℘∗(x, y;u) : N (x, y)→ N (y) be
the bounded operator defined by the direct integral extension of the formal formulas

℘∗(x, y;u)e(x, y;u) = Ω(y),

℘∗(x, y;u)(e(x, y;u)⊗ w) = w,
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for any x, y ∈ I and u ∈ U and w as above, and setting them to be zero on the
remaining basis vectors. Then the operator ℘∗(x, y;u) is the adjoint of ℘(x, y;u)
for any x, y, u.

Proof. These formulas are obtained by straightforward computations. �

Definition 4.6. Using the continuous family {℘(x, y;u) : x, y ∈ I, u ∈ U} and the
family of their adjoints, one then defines the continuous analogs of the matricial
circular operators as

ζ(x, y;u) = ℘(x, y;u′) + ℘∗(y, x, u′′),

for (x, y) ∈ Γ1 and u ∈ U and u′, u′′ are copies of u, as in Remark 3.7. This
definition is in agreement with the definition of matricial circular systems and
therefore the family

{ζ(x, y;u) : x, y ∈ I, u ∈ U}
will be called the continuous circular system.

Proposition 4.7. If f(x, y) = g(x, y) ⊗ e(u), the matrix elements of operators
℘(f) = ℘(g, u) and their adjoints of the form

〈℘(g, u)h1, h2〉 =

∫
Γ1

g(x, y)〈℘(x, y;u)h1(y), h2(x, y)〉dxdy,

〈h1, ℘
∗(g, u)h2〉 =

∫
Γ1

g(x, y)〈h1(y), ℘∗(x, y;u)h2(x, y)〉dxdy,

where g ∈ L∞(Γ1) and u ∈ U, are well defined for any h1 =
∫ ⊕
I
h1(y)dy and h2 =∫ ⊕

Γ1
h2(x, y)dxdy according to the decompositions of H and H	H0, in Definitions

4.1 and 4.2, respectively.

Proof. Observe that the integrals on the RHS are well defined since h1 and h2 have
square integrable norms by assumption, each ℘(x, y;u) is an isometry from N (y)
to N (x, y) and g is essentially bounded on Γ1. By Definition 3.3 and Proposition
3.5, the integrals on the RHS give the desired matrix elements. This completes
the proof. �

In the above situation, we can write a decomposition of the creation operators
℘(g, u) in the direct integral form

℘(g, u) =

∫ ⊕
Γ1

g(x, y)℘(x, y;u)dxdy,

and an analogous formula for the annihilation operators ℘∗(g, u), namely

℘∗(g, u) =

∫ ⊕
Γ1

g(x, y)℘∗(x, y;u)dxdy.

We use the symbol ⊕ with a slight abuse of notation since the considered families
of integrands are ‘almost decomposable’ with respect to the direct integral decom-
position of Definition 4.2. The operators ℘(x, y;u) (℘∗(x, y;u)) can be interpreted
as operators creating (annihilating) vector e(u) of color x ‘under condition y’. The
‘condition’ y refers to the color of the vector onto which the operator ℘(x, y;u) acts.
If the given pairing is a block in the mixed *-moment of creation and annihilation
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operators, integration over x of the associated |g(x, y)|2 gives the contribution of
the given pairing to the mixed *-moment.

It is also natural to define the corresponding ’circular operator’

ζ(g, u) =

∫ ⊕
Γ1

(g(x, y)℘(x, y;u′) + g(y, x)℘∗(y, x;u′′))dxdy

which becomes a circular operator ζ(u) if g = χΓ1 . Similarly, if we set g = χΓ1 ,
we obtain canonical creation and annihilation operators associated with the basis
vector e(u), denoted ℘(u) and ℘∗(u).

5. Mixed *-moments

We would like to discuss the mixed *-moments of the creation operators and of
certain operators obtained from them. A very interesting example is that of the
triangular operator obtained as the limit realization of sctrictly upper triangular
Gaussian random matrices.

In our previous works, we have studied the combinatorics of *-moments of
various operators (creation, semicircular, circular, etc.) in the matricial (discrete)
case [7,8,9,10]. It was based on the class of colored labeled noncrossing partitions.
Labels are associated to independent random matrices and colors are related to
their blocks. The idea of block coloring is very straightforward. In the discrete
case, we colored the blocks with natural numbers from the finite set [r] if the
matrix is decomposed into r2 blocks. The color of each block depended on the
color of its nearest outer block (see [7] for more details). If we dealt with more
than one matrix, we also assigned labels to blocks, but labels are rather easy to
deal with since they just have to match within a block. (if only one label is used,
we just use colored noncrossing partitions).

The basic definitions and notations concerning partitions are given below (some
of them extend the classical terminology [12]). If π is a non-crossing pair-partition
of the set [m], where m is an even positive integer, which is denoted π ∈ NC2

m,
the set

B(π) = {V1, . . . , Vs}
is the set of its blocks, where m = 2s. If Vi = {l(i), r(i)} and Vj = {l(j), r(j)} are
two blocks of π with left legs l(i) and l(j) and right legs r(i) and r(j), respectively,
then Vi is inner with respect to Vj if l(j) < l(i) < r(i) < r(j). In that case Vj
is outer with respect to Vi. It is the nearest outer block of Vi if there is no block
Vk = {l(k), r(k)} such that l(j) < l(k) < l(i) < r(i) < r(k) < r(j). It is easy
to see that the nearest outer block, if it exists, is unique, and we write in this
case Vj = o(Vi). If Vi does not have an outer block, we set o(Vi) = V0, where
V0 = {0,m + 1} is the additional block called imaginary (marked with a dashed
line in Fig. 1). The partition of the set {0, 1, . . . ,m + 1} consisting of the blocks
of π and of the imaginary block will be denoted by π̂.

Now, the new idea in this paper is that in the limit r → ∞ the combinatorics
is still described by colored labeled noncrossing pair partitions, but the discrete
set of colors [r] is replaced by the interval [0, 1]. As we shall see in Section 6, the
set of colors will be x1, . . . , xs+1 lying in the interval [0, 1] and the weights will
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* * *1 1 1 * * *1 1 1

Figure 1. The same noncrossing pair partition π ∈ NC2
6 in two

different situations. On the left: π is adapted to (∗, ∗, 1, ∗, 1, 1).
On the right: π is not adapted to (∗, 1, ∗, 1, ∗, 1). For simplicity,
labels are omitted. The imaginary block is marked with a dashed
line.

be products of g(xi, xo(i)) replacing products of bp,q used in [7], whenever Vi is a
block and o(Vi) is its nearest outer block.

In order to go from the discrete case to the continuous one, take a closer look
at pairs of creation and annihilation operators. If a tuple ((ε1, u1), . . . , (εm, um)),
where εj ∈ {1, ∗} and uj ∈ U for any j, is given, where m is even, we will say that

π ∈ NC2
m is adapted to it if ui = uj whenever {i, j} is a block and (εi, εj) = (∗, 1)

whenever {i, j} is a block and i < j. This notion of adaptedness (illustrated in Fig.
1) is convenient when speaking of *-moments of creation operators. Clearly, if a
tuple is given, it may have at most one noncrossing pair partition adapted to it in
the above sense. If such a partition exists, then it means that the considered mixed
*-moment of creation operators does not vanish. Let us remark that in the case of
*-moments of ‘circular operators’ we need another (weaker) notion of adaptedness
since in that case (εi, εj) ∈ {(∗, 1), (1, ∗)}. Therefore, one should be careful not
to confuse the combinatorics of the *-moments of creation operators with that of
*-moments of ‘circular operators’ (that one will be discussed in Section 6).

We need to define a continuous analog of the state Ψ considered in the discrete
case. For simplicity, we can take dq = 1/r for any q, which corresponds to the
decomposition of the random matrices into blocks which are asymptotically square
and of equal sizes. We will use the state ϕ : B(H)→ C of the form

ϕ =

∫ ⊕
I

ϕ(γ)dγ,

where ϕ(γ) = ϕ(x) is the vacuum state associated with Ω(x), namely

ϕ(F ) =

∫
I

〈F (x)Ω(x),Ω(x)〉dx,

where F =
∫ ⊕
I
F (x)dx ∈ B(H) according to the decomposition of H into fibers

that end with x ∈ I, which is a natural continuous analog of the state Ψ when
dq = 1/r for all q obtained by taking the limit r →∞.

Computations of mixed *-moments of interest always reduce to the mixed *-
moments of the creation operators. Therefore, let us first establish a connection
on this level with the use of the operators ℘(g, u) introduced in Section 3. We
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consider the case when bp,q(u) = dp for any p, q, u. For further simplicity, one can
assume that dp = 1/r for all p, but the result given below holds for any asymptotic
dimensions.

Lemma 5.1. For any p1, q1, . . . , pm, qm ∈ [r], u1, . . . , um ∈ U, ε1, . . . , εm ∈ {1, ∗}
and any m ∈ N, it holds that

Ψ(℘ε1p1,q1(u1) . . . ℘εmpm,qm(um)) = ϕ(℘ε1(f1) . . . ℘εm(fm)),

where fj = gj ⊗ e(uj) for j ∈ [m] and gj is the characteristic function of the
rectangle Ipj × Iqj ⊂ Γ1 for any 1 ≤ j ≤ m, where I = I1 ∪ . . .∪ Ir is the partition
of I into disjoint non-empty intervals with natural ordering.

Proof. Let us observe that for any fixed r ∈ N an isometric embedding θ :M→H
is given by

θ(Ωq) =
1√
dq

∫ ⊕
Iq

Ω(x)dx,

θ(ep1,p2(u1)⊗ · · · ⊗ epm,pn+1
(un)) =

1√
dp1 · · · dpn+1

×
∫ ⊕
Ip1×···×Ipn+1

e(x1, x2;u1)⊗ · · · ⊗e(xn, xn+1;un)dx1 . . . dxn+1,

for any q, p1, . . . , pn+1 ∈ [r] and u1, . . . , un ∈ U. It is then easy to check directly
that the mixed *-moments of the operators ℘p,q(u) in the state Ψ agree with the
corresponding mixed *-moments of the operators ℘(g, u), where g is the charac-
teristic function of Ip,q, respectively. This completes the proof. �

The combinatorics of mixed *-moments of matricially free creation operators
can be expressed in terms of noncrossing pair partitions adapted to stars and
labels. It is not hard to see that they also describe the combinatorics of the mixed
*-moments of the much more general family of operators ℘(f), where f = g⊗e(u),
in which matricially free creation operators are included if one takes characteristic
functions of rectangles as above. The main reason is that they encode two main
facts: blocks must corresponds to pairings of creation and annihilation operators
which have the same label, but the contribution of each partition depends on the
inner products.

Proposition 5.2. Let fk = gk⊗e(uk) and εk ∈ {1, ∗}, where k ∈ [m] and m = 2s,
be such that there exists a unique non-crossing pair partition π ∈ NC2

m adapted to
((ε1, u1) . . . , (εm, um)). Then

ϕ(℘ε1(f1) . . . ℘εm(fm)) =

∫
Γs

s∏
j=1

〈fr(j)(xj , xo(j)), fl(j)(xj , xo(j))〉dx0dx1 . . . dxs,

where Vj = {l(j), r(j)}, j = 1, . . . , s, are the blocks of π with l(j) < r(j), with x0

assigned to the imaginary block of π and 〈, ., .〉 is the canonical inner product in G.

Proof. Each pairing of a creation and annihilation operator produces a function k
of one argument in the operator M(k). Here, we just compute the inner products
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in G which appear in the definition of such k for all pairings, which gives

〈fr(j)(xj , xo(j)), fl(j)(xj , xo(j))〉 = gr(j)(xj , xo(j))gl(j)(xj , xo(j))

for each pairing, and then integrate the product over all the variables x0, . . . , xs,
which gives the desired formula. �

Proposition 5.3. Under the above assumptions, if gl(j) = gr(j) = χj for all
j ∈ [s], where χ1, . . . , χs are characteristic functions of some measurable subsets
of Γ1, then

ϕ(℘ε1(f1) . . . ℘εm(fm)) = V ol(π),

where V ol(π) is the volume of the region V (π) ⊆ Γs defined by x0, x1, . . . , xs for
which χj(xj , xo(j)) = 1, for all j = 1, . . . , s, with x0 assigned to the imaginary
block.

Proof. If we set the functions associated with the left and right legs of the block
πj to be equal to χk, then in the proof of Proposition 5.2 we have

gr(j)(xj , xo(j))gl(j)(xj , xo(j)) = χj(xj , xo(j)),

which gives a condition on two variables, xj and xo(j), from among s+ 1 variables
describing the s + 1-dimensional cube Γs. Each inner product in the formula of
Proposition 5.2 leads to a similar condition, which completes the proof. �

Example 5.4. Consider the mixed *-moment associated with the pair partition
π = {{1, 6}, {2, 3}, {4, 5}}, where it is natural to assume that f1 = f6, f2 = f3 and
f4 = f5. Then

ϕ(℘∗(f1)℘∗(f2)℘(f2)℘∗(f4)℘(f4)℘(f1))

=

∫
Γ3

‖f1(y, x)‖2‖f2(z, y)‖2‖f4(w, y)‖2 dwdzdydx.

In the case when fj = gj ⊗ e(uj) for j = 1, 2, 4 and the numerical valued functions
are the characteristic functions of the triangle ∆ = {(x, y) : x < y}, this integral
is equal to

V ol(π) =

∫ 1

0

dx

∫ x

0

dy

∫ y

0

dz

∫ y

0

dw =
1

12
.

Finally, let us return to the asymptotic *-distributions of Gaussian random
matrices with i.b.i.d. entries. We assume that we have r2 blocks for each r ∈ N.
Later we will go with r to infinity. Therefore, at this point it seems appropriate
to include r in the symbols denoting random matrices as well as limit operators.

Proposition 5.5. For any r ∈ N, let {Y (u, n, r) : u ∈ U} be a family of square
n×n independent complex Gaussian random matrices with i.b.i.d. entries for any
natural n and any u ∈ U. Then,

lim
n→∞

τ(n)(Y ε1(u1, n, r) . . . Y
εm(um, n, r)) = Ψ(ηε1(u1, r) . . . η

εm(um, r))

for any u1, . . . , um ∈ U and ε(1), . . . , ε(m) ∈ {1, ∗}, where

η(u, r) =
r∑

p,q=1

ζp,q(u, r)
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for any u ∈ U and the operators ζp,q(u, r) are discrete (generalized) matricial
circular operators corresponding to given r.

Proof. The proof of this result was given in [10]. �

The next step consists in taking the limit of the *-moments on the RHS as
r → ∞. We assume that dp = 1/r for any p and any r and, for simplicity, we
assume that the block covariances bp,q(u, r), defined for all p, q ∈ [r] and all u, r,
do not depend on u. From these block covariances we built a sequence of simple
functions

br(x, y) =
r∑

p,q=1

bp,q(u, r)χIp,Iq (x, y)

and assume that it converges to some g ∈ L∞(Γ1) as r → ∞. Then we compute
the limit of the mixed *-moments expressed as liner combinations of *-moments
of the type given by Lemma 5.1.

Theorem 5.6. Let {Y (u, n, r) : u ∈ U, r ∈ N} be a family of independent n × n
random matrices for any n ∈ N, such that

(1) each Y (u, n, r) consists of r2 blocks of equal size with i.b.i.d. complex
Gaussian entries,

(2) the sequence of simple functions (br) converges to g in L∞(Γ1) as r →∞.

Then

lim
r→∞

lim
n→∞

τ(n)(Y ε1(u1, n, r) . . . Y
εm(um, n, r)) = ϕ(ζε1(g, u1) . . . ζεm(g, um)),

where ζ(g, uj) = ℘(g, u′j) + ℘∗(gt, u′′j ), with gt(x, y) = g(y, x) and all labels u′j , u
′′
j ,

j ∈ [m], different, and where ϕ =
∫ ⊕
I
ϕ(γ)dγ.

Proof. The second limit (n →∞) was computed in Proposition 5.5. It is easy to
see that the moments obtained there, namely Ψ(ηε1(u1, r) . . . η

εm(um, r)), can be
written as linear combinations of mixed *-moments of creation and annihilation
operators of continuous type in the state ϕ, namely such as those given in Lemma
5.1, since

η(u, r) =
r∑

p,q=1

ζp,q(u, r) =
r∑
p,q

(℘p,q(u
′, r) + ℘∗q,p(u

′′, r)),

where the matricial creation and annihilation operators are assumed to have co-
variances independent of u, but otherwise arbitrary nonnegative numbers, i.e.
bp,q(u) = bp,q for any u. When we express the RHS in terms of operators of the
form ℘(gp,q, u) and their adjoints, where gp,q = bp,qχIp×Iq for any p, q, we can
write the above sum as

ζ(gr, u) = ℘(gr, u
′) + ℘∗(gtr, u

′′),

where gr(x, y) =
∑r
p,q=1 gp,q and gtr stands for the transpose of gr. Now, if (gr)

converges to g in L∞(Γ1), then, by Definition 3.3 and Proposition 5.2, the mixed *-
moments of ℘(gr, u) in the state ϕ converge to the corresponding mixed *-moments
of ℘(g, u), which entails convergence of the mixed *-moments of ζ(gr, u) in the state
ϕ to the mixed *-moments of ζ(g, u). This completes the proof. �
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6. Triangular Operator and Labeled Ordered Rooted Trees

Let us apply Theorem 5.6 to independent strictly upper triangular Gaussian
random matrices, whose limits are free triangular operators [4]. We express the
limit *-moments of such matrices in terms of operators ζ(u) = ζ(χ∆, u) where χ∆

is the characteristic function of the triangle ∆. Our result gives a new Hilbert
space realization of the limit *-moments, equivalent to the von Neumann algebra
approach of Dykema and Haagerup in [4], where the triangular operator T was
introduced. Note that our approach to the combinatorics of its *-moments is also
different than the algorithm in [4, Lemma 2.4].

By a family of independent strictly upper triangular Gaussian random matrices
we will understand a family of complex n × n matrices Y (u, n), where u ∈ U,
whose entries above the main diagonal form a family of complex Gaussian random
variables whose real and imaginary parts form a family of n(n− 1) i.i.d. Gaussian
random variables for each u (also independent for different u ∈ U), each having
mean zero and variance 1/2n.

Theorem 6.1. Let {Y (u, n) : u ∈ U} be a family of independent strictly upper
triangular Gaussian random matrices for any n ∈ N. Then

lim
n→∞

τ(n)(Y ε1(u1, n) . . . Y εm(um, n)) = ϕ(ζε1(u1) . . . ζεm(um))

for any ε1, . . . , εm ∈ {1, ∗} and u1, . . . , um ∈ U}, where ζ(uj) = ζ(χ∆, uj), j ∈ [m],

with ∆ = {(x, y) ∈ Γ1 : x < y} and ϕ =
∫ ⊕
I
ϕ(γ)dγ.

Proof. We know from [4] that the limits of the mixed *-moments of independent
strictly upper triangular Gaussian random matrices under τ(n) as n → ∞ exist
and are, by definition, equal to the mixed *-moments of free triangular operators
T (u), namely

lim
n→∞

τ(n)(Y ε1(u1, n) · · ·Y εm(um, n)) = ϕ(T ε1(u1) · · ·T εm(um))

for any ε1, . . . , εm ∈ {1, ∗} and any u1, . . . , um ∈ U}. At the same time, it can
be justified that the above limits are equal to the limit moments of Theorem 5.6,
where matrices {Y (u, n, r) : u ∈ U} are n × n independent block strictly upper
triangular matrices with r2 blocks for all natural n and r, the non-vanishing blocks
being Sp,q(u, n, r) for p < q. For instance, an estimate in terms of Schatten p-norms

‖A‖p = p
√

tr(n)(|A|p) for p ≥ 1, where tr(n) is the normalized trace, can be used.
It holds that

|tr(n)(A)| ≤‖A‖1≤‖A‖p≤‖A‖
for any p ≥ 1. Therefore, let Yj = Y εj (uj , n) and Y ′j = Y εj (uj , n, r) for j ∈ [m]
and any n, r. Then, applying the above inequalities to the trace

tr(n)(Y1 . . . Ym − Y ′1 . . . Y ′m) =
m∑
j=1

tr(n)(Y ′1 . . . Y
′
j−1(Yj − Y ′j )Yj+1 . . . Ym),

and using repeatedly the Hölder inequality ‖ AB ‖s≤‖ A ‖p‖ B ‖q, where s−1 =
p−1 + q−1, we obtain an upper bound for the absolute value of this trace of the
form

(m+ 1) · max
1≤j≤m

‖Yj − Y ′j ‖m+1 · ( max
1≤k≤m

{‖Yk‖m, ‖Y ′k‖m})m−1.
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Therefore, for large n there exists R such that if r > R, then the difference
between the mixed *-moments of primed and unprimed matrices can be made
arbitrarily small since the norms ‖Yj − Y ′j ‖m+1 can be made arbitrarily small
for large n and large r > R. Therefore, we can use Theorem 5.6 to express
the limit mixed *-moments of the strictly upper triangular matrices in terms of
the operators ζ(ξ∆, u), respectively, where ξ∆ is the characteristic function of the
triangle ∆ = {(x, y) ∈ Γ1 : x < y}. In other words, we can identify the triangular
operators T (u) with ζ(ξ∆, u), u ∈ U. This completes the proof. �

In order to give these *-moments in a more explicit form, let us assign continuous
colors to blocks of π ∈ NC2((ε1, u1), . . . , (εm, um)), where m = 2s, and analyze
relation between these colors. By NC2((ε1, u1), . . . , (εm, um)) we denote the set of
noncrossing pair partitions of [m], such that ui = uj and εi 6= εj whenever {i, j}
is a block. We should remember that stars refer here to operators of the form

ζ(f, u) = ℘(f, u′) + ℘∗(f t, u′′),

where f = χ∆. For simplicity, let us write ζ(f, u) = ζ(u), ℘(f, u′) = ℘(u′) and
℘(f t, u′′) = ℘(u′′). Each pairing that gives a nonzero contribution must be of the
form (℘∗(u′), ℘(u′)) or (℘∗(u′′), ℘(u′′)). The first one is obtained when ζ∗(u) is
associated with the left leg of a block and ζ(u) is associated with the right leg,
whereas in the second one the stars are interchanged. In any case, only one leg
of a block can be marked with a star. We do not star the legs of the imaginary
block.

Definition 6.2. Let Vj be a block of π ∈ NC2((ε1, u1), . . . , (εm, um)) and let Vo(j)
be its nearest outer block. We distinguish four types of blocks (see Fig. 2):

(1) type 1: the right leg of Vj and the left leg of Vo(j) are starred,
(2) type 2: the left leg of Vj and the right leg of Vo(j) are starred,
(3) type 3: the left legs of both Vj and Vo(j) are starred,
(4) type 4: the right legs of both Vj and Vo(j) are starred.

Remark 6.3. Our combinatorics is now based on coloring the blocks of noncrossing
pair partitions with numbers from the interval [0, 1] and finding relations betwen
them.

(1) Let us color the blocks of π ∈ NC2((ε1, u1), . . . , (εm, um)), where m =
2s, and the imaginary block with s + 1 continuous colors form [0, 1]:
x1, . . . , xs+1, assigned to V1, . . . , Vs+1, respectively. It is convenient to
number those blocks and colors starting from the right, as shown in Fig. 4.

(2) Now, using these inequalities, we can associate a region V (π) ⊂ Γ2 to each
π. Namely, let

V (π) = {x ∈ Γs : xj < xo(j) if Vj ∈ B′(π) ∧ xj > xo(j) if Vj ∈ B′′(π)},

where B′(π) and B′′(π) stand for blocks of π whose left legs are starred
and unstarred, respectively.
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* *
Type 1

* *
Type 2

* *
Type 3

* *
Type 4

Figure 2. Four types of pairs (V, o(V )), where V is a block and
o(V ) is the nearest outer block of V , which depend on which legs
are starred.

Corollary 6.4. The non-vanishing mixed *-moments of the free triangular oper-
ators in the state ϕ take the form

ϕ(T ε1(u1) . . . T εm(um)) =
∑

π∈NC2((ε1,u1),...,(εm,um))

V ol(π),

where m = 2s and V ol(π) is the volume of the region V (π).

Proof. We know that we can replace T (uj) by ζ(uj). Now, without loss of gen-
erality, we can assume that uj = u for all j since the general case just gives the
additional condition on π that ui = uj whenever {i, j} is a block. We will omit

u and write ℘1 = ℘(u′) and ℘2 = ℘(u′′) and replace NC2((ε1, u), . . . , (εm, u)) by
NC2(ε1, . . . , εm). We have

ϕ(T ε1 . . . T εm) =
∑

π∈NC2(ε1,...,εm)

ϕ
(
℘
ε1(π)
j1(π) . . . ℘

εm(π)
jm(π)

)
,

where π ‘chooses’ whether to take the pairing (℘∗1, ℘1) or (℘∗2, ℘2), namely

℘
εi(π)
ji(π) =


℘1 if εi = 1 and i ∈ R(π)
℘2 if εi = ∗ and i ∈ R(π)
℘∗2 if εi = 1 and i ∈ L(π)
℘∗1 if εi = ∗ and i ∈ L(π)

,

where R(π) and L(π) stand for the right and left legs of π, respectively. If j > 1,
then we choose the color xj assigned to block Vj to be the first coordinate of
χ∆ associated with the pairing of type (℘∗1, ℘1), or the first coordinate of χt∆
associated with the pairing of type (℘∗2, ℘2), depending on whether the left leg of
Vj is starred or unstarred, respectively. Since we have f = χ∆ in each operator ζ
that appears in the moment ϕ(ζε1 . . . ζεm), let us observe that if the left leg of Vj
is starred, then xj < xo(j) is obtained from Remark 3.7 on the form of M(k), with

k(xo(j)) =
∫
xj<xo(j)

dxj . In turn, if the left leg of Vj is unstarred, then instead

of χ∆, we take its transpose in the corresponding pairing of type (℘∗2, ℘2) which
amounts to taking M(k) with k(xo(j)) =

∫
xj>xo(j)

dxj (since uj = uo(j), by the

adaptedness assumption on π). This completes the proof. �
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Figure 3. Ordered rooted trees on 4 vertices

Remark 6.5. Let us make some remarks which will be useful in establishing a bi-
jective proof of the formula for the moments ϕ((T ∗T )n) for the triangular operator
T .

(1) There is an obvious bijection between NC2
2n and the set of associated

extended pair-partitions of [0, 2n + 1], for which we will use the same
notation and we will identify π ∈ NC2

2n with its extension π∪{0, 2n+ 1}.
(2) For any integer n, let On be the set of ordered rooted trees on the set of

n+ 1 vertices (see Example 6.6). There is a natural bijection

γ : On → NC2
2n

given by the rule: vertex v is a child of vertex w if and only if γ(w) is
the nearest outer block of γ(v), with the root of T corresponding to the
imaginary block of π = γ(T ).

(3) Suppose now that to each vertex of On we assign a label from the set
[n+ 1]. The bijection γ leads to a natural bijection

γ′ : Ln → CNC2
2n,

between the set of labeled ordered rooted trees on n+1 vertices, Ln, where
the vertices are labeled by different numbers from [n+1], and colored non-
crossing pair-partitions of the set [0, 2n+ 1], denoted CNC2

2n, extended by
the (colored) imaginary block (we identify π with π ∪ {0, 2n+ 1}), where
blocks (including the imaginary block) are colored by different numbers
from the set [n+ 1].

(4) It is well known that the number of labeled ordered rooted trees on n+ 1
vertices is given by

|Ln| = (n+ 1)!Cn =
(2n)!

n!
,

where Cn = 1
n+1

(
2n
n

)
is the nth Catalan number.

Example 6.6. The set O4 of ordered rooted trees on 4 vertices consists of the trees
given in Fig. 3, where the root is distinguished by a larger circle. In ordered trees,
the children of any vertex are ordered and that is why T3 and T4 are inequivalent
since different children of the roots have off-springs. In turn, NC2

6 consists of the
non-crossing pair partitions shown in Fig. 4, where we also draw the imaginary
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π R(π) S(π) V ol(π)

* * *

π1 :

x1

x2

x3

x4

x2 < x1

x2 < x3

x4 < x3

x4 < x2 < x3 < x1

x2 < x4 < x3 < x1

x2 < x4 < x1 < x3

x4 < x2 < x1 < x3

x2 < x1 < x4 < x3

5
24

* * *

π2 :

x1

x2

x3x4

x2 < x1

x2 < x4

x2 < x3

x2 < x3 < x4 < x1

x2 < x4 < x3 < x1

x2 < x4 < x1 < x3

x2 < x3 < x1 < x4

x2 < x1 < x3 < x4

x2 < x1 < x4 < x3

6
24

* * *

π3 :

x1

x2x3

x4

x2 < x1

x3 < x4

x3 < x1

x2 < x3 < x4 < x1

x3 < x2 < x4 < x1

x3 < x4 < x2 < x1

x3 < x2 < x1 < x4

x2 < x3 < x1 < x4

5
24

* * *

π4 :

x1

x2

x3

x4 x2 < x1

x4 < x1

x2 < x3

x4 < x2 < x3 < x1

x2 < x4 < x3 < x1

x2 < x3 < x4 < x1

x4 < x2 < x1 < x3

x2 < x4 < x1 < x3

5
24

* * *

π5 :

x1

x2x3x4

x2 < x1

x3 < x1

x4 < x1

x4 < x3 < x2 < x1

x3 < x4 < x2 < x1

x4 < x2 < x3 < x1

x2 < x4 < x3 < x1

x3 < x2 < x4 < x1

x2 < x3 < x4 < x1

6
24

Figure 4. Noncrossing pair partitions of [6], each extended by
an imaginary block, corresponding to ϕ((T ∗T )3). Starred legs
correspond to T ∗. We assign continuous colors xj to blocks, where
j ∈ [4]. The corresponding regions R(π) inside the cube [0, 1]4 are
given by three inequalities for colors of the blocks of π and have
volumes V ol(π). Each region consists of simplices S(π) defined
by linearly ordered colors. Altogether we get 27 = 33 simplices.
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Figure 5. The set A4 of alternating ordered rooted trees of type
I. This set is in bijection with the set of noncrossing colored pair
partitions with totally ordered colors given in Fig. 4, or with the
corresponding simplices. The alternating ordered rooted trees are
listed in the same order as the corresponding simplices in Fig. 4.

blocks which can be identified with the roots of the corresponding trees. The
natural bijection γ : O4 → NC2

6 is given by γ(Tk) = πk. In fact, that is why there
are 5 trees of this type since C3 = 5 and Catalan numbers count ordered rooted
trees due to the bijection γ. In turn, there are 6!/3! = 120 different labeled ordered
rooted trees on 4 vertices if we label them by the 4-element set in an arbitrary
way.

Definition 6.7. Let (v1, v2, v3, v4, . . .) be a path in an labeled ordered rooted tree
T on n+1 vertices, which means that vj is a son of vj−1, and let (x1, x2, x3, x4, . . .)
be the corresponding sequence of labels. Then T is called alternating if this se-
quence satisfies one of the inequalities,

x1 > x2 < x3 > x4 . . . , or x1 < x2 > x3 < x4 . . . ,
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i.e. the differences of labels corresponding to the neighboring vertices alternate
in sign. These two types of conditions split the set of alternating ordered rooted
trees on n+1 vertices into two subsets of the same cardinalities, which we will call
of type I and of type II, respectively. Denote by An the set of alternating ordered
rooted trees on n+ 1 vertices of type I.

Remark 6.8. There is a nice enumeration result of Chauve, Dulucq and Rechnitzer
[2] which says that

|An| = nn

for any natural n. Recall that An stands for the set of alternating ordered rooted
trees of type I on n+1 vertices. Thus, the number of all alternating ordered rooted
trees is 2nn. Note also that a typical formula refers to trees on n vertices.

Example 6.9. Among the labeled ordered rooted trees on 4 vertices, there are 2×
33 = 54 alternating ones. In this example, each type contains 33 = 27 alternating
ordered rooted trees. The complete set A4 of all alternating ordered rooted trees
of type I is given in Figure 5. In view of the above bijection results, the cardinality
of all non-crossing pair partitions of the 6-element set with alternating colorings is
also 54 and there are 27 partitions in which each block of odd depth has a smaller
color than its nearest outer block (equivalently, the color of the imaginary block,
which is assumed to have zero depth, is greater than the colors of all blocks for
which the imaginary block is the nearest outer block).

Corollary 6.10. The moments of T ∗T , where T is the triangular operator, are

Mn = ϕ((T ∗T )n) =
nn

(n+ 1)!

for any n ∈ N.

Proof. Let εj = ∗ if j is odd and εj = 1 if j is even. In this special case, it is easy to

see that NC2(ε1, . . . , ε2n) ∼= NC2
2n. Observe that in the case of alternating starred

and unstarred legs there can be no pairs (V, o(V )) of type 3 and 4 since otherwise
there would be unequal numbers of starred and unstarred legs between the right
leg of V and the left leg of o(V ), which would mean that there must be a block
between V and o(V ), which is a contradiction. Therefore, blocks with starred left
and right legs must alternate as we take a sequence of blocks (Vi1 , . . . , Vip), where
each block is the nearest outer block of its successor. By Corollary 6.4, we need
to compute V ol(π) for each π ∈ NC2

2n. Each of the corresponding regions R(π)
is defined by a set of n inequalities for colors x1, . . . , xn+1. Irrespective of what
symbols represent these colors, in order to satisfy these inequalities, we have to
find the number of total orderings of the form

xj1 < xj2 < . . . < xjn+1

which satisfy the given inequalities. The number of these total orderings is equal
to the number of n + 1-simplices, each of volume 1/(n + 1)!, into which R(π)
decomposes. The key observation is that in order to compute the number of these
total orderings corresponding to π (under conditions given by n inequalities which
express orders between the colors of each V and o(V )) it suffices to count in how
many ways we can label blocks of π with natural numbers from [n+1] in such a way
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that orders between these numbers alternate as we go down each sequence of type
(Vi1 , . . . , Vip). More specifically, to colors xj1 , xj2 , . . . , xjn+1 in the total ordering
(defining a simplex) given above we assign numbers n + 1, n, . . . , 1, respectively,
thus we assign number 1 to the biggest color and the number n+1 - to the smallest
one. Now, if we use the bijection between labeled ordered rooted trees and colored
noncrossing pair partitions, it suffices to enumerate all alternating ordered rooted
trees on n+ 1 vertices. The enumeration result of [2] mentioned above completes
the proof. �
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that orders between these numbers alternate as we go down each sequence of type 
(Vi1 ; : : : ; Vip )More specically, to colors x

j1
 ; x

j2
 ; : : : ; x

jn+1
 in the total ordering (dening a 

simplex) given above we assign numbers n + 1; n; : : : ; 1, respectively, thus we assign 
number 1 to the biggest color and the number n+1 - to the smallest one. Now, if 
we use the bijection between labeled ordered rooted trees and colored noncrossing 
pair partitions, it suces to enumerate all alternating ordered rooted trees on n + 1 
vertices. The enumeration result of [2] mentioned above completes the proof. �
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