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Abstract. In this paper we prove L
p-boundedness properties of spectral

multipliers associated with Dunkl laplacian in the Zd
2
Dunkl setting.

1. Introduction

A fundamental object in harmonic analysis is the multiplier operator. Mul-
tipliers related to numerous classic kinds of orthogonal expansions were widely
investigated. In particular, Stempak and Trebels (cf. [14]) studied multipliers
of non-Laplace type in a one-dimensional Laguerre setting. Some earlier results
concerning multiplier operators of Laplace type for discrete and continuous orthog-
onal expansions can be found in [3, 6, 10, 12] among others. A general treatment
of Laplace type multipliers in a context of symmetric diffusion semigroups can
be found in Stein’s monograph (cf. [13]). In this paper, we focus on the Dunkl
multiplier operator Pm which is defined, for a suitable function f , by

Pmf(x) = Fκ(mFκf)(−x), x ∈ R
d,

where m is a bounded measurable function and Fκ denotes the Dunkl transform
(see the next section).

Consider the reflection group G generated by σj , j = 1, ..., d, the reflection with
respect to the hyperplane perpendicular to ej, the j-th coordinate vector, that is
to say for every x = (x1, ..., xd) ∈ R

d

σj(x) = x− 2
< x, ej >

|ej |2
ej ,

where e1, ..., ed is the standard basis of Rd, < ., . > is the usual inner product on
Rd × Rd and |.| is the associated norm.

The finite reflection group G is isomorphic to Zd
2 with the associated measure

h2
κ(x) dx given by

hκ(x) =

d∏

j=1

|xj |κj =

d∏

j=1

hκj (xj), (1.1)
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where κ1, ..., κd are nonnegative real numbers (let us note that hκ is homogeneous

of degree γκ =
∑d

j=1 κj).
Associated with these objects, the Dunkl differential-difference operators T κ

j ,

j = 1, ..., d, are given by (cf.[7])

T κ
j f(x) = ∂jf(x) + κj

f(x)− f(σj(x))

xj
.

The Dunkl Laplacian is defined by ∆κ =

d∑

j=1

(
T κ
j

)2
, or more explicitly by

∆κf(x) =

d∑

j=1

(∂2f(x)

∂2xj
+

2κj

x

∂f(x)

∂xj
− κj

f(x)− f(σj(x))

x2
j

)
.

Following Stein (cf. [13]), we say that m is a multiplier of Laplace transform type
when

m(y) = |y|2
∫ ∞

0

e−t|y|2φ(t)dt, y ∈ R
d, (1.2)

where φ is a bounded measurable function on R+.
The aim of this paper is to prove the following theorem, where we denote by

Lp(Rd, h2
κ), 1 ≤ p ≤ +∞, the space of measurable functions on Rd such that

‖f‖p,κ =
( ∫

Rd

|f(y)|ph2
κ(y)dy

) 1
p

< +∞ if 1 ≤ p < +∞,

‖f‖∞,κ = ess sup
y∈Rd

|f(y)| < +∞ otherwise.

Theorem 1.1. Assume that m is of Laplace transform type. Then, the Dunkl
multiplier Pm is bounded from Lp(Rd, h2

κ) into itself, for every 1 < p < +∞, and
from L1(Rd, h2

κ) into L1,∞(Rd, h2
κ).

In order to prove Theorem 1.1, we investigate how to define the multiplier op-
erator Pm in terms of its kernel, as a limit of truncated integrals more precisely,
we represent Pm as a principal value integral operator when it acts on the space
C∞
c (Rd) of the C∞ functions with compact support in Rd (see Proposition 4.2).

Then, after proving Lp- boundedness properties for the maximal operator associ-
ated with the principal value integral operator (see Proposition 4.3), we extend
the Dunkl multiplier Pm to Lp(Rd, h2

κ), 1 ≤ p < +∞, as a principal value integral
operator that is bounded from Lp(Rd, h2

κ) into itself, when 1 < p < ∞, and from
L1(Rd, h2

κ) into L1,∞(Rd, h2
κ) (see Proposition 4.4).

Given an initial distribution f ∈ Cb(Rd), there is a function

u ∈ C2(Rd×]0,+∞[) ∩ Cb(Rd × [0,+∞[)

satisfying {
∆κu(x, t) = ∂tu(x, t), (x, t) ∈ Rd×]0,+∞[;
u(., 0) = f.
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For smooth and rapidly decreasing initial data f an explicit solution is easy to
obtain, it involves the generalized heat kernel

Γκ
t (x, y) =

c−1
κ

(2t)γκ+
d
2

e−
(|x|2+|y|2)

4t Eκ(
x√
2t
,

y√
2t
),

where Eκ denotes the Dunkl kernel (see the next section) and cκ is the Mehta type
constant

c−1
κ =

∫

Rd

e−
|x|2

2 h2
κ(x)dx =

d∏

j=1

c−1
κj

.

The Dunkl type heat kernel satisfies the following properties

Γκ
t (x, y) = c−2

κ

∫

Rd

e−t|ξ|2Eκ(ix, ξ)Eκ(−iy, ξ)h2
κ(ξ)dξ (1.3)

∫

Rd

Γκ
t (x, y)h

2
κ(y)dy = 1 (1.4)

Γκ
t (x, y) ≤

c−1
κ

(2t)γκ+d/2
e−

(|x|−|y|)2

4t . (1.5)

The Dunkl type heat kernel allows us to define a generalized heat operator (or
Dunkl type heat operator). More precisely for every f ∈ Lp(Rd, h2

κ), with 1 ≤ p ≤
∞ and for every t ≥ 0, we set

Hκ
t f(x) =

{ ∫
Rd f(y)Γ

κ
t (x, y)h

2
κ(y)dy, t > 0;

f, t = 0.

For every p satisfying 1 ≤ p ≤ ∞, the family {Hκ
t f}t≥0 is a symmetric diffusion

semigroup (cf. [5]) in the sense of Stein on Lp(Rd, h2
κ). Moreover, the Dunkl

multiplier Pm is actually a spectral multiplier associated with (−∆κ). Then, by
[13] Pm is bounded from Lp(Rd, h2

κ) into itself, for every 1 < p < ∞. In Theorem
1.1, we prove as a new result that Pm defines a bounded operator from L1(Rd, h2

κ)
into L1,∞(Rd, h2

κ). Moreover, in Proposition 4.4 we establish a representation of
the operator Pm as a principal value integral operator in Lp(Rd, h2

κ), p ≥ 1.
As an application of Theorem 1.1, we can show Lp-boundedness properties for

the imaginary powers of (−∆κ). We define, for every β ∈ R, the function

φβ(t) =
t−iβ

Γ(1 − iβ)
, t ∈ R+.

A formal computation based on the formula

λ−iγ =
1

Γ(iγ)

∫ ∞

0

e−tγtiγ−1dt, λ > 0,

gives

mβ(y) = |y|2
∫ ∞

0

e−t|y|2φβ(t)dt = |y|2iβ , y ∈ R
d, β ∈ R.

For every β ∈ R, the iβ- power ∆iβ
κ of ∆κ is defined by (−∆κ)

iβ = Pmβ
. From

Theorem 1.1, we deduce the following result.

Corollary 1.2. Let β ∈ R. Then, the operator (−∆iβ
κ ) is bounded from Lp(Rd, h2

κ)
into itself, for every 1 < p < +∞ and from L1(Rd, h2

κ) into L1,∞(Rd, h2
κ).
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This paper is organized as follows. In section 2, we collect some definitions and
results related to Dunkl’s analysis. In section 3, we establish some estimates for
the Dunkl heat kernel and its derivatives. Finally, we prove the main result of this
paper.

Throughout this paper we will always denote by C a suitable positive constant
that can change from line to the other one. Also, we will use repeatedly without
saying it that, for every k ∈ N, sup

z>0
zke−z < ∞.

2. Preliminaries

This section is devoted to the preliminaries and background. We only focus on
the aspects of the Dunkl theory which will be relevant for the sequel. For a large
survey about this theory, the reader may especially consult [7, 8, 4, 11].

First of all we recall that for every f ∈ S(Rd), g ∈ C1
b (R

d), one then has the
following property of integration by parts (cf. [9])

∫

Rd

T κ
j f(x)g(x)h

2
κ(x)dx = −

∫

Rd

f(x)T κ
j g(x)h

2
κ(x)dx. (2.1)

The operators ∂j and T κ
j are intertwined by a linear isomorphism Vκ of

⊕
n≥0 Pn

determined uniquely by

Vκ(Pn) = Pn, Vκ(1) = 1, T κ
j Vκ = Vκ∂j , j = 1, ..., d.

with Pn the subspace of homogeneous polynomials of degree n in d variables.
An explicit formula of Vκ is not known in general. However, in our setting, the

operator Vκ is given according to [16] by the following integral representation

Vκf(x) =

∫

[−1,1]d
f(x1t1, ..., xdtd)

d∏

j=1

Mκj(1 + tj)(1− t2j)
κj−1dt,

with Mκj =
Γ(κj+

1
2 )√

πΓ(κj)
.

For every y ∈ Cd, the simultaneous eigenfunction problem

{
T κ
j u(x, y) = yju(x, y), 1 ≤ j ≤ d;

u(0, y) = 1.

has a unique solution x → Eκ(x, y), which is given by

Eκ(λ, x) = Vκ(e
<λ,.>)(x), x ∈ R

d.

Furthermore x 7→ Eκ(x, y) extends to a holomorphic function on Cd and it satisfies
the following basic properties: Eκ(x, y) = Eκ(y, x) for x, y ∈ Cd, |Eκ(ix, y)| ≤ 1
for x, y ∈ Rd and Eκ(λx, y) = Eκ(x, λy) for x, y ∈ Cd and λ ∈ C.

Considering the definition of Eκ together with the explicit formula for Vκ gives
us

Eκ(x, y) =

d∏

j=1

Eκj (xj , yj). (2.2)
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The Dunkl kernelEκ is of particular interest as it gives rise to an integral transform
which is taken with respect to the measure h2

κ(x)dx. More precisely, for f ∈
L1(Rd, h2

κ), the Dunkl transform of f , denoted by Fκf , is defined by

Fκf(x) = c−1
κ

∫

Rd

f(y)Eκ(x,−iy)h2
κ(y)dy, x ∈ R

d.

Let us point out that the Dunkl transform coincides with the Euclidean Fourier
transform when κ1 = ... = κd = 0 and that it is more or less a Hankel transform
when d = 1.

We list some known properties of the Dunkl transform:
(i) The Dunkl transform is a topological automorphism of the Schwartz space

S(Rd).
(ii) (Plancherel Theorem) The Dunkl transform extends to an isometric auto-

morphism of L2(Rd, h2
κ).

(iii) (Inversion formula) For every f ∈ S(Rd), and more generally for every
f ∈ L1(Rd, h2

κ) such that Fκf ∈ L1(Rd, h2
κ), we have

f(x) = F2
κf(−x), x ∈ R

d.

(iv) A formula connecting Dunkl transform and Dunkl Laplacian is the following

Fκ(∆κf)(x) = −|x|2Fκf(x), x ∈ R
d, f ∈ C∞

c (Rd). (2.3)

3. Some Estimates Involving Dunkl Kernel

We will establish in this section three technical lemmas. In order to do that, we
first recall some facts related to Dunkl’s kernel and the confluent hypergeometric
function.

In the one dimensional case, Eκ can be expressed in terms of Bessel functions
(cf. [15]). Specifically

Eκ(x, y) = jκ− 1
2
(ixy) +

xy

2κ+ 1
jκ+ 1

2
(ixy),

where

jα(z) = 2αΓ(α+ 1)
Jα(z)

zα
= Γ(α+ 1)

∑

n≥0

(−1)n
(z/2)2n

n!Γ(n+ α+ 1)
,

are normalized Bessel functions.
The integral representation of the Dunkl kernel Eκ is given by

Eκ(z, ω) =
Γ(κ+ 1/2)

Γ(1/2)Γ(κ)

∫ 1

−1

etzω(1− t)κ−1(1 + t)κdt = ezω.1F1(κ, 2κ+ 1,−2zω).

(3.1)

where 1F1 is the confluent hypergeometric function defined by (cf. [1])

1F1(a, b, z) =

∞∑

n=0

(a)n
(b)n

zn

n!
, b /∈ {0,−1,−2, ...}.

The function 1F1 has well-known asymptotic expansions. They are of the form

1F1(a, b, z) =
Γ(b)

Γ(a)
ezza−b

(
1 +

(b − a)(1− a)

z
+O(

1

|z|2 )
)
, ℜz > 0, (3.2)
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1F1(a, b, z) =
Γ(b)

Γ(b− a)
(−z)−a

(
1 +

a(1 + a− b)

z
+O(

1

|z|2 )
)
, ℜz < 0. (3.3)

Specializing, we thus obtain

Eκ(z, ω) =
Γ(2κ+ 1)

2κΓ(κ+ 1)
ezω(zω)−κ

(
1− κ2

2zω
+O(

1

|zω|2 )
)
, zω → +∞, (3.4)

Eκ(z, ω) =
Γ(2κ+ 1)

2κ+1Γ(κ)
e−zω(−zω)−κ−1

(
1− 1− κ2

2zω
+O(

1

|zω|2 )
)
, zω → −∞ (3.5)

Also, the next properties of the Dunkl kernel and the confluent hypergeometric
function are very useful in the sequel

|∂α
xEκ(x, y)| ≤ |y|αEκ(x, y), x ∈ R, y ∈ C, α ∈ Z+. (3.6)

dm

dzm
1F1(a, b, z) =

(a)m
(b)m

1F1(a+m, b+m, z), m > 0. (3.7)

Now, we establish some estimates involving Dunkl kernel that we will needed in
the following section. In the sequel we assume that K = K1 ∪K2, where K1 (resp.
K2) is a compact subset of ]0,+∞[ (resp. ] − ∞, 0[) and we denote by Wt the
classical heat kernel given by

Wt(x, y) =
e−|x−y|2/4t

(4πt)d/2
, x, y ∈ R

d, t > 0.

Lemma 3.1. Let κ > 0. Then
(i)

Γκ
t (u, v) ≤ C

{
t−κ− 1

2 e−(u2+v2)/4t, |uv| ≤ t;

|uv|−κ e−(|u|−|v|)2/4t
√
t

, |uv| > t.

(ii) Γκ
t (u, v) ≤ Ct−κ− 1

2 e−v2/20t, t > 0 and 2|u| < |v| < ∞.

(iii)
∣∣∣Γκ

t (u, v)− (uv)−κWt(u, v)
∣∣∣ ≤ C

√
t(uv)−κ−1e−(u−v)2/4t, uv > t > 0.

Proof. Due to (3.4), (3.5) and |Eκ(
u√
2t
, v√

2t
)| ≤ C if |uv|

2t < 1, we can deduce (i).

Suppose now that 2|u| < |v| < ∞ and t > 0. If |uv| ≤ t, (i) implies (ii). Also if
|uv| > t, by using (i) we can write

Γκ
t (u, v) ≤ C|uv|−κ−1/2

√
|uv|
t

e−v2/16t ≤ Ct−κ− 1
2 e−v2/20t

and (ii) is shown. If uv > t, then using (3.4) and the duplication formula we
obtain

Γκ
t (u, v) = (uv)−κ

Wt(u, v)
(
1 +O(

t

uv
)
)
.

Thus, (iii) is proved. �

Lemma 3.2. Let κ > 0 and u, v ∈ K. Then
(i)

∣∣∣ ∂
∂u

Γκ
t (u, v)

∣∣∣ ≤ C

{
t−κ− 3

2 , t ≥ 1;
1
t e

− (|u|−|v|)2

8t , 0 < t < 1.

(ii)
∣∣∣ ∂2

∂u2Γ
κ
t (u, v)

∣∣∣ ≤ Ct−κ−3/2, t ≥ 1.
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(iii)
∣∣∣ ∂2

∂u2Γ
κ
t (u, v)− (uv)−κ ∂2

∂u2Wt(u, v)
∣∣∣ ≤ C e−(u−v)2/8t

t , uv > 0 and 0 < t < 1.

(iv)
∣∣∣ ∂2

∂u2Γ
κ
t (u, v)

∣∣∣ ≤ C e−(u+v)2/8t

t , uv < 0 and 0 < t < 1.

Proof. Let u, v ∈ R and t > 0, due to (3.6) we can write

∣∣∣ ∂
∂u

Γκ
t (u, v)

∣∣∣ ≤ c−1
κ

(2t)κ+
1
2

( |u|
2t

+
|v|
2t

)
Eκ(

u√
2t
,

v√
2t
)e−

(u2+v2)
4t .

According to (3.4), (3.5) and |Eκ(
u√
2t
, v√

2t
)| ≤ C if |uv|

2t < 1 we deduce (i).

Due to (3.1) and (3.7), we are lead after simplifications to ∂2

∂u2Γ
κ
t (u, v)

=

√
2π

cκ(2t)κ
e−

uv
2t

{
− v2

4t2
e

uv
2t .1F1(κ+ 2, 2κ+ 3,−uv

t
)Wt(u, v)

− 2κv

t(κ+ 1)
e

uv
2t .1F1(κ+ 1, 2κ+ 2,−uv

t
)
∂

∂u
Wt(u, v)+Eκ(

u√
2t
,

v√
2t
)
∂2

∂u2
Wt(u, v)

}
,

to show (ii), we use that Eκ(0, v) = 1F1(a, b, 0) = 1. In order to establish (iii)
we estimate three different parts on the last equation using (3.3) and (3.4).

Thanks to (3.2), (3.5) and (3.7), we obtain, for 0 < t ≤ 1, −uv > t and u, v ∈ K,

∣∣∣ ∂
2

∂u2
Γκ
t (u, v)

∣∣∣ ≤ C
(
t
∂2

∂u2
Wt(u,−v) +

∂

∂u
Wt(u,−v)

)
≤ C

e−(u+v)2/8t

t
.

Then (iv) is proved. �

Lemma 3.3. Let κ > 0. Then
(i)

∣∣∣ ∂
∂t

Γκ
t (u, v)

∣∣∣ ≤ C





e−(u2+v2)/8t

tκ+3
2

, |uv| ≤ t;

(uv)−κ e−(u−v)2/8t

t3/2
, uv > t;

(−uv)−κ−1 e−
(u+v)2

8t√
t

, −uv > t.

(ii)
∣∣∣ ∂
∂t

Γκ
t (u, v)

∣∣∣ ≤ C
e−v2/40t

tκ+
3
2

, t > 0 and 0 < 2|u| < |v| < ∞.

(iii)
∣∣∣ ∂
∂t

Γκ
t (u, v)− (uv)−κ ∂

∂t
Wt(u, v)

∣∣∣ ≤ C(uv)−κ−1 e
−(u−v)2/8t

√
t

, uv > t.

Proof. Due to (3.7) and using that

a.1F1(a+ 1, b, z) = a.1F1(a, b, z) +
az

b
.1F1(a+ 1, b+ 1, z),

we can write

∂

∂t
Γκ
t (u, v) = c−1

κ e−
(u−v)2

4t

{
(
(u− v)2

(2t)κ+5/2
− 1

(2t)κ+3/2
)1F1(κ, 2κ+ 1,−uv

t
)

− 2κ

(2t)κ+3/2
.1F1(κ+ 1, 2κ+ 1,−uv

t
)
}
.
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Using that 1F1(a, b, 0) = 1, then (i) is deduced for |uv| ≤ t. We now use (3.3) in
order to obtain

∣∣∣ ∂
∂t

Γκ
t (u, v)

∣∣∣ ≤ C
e−

(u−v)2

4t

t3/2
(uv)−κ(1 +

(u − v)2

t
) ≤ C

e−
(u−v)2

8t

t3/2
(uv)−κ, uv > t.

By similar arguments we can prove the third inequality of (i).
When |uv| ≤ t, (ii) can be inferred immediately from (i). Also, if uv > t, from

(i) we deduce that for 0 < 2|u| < |v| < ∞
∣∣∣ ∂
∂t

Γκ
t (u, v)

∣∣∣ ≤ C
e−v2/32t

t

( (uv)
t

)1/2

(uv)−κ−1/2 ≤ C
e−v2/32t

tκ+3/2

|v|√
t
≤ C

e−v2/40t

tκ+3/2
.

From (3.1) and (3.7), we can write ∂
∂tΓ

κ
t (u, v)

=
√
2πc−1

κ

e−
uv
2t

(2t)κ

{ ∂

∂t
Wt(u, v)Eκ(

u√
2t
,

v√
2t
)

+Wt(u, v)
(
− 2κ

2t
Eκ(

u√
2t
,

v√
2t
) +

4κuve
uv
2t

(2κ+ 1)(2t)2
.1F1(κ+ 1, 2κ+ 2,−uv

t
)
)}

.

Using (3.3) and (3.4) we get that,

∂

∂t
Γκ
t (u, v) = (uv)−κ ∂

∂t
Wt(u, v) + O

(
t(uv)−κ−1 ∂

∂t
Wt(u, v)

)
, uv > t.

It is not hard to see that
∣∣∣ ∂
∂t

Wt(u, v)
∣∣∣ ≤ C

t3/2
e−

(u−v)2

8t ,

and (iii) easily follows. �

4. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need to establish a pointwise integral rep-
resentation for the Dunkl multiplier operator Pm as a principal value integral
operator. In the sequel we assume that m satisfies (1.2).

Firstly we prove the following result.

Lemma 4.1. Let κ = (κ1, ..., κd) ∈ Rd
+ and f ∈ C∞

c (Rd). Then

Pmf(x) =

∫ ∞

0

φ(t)F−1
κ

(
|y|2e−t|y|2Fκf(y)

)
(x)dt, a.e. x ∈ R

d.

Proof. Assume that d = 1, when d ≥ 2 we can proceed in a similar way. Let
g ∈ C∞

c (R), by using Plancherel theorem we claim that
∫

R

Pm(f)(x)g(x)h2
κ(x)dx =

∫

R

|y|2
∫ ∞

0

e−t|y|2φ(t)dtFκ(f)(y)F−1
κ (g)(y)h2

κ(y)dy

=

∫ ∞

0

φ(t)

∫

R

|y|2e−t|y|2Fκ(f)(y)F−1
κ (g)(y)h2

κ(y)dy.

The interchange of the order of integration is justified by using Hölder inequality
and that Fκ is an isometry in L2(R, h2

κ). Plancherel theorem leads to
∫

R

Pmf(x)g(x)h2
κ(x)dx =

∫ ∞

0

φ(t)

∫

R

F−1
κ

(
|y|2e−t|y|2Fκ(f)(y)

)
(x)g(x)h2

κ(x)dx.
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Since |Eκ(ix, y)| ≤ C, |xy| ≤ 1 and |Eκ(ix, y)| ≤ C|xy|−κ, |xy| ∈ [1,+∞[, we can
deduce that∫ 1/|x|

0

∫ ∞

1/|x|

∣∣∣Eκ(ix, y)
∣∣∣|y|2e−t|y|2

∣∣∣Fκ(f)(y)
∣∣∣h2

κ(y)dy

≤ C

∫

R

|y|2e−t|y|2
∣∣∣Fκ(f)(y)

∣∣∣|xy|−κh2
κ(y)dy.

Then, since |y|lFκf is bounded on R, for every l ∈ N, and g ∈ C∞
c (R) we get, after

simplifications,
∫ ∞

0

|φ(t)|
∫

R

∫ 1/|x|

0

∫ ∞

1/|x|

∣∣∣Eκ(ix, y)
∣∣∣|y|2e−t|y|2

∣∣∣Fκ(f)(y)
∣∣∣h2

κ(y)dy
∣∣∣g(x)

∣∣∣h2
κ(x)dxdt

≤ C
( ∫

R

∣∣∣g(x)
∣∣∣|x|−κh2

κ(x)dx
)( ∫

R

∣∣∣Fκ(f)(y)
∣∣∣|y|−κh2

κ(y)dy
)
< ∞.

We conclude that

∫

R

Pmf(x)g(x)h2
κ(x)dx

=

∫

R

{∫ ∞

0

φ(t)F−1
κ

(
|y|2e−t|y|2Fκf(y)

)
(x)dt

}
g(x)h2

κ(x)dx.

Thus, the proof of this lemma finishes. �

Proposition 4.2. Let f ∈ C∞
c (Rd). Then,

Pmf(x) = − lim
ǫ→0+

(
α(ǫ)f(x) +

∫

|y−x|>ǫ

f(y)Kφ
κ (x, y)h

2
κ(y)dy

)
, a.e. x ∈ R

d,

where

Kφ
κ (x, y) =

∫ ∞

0

φ(t)
∂

∂t
Γκ
t (x, y)dt, x, y ∈ R

d, x 6= y,

and α is a bounded function on R+. Moreover, if the limit φ(0+) = lim
t→0+

φ(t)

exists, then

Pmf(x) = Cφ(0+)f(x)− lim
ǫ→0+

(∫

|y−x|>ǫ

f(y)Kφ
κ (x, y)h

2
κ(y)dy

)
, a.e. x ∈ R

d,

where C is a positive constant.

Proof. Assume that d = 1. When d ≥ 2 we can proceed in a similar way. By
Lemma 4.1 and (2.3), the Dunkl multiplier can be written as

Pmf(x) =

∫ ∞

0

φ(t)F−1
κ

(
e−t|y|2Fκ(−∆κf)(y)

)
(x)dt, a.e. x ∈ R. (4.1)

By interchanging the order of integration and using (1.3), we can write

F−1
κ

(
e−t|y|2Fκ

(
−∆κf

)
(y)

)
(x)

= c−2
κ

∫

R

(
−∆κf

)
(z)

∫

R

e−ty2

Eκ(ix, y)Eκ(−iz, y)h2
κ(y)dyh

2
κ(z)dz

=

∫

R

(
−∆κf

)
(z)Γκ

t (x, z)h
2
κ(z)dz, t > 0. (4.2)
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Let a > 1 such that suppf ⊂ K, where K = [−a,− 1
a ]
⋃
[ 1a , a]. Due to mean value

Theorem and (3.6), we can assert that

∣∣∣Γκ
t (x, y)−

t−(κ+ 1
2 )

cκ2κ+
1
2

∣∣∣ ≤ C
1

tκ+
3
2

, t ≥ 1, y ∈ K. (4.3)

On the other hand, (2.3) yields
∫

R

(−∆κf)(z)h
2
κ(z)dz = lim

y→0
cκFκ(−∆κf)(y) = lim

y→0
cκ|y|2Fκf(y) = 0. (4.4)

According to (4.1), (4.2) and (4.4)(suggested by (4.3)), we are lead to

Pmf(x) =

∫ ∞

0

φ(t)

∫

R

(−∆κf)(z)
(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
h2
κ(z)dzdt.

Using (1.4) and (4.3), we deduce that the last integral is absolutely convergent.
By (4) we can rewrite Pm as

Pmf(x)

= − lim
ǫ→0

∫ ∞

0

φ(t)

∫

|z−x|>ǫ

(∆κf)(z)
(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
h2
κ(z)dzdt.

Assume that ǫ is small enough, for instance, 0 < ǫ < |x|
2 . We now analyze the

integral

Iǫ(x, t) =

∫

{z∈K/|z−x|>ǫ}
(∆κf)(z)

(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
h2
κ(z)dz.

We can write for t > 0

Iǫ(x, t) =
(∫ x−ǫ

−∞
+

∫ +∞

x+ǫ

)
∆κf(z)

(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
h2
κ(z)dz. (4.5)

By integration by parts, we obtain, for t > 0,

( ∫ x−ǫ

−∞
+

∫ +∞

x+ǫ

)
(∆κf)(z)

(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
h2
κ(z)dz

=
( ∫ x−ǫ

−∞
+

∫ +∞

x+ǫ

)
f(z)(∆κΓ

κ
t )(x, z)h

2
κ(z)dz

+H1(x, x − ǫ, t)−H1(x, x+ ǫ, t)−H2(x, x− ǫ, t) +H2(x, x+ ǫ, t)

+ κ

∫

|z−x|>ǫ

f(−z)

z2

(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
h2
κ(z)dz

− κ

∫

|z−x|>ǫ

f(z)

z2

(
Γκ
t (x,−z)− χ[1,∞[(t)t

−(κ+ 1
2 )

cκ2κ+
1
2

)
h2
κ(z)dz,

where

H1(x, z, t) = h2
κ(z)

∂

∂z
f(z)

(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
,

44



SPECTRAL MULTIPLIERS

and

H2(x, z, t) = h2
κ(z)

∂

∂z

(
Γκ
t (x, z)

)
f(z).

We note that

lim
ǫ→0

∫ +∞

0

φ(t)

∫

|z−x|>ǫ

f(−z)

z2

(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
h2
κ(z)dz

= lim
ǫ→0

∫ +∞

0

φ(t)

∫

|z−x|>ǫ

f(z)

z2

(
Γκ
t (x,−z)− χ[1,∞[(t)t

−(κ+ 1
2 )

cκ2κ+
1
2

)
h2
κ(z)dz

=

∫ +∞

0

φ(t)

∫

R

f(z)

z2

(
Γκ
t (x,−z)− χ[1,∞[(t)t

−(κ+ 1
2 )

cκ2κ+
1
2

)
h2
κ(z)dz.

Using (1.4) and (4.3), we assert that the last integral is absolutely convergent.
Since f ∈ C∞

c (R) then by mean value theorem, Lemma 3.2 (i) and (4.3), we get
∫ ∞

1

|φ(t)|
∣∣∣H1(x, x − ǫ, t)−H1(x, x + ǫ, t)

∣∣∣dt ≤ Cǫ

∫ ∞

1

1

tκ+
3
2

dt → 0, ǫ → 0+.

Also, due to Lemmas 3.1 (i) and 3.2 (i), we deduce that for 0 < t < 1,

∣∣∣H1(x, x − ǫ, t)−H1(x, x + ǫ, t)
∣∣∣ ≤ C

{ ǫ√
t
+

∫ x+ǫ

x−ǫ

1

t
e−

(|x|−|z|)2

8t dz
}
. (4.6)

Using (4.6) it follows
∫ 1

0

|φ(t)|
∣∣∣H1(x, x − ǫ, t)−H1(x, x + ǫ, t)

∣∣∣dt → 0, ǫ → 0+.

Due to Lemma 3.2 (i) and (ii) and mean value theorem we can assert
∫ ∞

1

|φ(t)|
∣∣∣H2(x, x − ǫ, t)−H2(x, x + ǫ, t)

∣∣∣dt ≤ Cǫ

∫ ∞

1

1

tκ+3/2
dt → 0, ǫ → 0+.

By mean value theorem and Lemma 3.2 (i) it has∫ 1

0

|φ(t)|
∣∣∣(x− ǫ)2κf(x− ǫ)− (x+ ǫ)2κf(x+ ǫ)

∣∣∣
∣∣∣ ∂
∂z

Γκ
t (x, x+ ǫ)

∣∣∣dt

≤ Cǫ

∫ 1

0

e−
ǫ2

8t

t
dt ≤ Cǫ,

which goes to 0 when ǫ → 0+. Also, we write for each 0 < t < 1,

(x− ǫ)2κf(x− ǫ)
( ∂

∂z
Γκ
t (x, x− ǫ)− ∂

∂z
Γκ
t (x, x + ǫ)

)

=
(
(x − ǫ)2κf(x− ǫ)− x2κf(x)

)( ∂

∂z
Γκ
t (x, x − ǫ)− ∂

∂z
Γκ
t (x, x+ ǫ)

)

+ x2κf(x)
( ∂

∂z
Γκ
t (x, x − ǫ)− ∂

∂z
Γκ
t (x, x+ ǫ)

)
.

By proceeding as above and using Lemma 3.2 (i) we obtain
∫ 1

0

φ(t)
∣∣∣(x−ǫ)2κf(x−ǫ)−x2κf(x)

∣∣∣
∣∣∣ ∂
∂z

Γκ
t (x, x−ǫ)− ∂

∂z
Γκ
t (x, x+ǫ)

∣∣∣dt → 0, ǫ → 0+.
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From the above estimates and using that ∆κΓ
κ
t (x, z) = ∂

∂tΓ
κ
t (x, z), we conclude

that∫ ∞

0

φ(t)

∫

R

(∆κf)(z)
(
Γκ
t (x, z)−

χ[1,∞[(t)t
−(κ+ 1

2 )

cκ2κ+
1
2

)
h2
κ(z)dzdt

= lim
ǫ→0+

[ ∫ ∞

0

φ(t)

∫

|z−x|>ǫ

f(z)
∂

∂t
Γκ
t (x, z)h

2
κ(z)dz

− x2κf(x)

∫ 1

0

φ(t)
( ∫

|x−z|<ǫ,xz>0

∂2

∂z2
Γκ
t (x, z)dt

+

∫

|x−z|<ǫ,xz<0

∂2

∂z2
Γκ
t (x, z)dzdt

)]
.

Using Lemma(3.2) (iv) we obtain

lim
ǫ→0+

∫ 1

0

|φ(t)|
∫

|x−z|<ǫ,xz<0

∣∣ ∂
2

∂z2
Γκ
t (x, z)

∣∣∣dt = 0.

For xz > 0, using Lemma (iii) and proceeding as in [2] we conclude that

Pm(f)(x) = − lim
ǫ→0+

[ ∫ ∞

0

φ(t)

∫

|x−z|>ǫ

f(z)
∂

∂t
Γκ
t (x, z)h

2
κ(z)dzdt

− f(x)

∫ 1

0

φ(t)

∫

|y|<ǫ

∂2

∂y2
e−|y|2/4t

2
√
πt

dydt
]
. (4.7)

Suppose that φ(0+) = limt→0 φ(t), then by making changes of variables and using
the dominated convergence theorem we have

lim
ǫ→0+

∫ 1

0

φ(t)

∫

|y|<ǫ

∂2

∂y2
e−|y|2/4t

2
√
πt

dydt = −Mφ(0+). (4.8)

where M = 1
2
√
π

∫ +∞
0

e−1/4s

s3/2
ds.

Since f ∈ C∞
c (R) and thanks to Lemma 3.3 (i) it follows that, for every ǫ > 0
∫ ∞

0

|φ(t)|
∫

|x−z|>ǫ

|f(z)|
∣∣∣ ∂
∂t

Γκ
t (x, z)

∣∣∣h2
κ(z)dzdt < ∞.

Then, we can interchange the order of integration on the integrals in (4.7) and due
to (4.8) we conclude that

Pmf(x) = − lim
ǫ→0+

∫

|x−z|>ǫ

f(z)

∫ ∞

0

φ(t)
∂

∂t
Γκ
t (x, z)dth

2
κ(z)dz + Cφ(0+)f(x),

for a certain C > 0. �

In the rest of this section we analyze the Lp-boundedness properties for the
maximal operator of the heat semigroup in the Dunkl setting.

Proposition 4.3. Suppose that m is of Laplace transform type associated with
φ ∈ L∞(R+). Then the maximal operator P ∗

m defined by

P ∗
mf(x) = sup

ǫ>0

∣∣∣
∫

|x−y|>ǫ

f(y)Kφ
κ (x, y)h

2
κ(y)dy

∣∣∣, x ∈ R
d,
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is bounded from Lp(Rd, h2
κ) into itself, for every 1 < p < ∞, and from L1(Rd, h2

κ)
into L1,∞(Rd, h2

κ), K
φ
κ being as in Proposition 4.2.

Proof. Assume that d = 1, when d ≥ 2 we can proceed analogously. Consider the
operator

P ∗
m,locf(x) = sup

ǫ>0

∣∣∣
∫

L(x),|x−y|>ǫ

f(y)χ{xy>0}(xy)
−κHφ(x, y)h2

κ(y)dy
∣∣∣, x ∈ R,

where, for every x ∈ R,

L(x) = {y ∈ R, |x|/2 < |y| < 2|x|}; and Hφ(x, y) =

∫ ∞

0

φ(t)
∂

∂t
Wt(x, y)dt.

We can write

P ∗
mf(x) ≤ Gκ(|f |)(x) + Lκ(|f |)(x) + P ∗

m,locf(x), x ∈ R,

where

Gκ(|f |)(x) =
∫

R\L(x)

|f(y)|
∣∣∣Kφ

κ (x, y)
∣∣∣h2

κ(y)dy,

and

Lκ(|f |)(x) =
∫

L(x)

|f(y)|
∣∣Kφ

κ (x, y)− χ{xy>0}(xy)
−κHφ(x, y)

∣∣h2
κ(y)dy.

We are going to show the Lp-boundedness properties for the operators Gκ, Lκ and
P ∗
m,loc.

4.1. The operator P ∗
m,loc. For every j ∈ Z, the dyadic interval Qj is defined by

Qj = {y ∈ R : 2j ≤ |y| < 2j+1},

and the interval Q̃j is given by

Q̃j = {y ∈ R : 2j−1 ≤ |y| < 2j+2}.

It is clear that if j ∈ Z, x ∈ Qj and y ∈ L(x), then y ∈ Q̃j. We can write for
x ∈ Qj, j ∈ Z and ǫ > 0∫

L(x),|x−y|>ǫ

f(y)χ{xy>0}(xy)
−κHφ(x, y)h2

κ(y)dy

=
( ∫

Q̃j ,|x−y|>ǫ

−
∫

Q̃j\L(x),|x−y|>ǫ

)
f(y)χ{xy>0}(

y

x
)κHφ(x, y)dy.

Let j ∈ Z. It has Q̃j \ L(x) = Q̃+
j ∪ Q̃−

j , where

Q̃+
j = {y ∈ R : 2|x| < |y| < 2j+2}

and

Q̃−
j = {y ∈ R : 2j−1 < |y| < |x|/2}.

For every ǫ > 0, we get
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∣∣∣
∫

Q̃j\L(x),|x−y|>ǫ

f(y)χ{xy>0}(
y

x
)κHφ(x, y)dy

∣∣∣

≤
∫

Q̃j\L(x)

∣∣∣f(y)
∣∣∣|y
x
|κ
∣∣∣Hφ(x, y)

∣∣∣dy

≤ C

∫

˜Q+
j ∪˜Q−

j

|f(y)|
|x− y|dy, x ∈ Qj.

where we have used that
∣∣Hφ(x, y)

∣∣ ≤ C
1

|x− y| , x, y ∈ R.

Then, for each x ∈ Qj

sup
ǫ>0

∣∣∣
∫

Q̃j\L(x)
|x−y|>ǫ

f(y)χ{xy>0}(
y

x
)κHφ(x, y)dy

∣∣∣ ≤ C

∫

˜Q+
j ∪˜Q−

j

|f(y)|
|x− y|dy. (4.9)

The operator of the right hand side of (4.9) is bounded from Lp(R, h2
κ) into itself,

1 < p < ∞ and from L1(R, h2
κ) into L1,∞(R, h2

κ). On the other hand we introduce
the following maximal operator Tm,∗ defined by

Tm,∗f(x) = sup
ǫ>0

∣∣∣
∫

|x−y|>ǫ

f(y)Hφ(x, y)dy
∣∣∣, x ∈ R.

By proceeding in a similar way as in [2] and using the fact that Tm,∗ is bounded
from Lp(R, dx) into itself, 1 < p < ∞, and from L1(R, dx) into L1,∞(R, dx), we
can see that P ∗

m,loc is bounded from Lp(R, h2
κ) into itself, 1 < p < ∞ and from

L1(R, h2
κ) into L1,∞(R, h2

κ).

4.2. The operator Lκ. We have that
Lκ(|f |)(x)

≤ C

∫

L(x)

|f(y)|
∫ ∞

0

∣∣∣ ∂
∂t

Γκ
t (x, y)− χ{xy>0}(xy)

−κ ∂

∂t
Wt(x, y)

∣∣∣h2
κ(y)dtdy

≤ L1
κ(f)(x) + L2

κ(f)(x), x ∈ R, (4.10)

where

L1
κ(f)(x) =

∫

L(x)

|f(y)|
∫ ∞

0

χ{xy>0}

∣∣∣ ∂
∂t

Γκ
t (x, y) − (xy)−κ ∂

∂t
Wt(x, y)

∣∣∣dth2
κ(y)dy,

and

L2
κ(f)(x) =

∫

L(x)

|f(y)|
∫ ∞

0

χ{xy<0}

∣∣∣ ∂
∂t

Γκ
t (x, y)

∣∣∣dth2
κ(y)dy.

Due to Lemma 3.3 (i) and (iii), we obtain the following

L1
κ(f)(x) ≤

∫

L(x)

|f(y)|
{∫ xy

0

(xy)−κ−1

√
t

e−
(x−y)2

16t dt

+

∫ ∞

xy

( 1

tκ+3/2
+ (xy)−κ 1

t3/2

)
dt
}
h2
κ(y)dy,
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and

L2
κ(f)(x) ≤

∫

L(x)

|f(y)|
{∫ |xy|

0

|xy|−κ−1

√
t

e−
(|x|−|y|)2

8t dt+

∫ ∞

|xy|

1

tκ+3/2
dt
}
h2
κ(y)dy.

Then, the operators L1
κ and L2

κ are controlled by an operators of the following
type

Λκg(x) = sup
t>0

∣∣∣
∫ 2|x|

|x|
2

|x|−2κ−1|xy|−κ e
− (|x|−|y|)2

16t

√
t

g(y)h2
κ(y)dy

∣∣∣,

the operator Λκ is bounded from Lp(R, h2
κ) into itself, 1 < p < ∞, and from

L1(R, h2
κ) into L1,∞(R, h2

κ). Thus from (4.10), we conclude that Lκ is bounded
from Lp(R, h2

κ) into itself, 1 < p < ∞, and from L1(R, h2
κ) into L1,∞(R, h2

κ).

4.3. The operator Gκ. The operator Gκ can be written as

Gκ(|f |)(x) = G1
κ(f)(x) + G2

κ(f)(x), (4.11)

where

G1
κ(f)(x) =

∫ +∞

2|x|
|f(y)|

∣∣∣Kφ
κ (x, y)

∣∣∣h2
κ(y)dy

and

G2
κ(f)(x) =

∫ |x|/2

0

|f(y)|
∣∣∣Kφ

κ (x, y)
∣∣∣h2

κ(y)dy.

Thanks to Lemma 3.3 (ii), we infer

∣∣∣G1
κ(f)(x)

∣∣∣ ≤ C

∫ +∞

2|x|
|f(y)|

∫ +∞

0

e−
|y|2

40t

tκ+3/2
dth2

κ(y)dy

≤ C

∫ +∞

2|x|

|f(y)|
|y|2κ+1

h2
κ(y)dy ≤ CSk(f)(x), x ∈ R,

where Sk(f)(x) =

∫ +∞

2|x|

|f(y)|
|y| dy, x ∈ R.

The operator Sk is a bounded operator from Lp(R, h2
κ) into itself, 1 ≤ p < ∞.

Hence the operator G1
κ satisfies the same boundedness properties.

By taking into account symmetries, Lemma 3.3 (ii), and using a change of
variable we get

∣∣∣G2
κ(f)(x)

∣∣∣ ≤ C

∫ |x|/2

0

|f(y)|
∫ +∞

0

e−
|x|2

40t

tκ+3/2
dth2

κ(y)dy

≤ C

|x|2κ+1

∫ |x|/2

0

|f(y)|h2
κ(y)dy.

The operator Hκ given by

Hκ(f)(x) =
1

|x|2κ+1

∫ |x|/2

0

|f(y)|h2
κ(y)dy

is bounded from Lp(R, h2
κ) into itself, when 1 < p < ∞, and from L1(R, h2

κ) into
L1,∞(R, h2

κ). Then, from (4.11) the operator Gκ has the same Lp boundedness
properties. Thus the proof of this Proposition is completed. �
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From Proposition 4.3, we can deduce by using standard arguments the following
result.

Proposition 4.4. Let (κ1, ..., κd) ∈ Rd
+. Assume that m is of Laplace transform

type associated with φ ∈ L∞(R+). For every f ∈ Lp(Rd, h2
κ), 1 ≤ p < ∞, the limit

lim
ǫ→0+

∫

|x−y|>ǫ

f(y)Kφ
κ (x, y)h

2
κ(y)dy,

exists, for almost all x ∈ Rd. Here Kφ
κ and α are defined as in Proposition 4.2.

Moreover, the operator Pm defined by

Pmf(x) = − lim
ǫ→0+

∫

|x−y|>ǫ

f(y)Kφ
κ (x, y)h

2
κ(y)dy, a.e. x ∈ R

d,

is bounded from Lp(Rd, h2
κ) into itself, for every 1 < p < ∞, and from L1(Rd, h2

κ)
into L1,∞(Rd, h2

κ).

Since C∞
c (Rd) is a dense subspace of Lp(Rd, h2

κ), 1 ≤ p < ∞, it follows that, for
every f ∈ L2(Rd, h2

κ),

Pmf(x) = lim
ǫ→0+

(
α(ǫ)f(x) −

∫

|y−x|>ǫ

f(y)Kφ
κ (x, y)h

2
κ(y)dy

)
, a.e. x ∈ R

d,

where α is a bounded function on R+, and Pm can be extended from L2(Rd, h2
κ)∩

Lp(Rd, h2
κ) to Lp(Rd, h2

κ) as a bounded operator from Lp(Rd, h2
κ) into itself, for

every 1 < p < ∞, and from L1(Rd, h2
κ) into L1,∞(Rd, h2

κ). The proof of Theorem
1.1 is finished.
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