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Abstract: Graph theory is a young but rapidly maturing subject. It is one of the important areas in mathematics and 
computer science. The structure of objects or technologies has to new inventions and modifications in the environment 
for enhancement those fields. In this paper we show that how the group theoretical properties can be applied on simple 
graphs and also discussed the properties of cut set and circuit spaces related to simple graph.
Keywords: Simple graph, group, symmetric difference, set of edges and vertices.

Introduction1.	
Algebraic graph theory is a new interesting subject concerned with the relationship between algebra and graph 
theory. Algebraic properties can be used to give surprising and elegant proofs of graph theoretic facts, and there 
are so many algebraic objects associated with graphs. Algebraic graph theory uses linear algebra, group theory 
and other parts of algebra for investigation of graphs. Graph theory ideas are highly utilized by engineering 
applications. Especially in research areas such as image segmentation, image capturing, networking etc. A data 
structure can be designed in the form of tree which utilized vertices and edges. Similarly modeling of the network 
topologies can be completed using graph concepts. Similarly the concept of graph coloring is utilized in resource 
allocation, scheduling. Also walks, path and circuits are used in many applications say traveling salesman 
problem, database design concepts and resource networking. The wide scope of these and other applications 
has been well-documented in [1], [2]. In this paper, we present a few selected applications of graph theory to 
various fields in general. As well known the first paper on graph theory was written by L. Euler. The motivation 
for Euler’s paper was the celebrated Konigsberg bridge problem which rose in Konigsberg.

L. Euler posed the following problem: can we find a walk through the city that use each bridge once and 
only once time, and start and ends at the same point? He published a scientific article where he showed that this 
was not possible.

After L. Euler, Cayley studied a class of graphs, says trees. A tree is a graph which has only one path 
between two vertices. Cayley solved a problem from differential calculus. His solution exert an influenced to 
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development of theoretical chemistry. The technique he used focused on listing all graphs which had certain 
properties. Now a day is called Enumerative graph theory. Publications presented by Polya and De Bruijn. Cayley 
linked his results on trees for studies of chemical composition.

Figure 1: Konigsberg Seven Bridge Problem

Last 30 years was a period of intensive period of activity in graph theory. A great research has been done 
and is being done in graph theory. Algebraic graph theory is the most demanding field these days. Network 
graph theory is being used for systems biology [5], [3] and graphs. Godsil and Royle [4] and Chung [5] are good 
references of explore mappings from graph to graph, or Isomorphism and homomorphism.

There are so many papers on assigning a graph to a group, ring and of algebraic properties of group or ring 
using the associated graph, for instance, see [6], [2] [10], [9], [8]. Generally, there is an relationship between 
group theory and graph theory, and in many areas the properties of graphs give rise to some properties of groups 
and vice versa and concept of solvable graph for a finite group G, presented by Abe and Iiyori in [7].

The aim of this paper is to motivate and introduce the basic constructions and results, which have been 
developed in the group theory to graphs. Symmetric difference is used as binary relation on the set of vertices 
or edges of the graph.

Group Representation for a Graph2.	
To every graph we can always associate edge set and vertices set. By defining proper binary operation for these 
sets a group can be associated with every simple graph. It has been proved by the result below.

Theorem 1: If G(V, E) is simple graph with edge set E and power set P(E) then (P, D) denotes group for graph 
G(V, E).

Proof:

(I)	 P(E), is closure with symmetric difference D: Let E*
1, E

*
2 Œ P(E) then E*

1 DE*
2 Œ P(E)

	 As E*
1 - E*

2 Ã E & E*
2 - E*

1 Ã E hence (E*
1 - E*

2) » (E*
2 - E*

1) Ã E

	 Thus E*
1 DE*

2 = (E*
1 - E*

2) » (E*
2 - E*

1) Œ P(E)

	 Hence P(E), is satisfied closure under symmetric difference operation D.

(II)	 P(E) is associative with symmetric difference D: Let E*
1, E

*
2, E

*
3 Œ P(E) then E*

1 D(E*
2 DE*

3) = (E*
1 DE*

2)DE*
3

	 To show this property we will take by the help of Venn’s diagram.

	 E*
1 D(E*

2 DE*
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1)}

	 Venn diagram for (E*
2 - E*

3) » (E*
3 - E*

2) is shown in Figure 2.
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Figure 2: (E*
2 - E*

3) » (E*
3 - E*

2)

	 (E*
1 - (E*

2 - E*
3) » (E*

3 - E*
2)) is shown by orange color in Figure 3.

Figure 3: {E*
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2)}

The shaded region in Figure 4 is representing ((E*
2 - E*

3) » (E*
3 - E*

2) - E*
1)

Figure 4: ((E*
2 - E*

3) » (E*
3 - E*

2) - E*
1)

	 Then shade region by colors orange and brown is representing E*
1 D(E*

2 DE*
3) = {E*

1 - (E*
2 - E*

3) » 
(E*

3 - E*
2)} » {(E*

2 - E*
3) » (E*
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2) - E*
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Figure 5: E*
1 D(E*

2 DE*
3)
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	 Now for the second case (E*
1 - E*

2) » (E*
2 - E*

1) is shown in Figure 6.

Figure 6: (E*
1 - E*

2) » (E*
2 - E*

1)

	 (E*
3 - (E*

1 - E*
2) » (E*

2 - E*
1) is shown by orange color in Figure 7.

Figure 7: (E*
3 - (E*

1 - E*
2) » (E*

2 - E*
1)
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1 - E*

2) » (E*
2 - E*

1) - E*
3) is shown by shaded region in Figure 8.

Figure 8: ((E*
1 - E*

2) » (E*
2 - E*

1) - E*
3)

	 Thus, (E*
1 DE*

2)DE*
3 = {(E*

1 - E*
2) » (E*

2 - E*
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3} » {E*
3 - (E*

1 - E*
2) » (E*

2 - E*
1)} is the shaded 

region by orange and brown colors in Figure 9.

Figure 9: (E*
1 DE*

2)DE*
3
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	 Hence by Figure 5 and Figure 9 it clear that shaded region of both Figures are same thus E*
1 D(E*

2 DE*
3) 

= (E*
1 DE*

2)DE*
3.

(III)	 P(E) has an identity: We have f Œ P(E). If E* Œ P(E) then we have fDE* = E*Df = E*

As	 fDE* =	(f - E*) » (E* - f)

	 =	f » E* = E*

	 Similarly E*Df = E*

	 Thus f is an identity element.

(IV)	 Existence of inverse: Let E*
1, E

*
2 Œ P(E) if E*

1 DE*
2 = f = E*

2 DE*
1 then E*

1 is the inverse of E*
2 and E*

2 is 
the inverse of E*

1. In P (E) it is possible only if E*
1 = E*

2.

i.e.,	 E*
1 DE*

2 = (E*
1 - E*

1) » (E*
1 - E) = f » f = f

Hence every element of P (E) is inverse of itself.

Thus by the above properties (I) to (IV) we can say that P(E) is a group with respect to symmetric 
difference.

Theorem 2: Consider a simple graph G(V, E) and let WG be the power set of edge set E. Let ƒ be a multiplication 
operation between the elements of GF(2) and those of WG defined as, 1 ƒ Ei = Ei and 0 ƒ Ei = f for Ei Œ WG. 
Then WG will be a vector space over GF(2).

Proof:

(1)	 (WG, D) is an abelian group, which has already been proved in the theorem 1.

(2)	 If a, b Œ GF(2) and u, w Œ WG, then vector addition ‘D’ and scalar multiplication ƒ satisfy the 
following:

(i)	 a ƒ (uDw) = (a ƒ u)D(a ƒ w): Since a Œ GF(2) then either a = 0 or a = 1. So when a = 0 then 
a ƒ (uDw) = 0 ƒ (uDw) = f = (0 ƒ u)D(0 ƒ w) = (a ƒ u)D(a ƒ w) and if a = 1 then a ƒ (uDw) 
= 1 ƒ (uDw) = (uDw) = (1 ƒ u)D(1 ƒ w) = (a ƒ u)D(a ƒ w).

	 Hence, a ƒ (uDw) = (a ƒ u)D(a ƒ w)

(ii)	 (a +2 b) ƒ u = (a ƒ u)D(b ƒ u) Because a, b Œ GF(2) then (a +2 b) = 0 or 1 by the addition 
table for GF(2)

	C ase I: When (a +2 b) = 0, then we have two possibilities: (a) a = 0, b = 0 & (b) a = 1, b = 1 in 
both case we have L.H.S. = 0 ƒ u = f. Now if a = 0, b = 0 then R.H.S. = (a ƒ u)D(b ƒ u) = (0 ƒ u) 
D(0 ƒ u) = fDf = f and if a = 1, b = 1 then R.H.S. = (a ƒ u)D(b ƒ u) = (1 ƒ u)D(1 ƒ u) = uDu = f. 
Thus (a +2 b) ƒ u = (a ƒ u)D(b ƒ u).

	C ase II: When (a +2 b) = 1 we have following two cases: (a) a = 0, b = 1 & (b) a = 1, b = 0 
and in both case we have L.H.S. = 1 ƒ u = u. We have R.H.S. = (a ƒ u)D(b ƒ u) = (0 ƒ u) 
D(1 ƒ u) = fDu = u for a = 0, b = 1. And if a = 1, b = 0 then R.H.S. = (1 ƒ u)D(0 ƒ u) = uDf 
= u. So for (a +2 b) = 1 we have (a +2 b) ƒ u = (a ƒ u)D(b ƒ u).

(iii)	 (a +2 b) ƒ u = a ƒ (b ƒ u):

	C ase I: When (a ¥2 b) = 0 then L.H.S. = (a ¥2 b) ƒ u = 0 ƒ u = f. Further we have three 
possibilities for a, b Œ GF(2) namely (a) a = 0, b = 0, (b) a = 0, b = 1 (c) a = 1, b = 1. So in 
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this case for all three possibilities when we will have R.H.S. = a ƒ (b ƒ u) = f proof is same 
as in (ii). Hence we have (a ¥2 b) ƒ u = a ƒ (b ƒ u).

	C ase II: When (a ¥2 b) = 1, it is only possible when is a = 1, b = 1 and hence L.H.S. = (a ¥2 
b) ƒ u = 1 ƒ u = u. And R.H.S. = a ƒ (b ƒ u) = 1 ƒ (1 ƒ u) =  1 ƒ u = u. So for (a ¥2 b) = 1 
we have (a ¥2 b) ƒ u = a ƒ (b ƒ u).

(iv)	 1 ƒ u = u: By the definition of ƒ it is trivial since 1 is the identity element of GF(2).

	 Thus all the axioms for vector space are satisfied over GF(2). So (WG, D, ƒ) is vector space 
over GF(2).

Theorem 4.3.2: For a graph G(V, E) with n-edges, WG is an n-dimensional vector space over GF(2).

Proof: Let G(V, E) is a graph with edge set E = {e1, e2, ..., en}. WG = P(E) (Power set of E) i.e. WG = P(E) = 
{f, {e1}, {e2}, {e3}, ..., {en}, {e1, e2}, {e1, e3}, ..., E}.

Then the subsets {e1}, {e2}, ..., {en} will constitute a basis ‘b’ for WG. Since any subset of E can be express 
as a linear combination of elements of ‘b’ also b is linearly independent. Thus, b is basis of WG. Because b 
contains n-elements. Then dim(WG) = n.

Hence WG is an n-dimensional vector space over GF(2) for a graph G with n-edges.

Theorem 3: We (set of all edge induced subgraph of G including null graph) is subspace of WG.

Proof: Let WG on vector addition ‘⊕’ is defined by symmetric difference operation and external multiplication 
‘ƒ’ is defined as 1 ƒ Gi = Gi, 0 ƒ Gi = f, where, Gi is any edge-induced subgraph of G.

Now to show that We is subspace of WG it is sufficient to prove that We is closed with respect to scalar 
multiplication and vector addition.

We is closed with respect to scalar multiplication: If a Œ GF(2) and u Œ We then a = 1 fi a ƒ u = f Œ We 
and similarly a = 1 fi a ƒ u = u Œ We i.e. in both cases (a ƒ u) Œ We. So We is closed with respect to scalar 
multiplication.

We is closed with respect to vector addition: Let u, v Œ We then u ≈ v Œ We where, u ≈ v = (u - v) » (v - u) 
as ƒ is defined by symmetric difference.

Since We is the set of all edge induced subgraphs. Then u and v are edge induced subgraphs. So (u - v) and 
(v - u) are also edge induced subgraphs.

fi  (u - v) » (v - u) is also edge induced subgraph.

fi  (u ≈ v) is edge induced subgraph.

So (u ≈ v) ≈ We. So We is closed with respect to ⊕

Hence We is subspace of WG.

Theorem 4: Wc (set of all circuits and union of edge disjoint circuits of G including null graph) is a subspace 
of WG in G.

Proof: We know that a graph can be expressed as the union of edge disjoint circuits if and only if every 
vertex in the graph is of even degree. So Wc is the set of all edge induced subgraphs of G, in which all vertices 
are of even degree.
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Let C1, C2 Œ Wc i.e. C1 and C2 are edge induced subgraphs with even degree of all their vertices.

Now let C3 = C1 ≈ C2

Consider any vertex v in C3. Then v Œ C1 or v Œ C2.

Suppose li, (i = 1, 2, 3) be the set of edges incident on v in Ci and | li | denotes the number of edges in li 
i.e. | li | is the degree of vertex v in Ci.

Now from above equation, we have

	 l3 =	l1 ≈ l2

and	 | l3 | =	| l1 | + | l2 | -2 | l1 « l2 |

Now | l3 | is even. It is verified from the above equation because | l1 | and | l2 | are both even or we can say 
that, the degree of vertex v in C3 is even. Since this should be true for all vertices in C3. So C3 belong to Wc. 
Hence Wc is a subspace of WG in G.

Conclusions3.	
From above discussion it is clear that for any simple graph can always associate a group. Thus every graph 
comes equipped with a group; the algebraic property which measures symmetry of the simple graph. The group 
action of a graph is useful for studying both the group and the graph with symmetric difference operation. We 
investigate the group axioms on the graph, and we study the simple graph by the properties of its group. This is 
an important mathematical method which produced various important mathematics results. It is shown that all 
the group theoretic properties can be studied for any simple graph also. So we can use these properties to have 
better understanding of graphs and hence it open new area for applications of graph.
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