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1. INTRODUCTION

The hyperstructure theory was surfaced up in 1934 when Marty defined hypergroups ([6]),
started up analysing their properties and applied them to groups, rational algebraic functions.
Since then many researchers have studied in this field and developed it. Several papers
have been published on the algebraic hyperstructures (for instance one can see [1], [2], [3],
[4], [6], [7], [8]). A short review of the theory of hypergroups appears in [3]. Let S be a
non-empty set. P (S) denotes the set of all subsets of S. A hyper operation on S is a mapping
o : S � S � P(S) written as (a, b) � a o b. The set S together with a hyper operation is
called a hypergroupoid. A hypergroupoid (S, o) is called a semihypergroup if

(a o b) o c = a o (b o c), for all a, b, c � S,

where for any subset A of S
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A semihypergroup (S, o) is called a hypergroup if x o S = S o x = S, for all x � S. Let S
be a semihypergroup. Let R be an equivalence relation on S. Let A, B � P(S). We say that
AR

—
B if for each a � A there exists b � B such that aRb and for each y � B there exists x � A

such that xRy. Also we say that AR
——
B if aRb, for all a � A and for all b � B.

The equivalence relation R on S is said to be strongly regular if for all a, b � S, aRb
implies (x o a) R

—
 (x o b) and (a o x) R

—
 (b o x), for all x � S.
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The equivalence relation R on S is said to be strongly regular if for all a, b � S, aRb
implies (x o a) R

——

 (x o b) and (a o x) R
——

 (b o x), for all x � S.

In [3] the author describes the smallest strongly regular equivalence relation �* on S
such that the quotient semihypergroup S/�* becomes a semigroup. This relation is called
the fundamental relation on S. The fundamental relation �* is the transitive closure of
� = {(p, q) � S � S : for some r1, r2, ..., rn � S we have p, q � 

1

n

i �
�  ri}. In [1] it is also shown

that if S is a hypergroup, then �* = �.

Throughout the paper S denotes a monoid and Q denotes a non-empty set.

Definition 1.1: [5] A (left) action of S on Q is a function f : S � Q � Q (usually denoted
by f (x, q) � xq), for all x � S and q � Q.

Q is called an S-set if there exists an action of S on Q such that

(i) (xy) q = x (yq)

(ii) 1q = q, for all x, y � S and q � Q.

Definition 1.2: A (left) hyperaction of S on Q is a function · : S � Q � P(Q) (usually
denoted by · (x, q) � x · q), for all x � S and q � Q.

Let A � P(Q) and x � S. We define x · A � P(Q) by

( ), if 0

0 , if 0

a A

x a A
x A

A

�

� � ��� � �
� ��

�

Q is called an S-hyper-set if there exists an hyper action · of S on Q such that

(i) (xy) · q = x · (y · q)

(ii) 1 · q = {q}, for all x, y � S and q � Q.

Example: Let Q be a non-empty set. Let BQ denote the set of all binary relations on Q.
Let �, � � BQ. Now BQ is a semigroup where the binary operation o is defined by
� o � = {(x, y) � Q � Q : (x, z) � �, (z, y) � � for some z � Q}. One can show that BQ is
semigroup with identity. We now define � o x � P(Q) by � o x = {y � Q : (x, y) � �} for all
� � BQ and x � Q. Clearly this is a hyper action of BQ on Q and Q is a BQ-hyper-set.

In [7] the authors have studied some properties of the S-hyper-sets. In this paper we want
to find the smallest strongly regular equivalence relation on an S-hyper-set Q such that the
quotient S-hyper-set Q/� is just an S-set. Also we describe � when Q is a connected S-hyper-
set. Introducing the notions of complete part and complete closure of a subset of Q, we give
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another description of the smallest strongly regular equivalence relation. In the last section
we have studied some properties of the hyper-homomorphism on an S-hyper-set.

2. REGULAR AND FUNDAMENTAL RELATION
ON AN S-HYPER-SET

Let R be an equivalence relation on a S-hyper-set Q. Let A, B � P(Q). We say that AR
—

B if
for each a � A there exists b � B such that aRb and for each y � B there exists x � A such
that xRy. Also we say that AR

——
B if aRb, for all a � A and for all b � B.

The equivalence relation R on Q is said to be regular if for all q, p � Q, qRp implies
(x · q) R

—
 (x · p), for all x � S.

The equivalence relation R on Q is said to be strongly regular if for all q, p � Q, qRp
implies (x · q) R

——

 (x · p), for all x � S.

Definition 2.1: An S-hyper-set Q is said to be connected if for all p, q � Q there exists
x � S such that p � x · q.

Theorem 2.2: Let Q be an S-hyper-set and R be an equivalence relation on Q.

(i) If R is regular, then Q/R (the set of all equivalence classes modulo R) will be an
S-hyper-set with respect to the hyper action

r � x– = {y– : y � r · x}, for all r � S and x– � Q/R.

(ii) If (Q/R, �) is an S-hyper-set then R is regular.

(iii) If Q is connected, then (Q/R, �) is connected.

Proof: (i) Let x– = z– and p– � r � x–. Then xRz and p � r · x. Now xRz implies (r · x) R
—

 (r · z).
Therefore there exists q � r · z such that pRq and so p– = q–. This implies p– � r � z–. Therefore
r � x– � r � z–. Similarly we can show that r � z– � r � x–. Therefore the hyper product
r � x– = {y– : y � r · x} is well-defined. Now we show that (Q/R, �) is an S-hyper-set. Let
r, s � S and x– � Q/R. Let y– � rs � x–, then y � rs · x � y � r · (s · x) � y � r · z, for some
z � s · x � y– � r � z–, where z– � s � x– � y– � r � (s � x–). Therefore rs � x– � r � (s � x–).
Similarly we can show that r � (s � x–) � rs � x–. Hence rs � x– = r � (s � x–). Again
1 � x– = {y– : y � 1 · x = {x}} = {x–}. Therefore (Q/R, �) is an S-hyper-set.

(ii) (Q/R, �) is an S-hyper-set. Let pRq, then p– = q–. Let x � r · p, where r � S, then
x– � r � p–. This implies x– � r � q– and so there exists y � r · q such that x– = y–.
Therefore x � r · p, implies there exists y � r · q such that xRy. This implies that R
is regular.

(iii) Q is connected. Let p–, q– � Q/R, then there exists x � S such that p � x · q, implies
p– � x � q–, implies Q/R is connected.
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In the following theorem we show that if the relation R is a strongly regular equivalence
relation on an S-hyper-set Q, then the S-hyper-set Q/R becomes an S-set.

Theorem 2.3: Let Q be an S-hyper-set and R be an strongly regular equivalence relation
on Q.

(i) Q/R (the set of all equivalence classes modulo R) is an S-set with respect to the
hyper action

r � x– = y–, �y � r · x, for all r � S and x– � Q/R.

(ii) If Q is connected, then (Q/R, �) is a connected S-set.

Proof: (i) r � x– = y–, �y � r · x.

Let y, z � r · x. Since xRx and R is strongly regular then (r · x) R
——

 (r · x), implies yRz,
implies y– = z–. Therefore r � x– = y–, �y � r · x is well-defined and so Q/R is an S-set.

(ii) Straightforward.

Definition 2.4: Let Q be an S-hyper-set. We define a relation � on Q by

p�q � �r � S and u � Q such that p, q � r · u

Clearly � is reflexive and symmetric. We denote the transitive closure of � by �*.

Theorem 2.5: �* is the smallest strongly regular equivalence relation on an S-hyper-set
Q such that Q/�* is an S-set.

Proof: �* is an equivalence relation containing �. Let p�*q. Then there exist an
integer n � N and p = x0, x1, ..., xn = q � Q such that x0�x1�x2�x3� ... �xn – 1�xn. Therefore
there exist r1, r2, ..., rn � S and u1, u2, ..., un � Q such that x0, x1 � r1 · u1, x1, x2 � r2 · u2, ...,
xn – 1, xn � rn · un. Let r � S and a � r · p. Then a � r · (r1 · u1) i.e. a � rr1 · u1. Let a1 � r · x1.
Then a1 � r · (r1 · u1) i.e., a1 � rr1 · u1. These together imply a�a1. Hence a�*a1. Similarly
if a2 � r · x2 then a1�

*a2 and so on. Lastly, if b � r · q then an – 1�
*b. Therefore for all

a � r · p and b � r · q we have a�*b. This implies that �* is strongly regular. Therefore by
the above theorem Q/�* is an S-set.

Let R be any strongly regular equivalence relation on Q. Then clearly Q/R is an S-set.
Let p�*q. Then there exist an integer n � N and p = x0, x1, ..., xn = q � Q such that
x0�x1�x2�x3� ... �xn – 1�xn. Therefore there exist r1, r2, ..., rn � S and u1, u2, ..., un � Q
such that x0, x1 � r1 · u1, x1, x2 � r2 · u2, ..., xn – 1, xn � rn · un.

Since R is strongly regular equivalence relation on Q and ui Rui, for i = 1, 2, ..., n,
therefore (ri · ui) R

——

 (ri · ui), for i = 1, 2, ..., n. Therefore xi – 1Rxi, for i = 1, 2, ..., n. This
implies that x0 Rxn i.e. pRq. Hence �* � R.
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Therefore �* is the smallest strongly regular equivalence relation on Q such that Q/�*

is an S-set.

The relation �* is called the fundamental relation on Q.

Theorem 2.6: If Q is connected, then �* = �.

Proof: Let the S-hyper-set Q be connected. Let x�*y, then x– = y–. Since Q is connected,
therefore Q/�* is connected, there exists r � S such that y– = r · x–. This implies y � r · x. Also
x– = r · x–, implies x � r · x. Hence x�y. Therefore �* = �.

In the following example we show that if Q is not a connected set then �* may not be
equal to �.

Example 2.7: A = {a, b, c} and Q = {p, q, r, t}. We define a mapping · : A � Q � P(Q)
by the following table

{ , } { } { , } { }

{ } { } { , } { }

{ , } { } { , } { }

p q r t

a p q q q r t

b q q q r t

c p q q q r t

�

From the above table we can show that

a · (a · u) = c · u b · (a · u) = b · u c · (a · u) = a · u

a · (b · u) = b · u b · (b · u) = b · u c · (b · u) = b · u for all u � Q.

a · (c · u) = a · u b · (c · u) = b · u c · (c · u) = c · u

Let A* be the free monoid generated by the set A. Now we extend the mapping
· : A � Q � P(Q) to the mapping · : A* � Q � P(Q) by

� · u = {u}, � (empty word) � A* and �u � Q

and

(xs) · u = x · (s · u), �x � A*, s � A, u � Q

It can be easily verified that

(xy) · u = x · (y · u), �x, y � A*, u � Q

Therefore the set Q is an A*-hyper-set.

There exists no i � A* such that p � i · r. Therefore Q is not connected.

Now p, q � a · p � p�q and q, r � a · r � q�r together implies (p, r) � �*. But there
exist no i � A*, u � Q such that p, r � i · u that is (p, r) � �.
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3. COMPLETE PART AND COMPLETE CLOSURE

In this section we describe �* by the complete part of an S-hyper-set.

Definition 3.1: A subset A of an S-hyper-set Q is said to be a complete part of Q if

� (x, u) � S × Q, x · u � A � Ø � x · u � A.

Theorem 3.2: If R be a strongly regular equivalence relation on a S-hyper-set Q, then
q–, the equivalence class containing q � Q is a complete part of Q.

Proof: Let r · p � q– � Ø. Then there exists x � r · p such that x � q–. Therefore x– = q–. Now
for all y � r · p we have x�*y. This implies that xRy and so x– = y– = q– that is y– = q–. This
implies that y � q–, for all y � r · p and so r · p � q.

Definition 3.3: Let A be a part of an S-hyper-set Q. Then the intersection of all complete
parts of Q containing A is called the complete closure of A and it is denoted by � (A).

Definition 3.4: Let A be a part of an S-hyper-set Q. Then we define

K1(A) = A, K2(A) = {x � Q | �r1 � S, p1 � Q : x � r1 · p1, r1 · p1 � K1(A) � Ø}, ...,

Kn + 1(A) = {x � Q | �rn � S, pn � Q : x � rn · pn, rn · pn � Kn(A) � Ø}. K(A) = 
1n �
�  Kn(A).

Theorem 3.5: K(A) = � (A).

Proof: First we prove that K(A) is complete. Let r · p � K(A) � Ø. Then r · p � Kn(A) � Ø,
for some n � IN. This implies that r · p � Kn + 1(A) � Ø. Hence r · p � K(A) � Ø. This implies
that K(A) is complete.

Let B � A and B be complete. Now B � K1(A). Assume that B � Kn(A). Let y � Kn + 1(A).
Then there exist r � S, p � Q such that y � r · p and r · p � Kn(A) � Ø. Let x � r · p and
x � Kn(A) � B. Then r · p � B � Ø. Therefore r · p � B. This implies that y � B. Hence
Kn + 1(A) � B i.e., K(A) � B. Therefore K(A) = �(A).

Theorem 3.6: The relation xKy � x � � (y) is an equivalence relation.

Proof: For all x � Q, x � � (x). Therefore xKx, �x � Q. Let xKy and yKz. Then x � � (y)
and y � � (z). Since � (z) is a complete part containing y, therefore � (y) � � (z). This implies
that x � � (z) i.e. xKz. Therefore K is reflexive and transitive.

Now we have to show that Kn(K2(x)) = Kn + 1(x), for all n > 1.

K2(K2(x)) = {y � Q : y � r · p and r · p � K2(x) � Ø} = K3(x).

K3(K2(x)) = {y � Q : y � r · p and r · p � K2(K2(x)) � Ø}

= {y � Q : y � r · p and r · p � K3(x) � Ø} = K4(x).

Proceeding similarly we obtain Kn(K2(x)) = Kn + 1(x).
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Now we have to show that x � Kn(y) � y � Kn(x), for all n � IN*.

If x � K1(y), then x = y. Therefore y � K1(x).

If x � K2(y), then x � r · p and r · p � K1(y) � Ø � x � r · p, y � r · p � y � r · p and
r · p � K1(x) � Ø � y � K2(x).

If x � K3(y), then x � r · p and r · p � K2(y) � Ø � �z � r · p such that z � K2(y) �
y � K2(z), z � r · p, r · p � K1(x) � Ø � y � K2(z), z � K2(x) � y � K2(K2(x)) � y � K3(x).

Proceeding similarly we obtain x � Kn(y) � y � Kn(x). Thus we obtain
x � Kn(y) � y � Kn(x).

Now xKy � x � � (y) � x � K(y)

� x � Kn(y), for some n � IN*.

� y � Kn(x), for some n � IN*.

� y � K(x) = � (x).

� yKx.

Therefore K is an equivalence relation.

Theorem 3.7: xKy � x�*y.

Proof: xKy � x � � (y) � x � K(y) � x � Kn(y), for some n � IN*. This implies
�r � S, p � Q such that x � r · p and r · p � Kn – 1(y) � Ø. Let x1 � r · p and x1 � Kn – 1(y),
implies that there exists x1 � Q such that x�x1 and x1 � Kn – 1(y). Proceeding similarly we
obtain x1, x2, ..., xn – 1 � Q such that x�x1�x2� ... �xn – 1 and xn – 1 � K1(y) = {y}. This implies
that x�*y.

Therefore xKy � x�*y.

Conversely, let x�*y, then x�ny, for some n � IN*. Then there exist x1, x2, ..., xn – 1 � Q
such that x�x1�x2� ... �xn – 1�y. Therefore there exist r1, r2, ..., rn � S and u1, u2, ..., un � Q
such that x, x1 � r1 · u1; x1, x2 � r2 · u2; ...; xn – 1, y � rn · un.

� x � r1 · u1, r1 · u1 � K1(x1) � Ø; x1 � r2 · u2, r2 · u2 � K1(x2) � Ø; ...;

xn – 1 � rn · un, rn · un � K1(y) � Ø.

� x � K2(x1), x1 � K2(x2), ..., xn – 1 � K2(y).

� x � K(x1), x1 � K(x2), ..., xn – 1 � K(y).

� x � � (x1), x1 � � (x2), ..., xn – 1 � � (y).

� xKx1, x1Kx2, ..., xn –1Ky.

� xKy.

Therefore x�*y � xKy.
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Theorem 3.8: If B is non-empty part of a S-hyper-set Q, then

� (B) = 
b B�
� � (b).

Proof: b � B � � (b) � � (B) � 
b B�
� � (b) � � (B).

Let x � � (B) = K(B) � x � Kn(B), for some n � IN*. Then there exist x1, x2, ..., xn – 1 � Q
such that xKxn – 1, where xn – 1 � B. This implies that x � � (b), for some b � B � x � 

b B�
� �(b).

Therefore �(B) = 
b B�
� � (b).

4. HYPER HOMOMORPHISM

Definition 4.1: Let P and Q be two S-hyper-sets. A mapping f : P � Q is said to be a hyper
homomorphism if

f (r · p) = r · f (p), for all r � S and p � P.

where f (r · p) = {f (t) : t � r · p}.

If f is surjective then we say that f is an epimorphism. If f is bijective then we say that
f is an isomorphism.

Definition 4.2: Let f : P � Q be a mapping from a set P to a set Q and R be a relation
on P. Then we define a relation f (R) on Q by

f (R) = {( f (q), f (q)) � Q � Q : (p, q) � R}.

Theorem 4.3: Let P and Q be two S-hyper-sets. Let f : P � Q be an epimorphism and
R be an equivalence relation on P, then

(i) f (R) is also an equivalence relation on Q.

(ii) If R is regular, then f (R) is also regular.

(iii) If R is strongly regular, then f (R) is also strongly regular.

Proof: Here we prove only (iii).

Let (q, q�) � f (R) and r � S. Then there exists (p, p�) � R such that f (p) = q and
f (p�) = q�. Let t � r · q and t� � r · q�. Then t � r · f (p) = f (r · p) and t� � r · f (p�) = f (r · p�).
This implies that there exist s, s� � P such that s � r · p, s� � r · p� and f (s) = t, f (s�) = t�.
Since R is strongly regular and (p, p�) � R, therefore (r · p) R

——

 (r ·p�). Since s � r · p, s� � r · p�,
therefore (s, s�) � R. This implies that ( f (s), f (s�)) � f (R), where f (s) � r · f (p), f (s�) � r · f (p�)
i.e., t � r · q, t� � r · q�. Thus if t � r · q and t� � r · q�, then (t, t�) � f (R). Hence f (R) is
strongly regular.

Theorem 4.4: Let P and Q be two S-hyper-sets. Let f : P � Q be an epimorphism and
if �* is the fundamental relation on P, then f (�

*) is the fundamental relation on Q.
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Proof: From the above theorem it follows that f (�
*) is a strongly regular equivalence

relation on Q. Let R be any strongly regular equivalence relation on Q and let (q, q�) � f (�
*).

Then there exists (p, p�) � �* such that f (p) = q, f (p�) = q�. Now (p, p�) � �* implies that
there exist p = p0, p1, ..., pn = p� � P such that (pi – 1, pi) � �, i = 1, 2, ..., n. Therefore there
exist r1, r2, ..., rn � S and u1, u2, ..., un � P such that p0, p1 � r1 · u1; p1, p2 � r2 · u2; ...; pn – 1,
pn � rn · un. This implies that f (p0), f (p1) � r1 · f (u1); f (p1), f (p2) � r2 · f (u2); ...; f (pn – 1),
f (pn) � rn · f (un). Since R is strongly regular on Q and ( f (ui), f (ui)) � R, for all i = 1, �, ..., n,
therefore (ri · f (ui)) R

——

 (ri · f (ui)), for all i = 1, �, ..., n. This implies that ( f (pi – 1), f (pi)) � R,
for all i = 1, 2, ..., n and so ( f (p0), f (pn)) � R i.e., (q, q�) � R. Hence f (?) is the smallest
strongly regular equivalence relation on Q and so f (?) is the fundamental relation on Q.

Theorem 4.5: Let P and Q be two S-hyper-sets. Let f : P � Q be an epimorphism and
if �* is the fundamental relation on P, then f (�

*) = ( f (�))*.

Proof: Let (q, q�) � f (�
*). Then there exists (p, p�) � �* such that f (p) = q, f (p�) = q�.

Now (p, p�) � �* implies that there exist p = p0, p1, ..., pn = p� � P such that (pi – 1, pi) � �,
i = 1, 2, ..., n. This implies that ( f (pi – 1), f (pi)) � f (�), for all i = 1, 2, ..., n. This implies that
( f (p0), f (pn)) � ( f (�))* i.e., (q, q�) � ( f (�))*. Therefore f (�

*) ( f (�))*.

Conversely, assume that (q, q�) � ( f (�))*. Then there exist q = q0, q1, ..., qn = q� � Q
such that (qi – 1, qi) � f (�), i = 1, 2, ..., n. Therefore there exist p = p0, p1, ..., pn = p� � P such
that (pi – 1, pi) � �, for all i = 1, 2, ..., n and f (pj) = qj, for all j = 0, 1, 2, ..., n. This implies
that (p0, pn) � �*. This implies that ( f (p0), f (pn)) � f (�

*) i.e., (q, q�) � f (�
*). Therefore

( f (�))* � f (�
*). Hence f (�

*) = ( f (�))*.

Theorem 4.6: Let P and Q be two S-hyper-sets and f : P � Q be an hyper
homomorphism and �*

1 and �*
2 be the fundamental relations on P and Q respectively, then

there is a homomorphism � : P/�*
1 � Q/�*

2 such that the following diagram commutes

P/�*
1 Q/�*

2

�P

�

P Q

�Q

f

where �P and �Q are the natural homomorphisms. Moreover if f is an isomorphism then �
is an isomorphism.
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Proof: We define a mapping � : P/�*
1 � Q/�*

2 by

� (p�1
*) = f (p) �

*
2, for all p�*

1 � P/�*
1

First we have to show that the mapping � is well-defined. Let x– = y–. Then x�*
1y. This

implies that there exist y1, y2, ..., yn – 1 � P such that x�y1�1y2�1 ... �1yn – 1�1y. Therefore
there exist r1, r2, ..., rn � S and u1, u2, ..., un � P such that x, y1 � r1 · u1; y1, y2 � r2 · u2; ...;
yn – 1, y � rn · un. This implies that f (x), f (y1) � r1 · f (u1); f (y1), f (y2) � r2 · f (u2); ...; f (yn – 1),
f (y) � rn · f (un). This implies that f (x)�*

2 f (y) i.e., ( ) ( )f x f y� . Therefore the mapping � is
well-defined.

Let � and � be the actions of S on P/�*
1 and Q/�*

2 respectively. Let r � S and x– � P/�*
1

and let r � x– = y–, where y � r · x. We have y � r · x, therefore f (y) � r · f (x) and so
( ) ( )r f x f y�� . Therefore ( ) ( ) ( ) ( ) ( )r x y f y r f x r x� � � � �� � .This implies

that the mapping � : P/�*
1 � Q/�*

2 is a homomorphism.

Let x � P, then f (x) � Q. Now ��P (x) = � (x
–) = ( )f x  = �Q( f (x)) = �Q f (x), for all

x � P. Therefore the diagram

commutes.

Let f be an isomorphism. Now we show that � is one-one and onto.

Let � (x
–) = � (y

–), then ( ) ( )f x f y� , implies that f (x)��
*
2 f (y). Therefore there exist

z1, z2, ..., zn � Q such that f (x)�2z1�2z2�2 ... �2zn�2 f (y). Since f is one-one and onto there
exist x1, x2, ..., xn � P such that x�1x1�1x2�1 .... �1xn�1y, where f (xi) = zi, i = 1, 2, ..., n. This
implies that x �

*
1 y and so x– = y–. This implies � is one-one. Also since f is onto � is onto.
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