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Abstract: Data for this research were elicited from 99 sesame farmers in Jigawa State, Nigeria via multi-stage sampling
technique. Energy efficiency was studied and degrees of technical efficiency (TE), pure technical efficiency (PTE) and scale
efficiency (SE) were determined using data envelopment analysis (DEA). Additionally, wasteful uses of energy by inefficient
farms were assessed and energy saving of different sources was computed. Furthermore, the effect of energy optimization
on greenhouse gas (GHG) emission was investigated and the total amount of GHG emission of efficient farms was compared
with inefficient ones. Results revealed that only 9.4% DMUs were technically efficient and the average TE score was
0.624; based on BCC model 34.4% DMUs were identified to be efficient and the mean PTE score was 0.79; while based on
scale efficiency only 12.5% DMUs were efficient, and the mean SE score was 0.804. Furthermore it was observed that
approximately 38.17% (1505.58MJha–1) of overall input energies can be saved if performance of inefficient DMUs rose to
a high level. Comparative results of GHG emissions for efficient farmers and inefficient farmers revealed that the amount
of CO2 emissions in efficient DMUs was less than inefficient DMUs. Moreover, findings inferred that, by energy
optimization, total GHG emission can be reduced to an estimated value of 21.87 KgCO2eqha–1.Generally, the application
of data envelopment analysis method can improve energy efficiency and GHG emissions in sesame production, significantly.
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1. INTRODUCTION

One of the five global problems is the threat of a
long-run increase in the surface temperature of the
earth. Global warming must be considered on an
entirely different scale from that of most other
environmental issues. The effects of global
warming, or “greenhouse effect” as it is popularly
called, are long-term and largely irreversible. The
potential effects of climate change are dramatic; no
single country contributes more than small fraction

of greenhouse gases. Data for 1985 suggested that
developed countries’ contribution to CO2 emission
was 3.95 billion tonnes and this was expected to rise
to 6.71 billion tonnes by 2025.

Developing countries, on the other hand,
account for only 1.29 billion tonnes of CO2 emission
in 1985, and the projected increase for 2025 was 5.47
billion tonnes of carbon. Thus, globally in 1985, 5.24
billion tonnes of CO2 was emitted which was
projected to increase to 12.18 billion tonnes by 2025.
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The CO2 emissions are projected to increase by 2.6
percent annually, with USA been the largest
contributor globally, accounting for nearly 18
percent. Climate change is expected to damage
agriculture in some areas but aid it in others. The
principal damage will arise from heat stress,
decreased soil moisture, and an increased incidence
of pests and diseases. In addition, warmer
temperatures could cause the growing cycle of many
plants to accelerate, allowing less time for plant
development before maturity. Increased rainfall
intensity could increase soil erosion in some areas,
whereas other areas could be affected by drought.
Unchecked climate changes over the long-term will
lead to mass migration, political changes, economic
chaos and agricultural disruptions. The tragedy of
the commons suggests that since the atmosphere is
freely accessible, countries will have no incentive
to control the emission of greenhouse gasses from
the territory. On the contrary, they should calculate
that any controls applied unilaterally will penalize
industry and the country’s competitive position,
while providing only a marginal benefit that will
be enjoyed by all countries. Thus the tragedy of the
commons suggests that the precautionary principle
is unlikely to be applied, because countries act in
defence of their own self-interest.

On top of this, the differential impact of global
warming with some countries enjoying, better
climatic conditions or having the resources to
defend themselves against the impact of flooding
and drought etc. will encourage the urgency of the
global situation. The consequences of global
warming clearly indicate two things:

1. both developed and developing nations
have good reason to worry about global
warming;

2. global cooperation is an important
consideration when addressing global
warming issues.

In line with this, the responses to the global
warming issue can be analysed as technical response
and policy response. Technical response attempts
at reducing emission of greenhouse gases and at
increasing the CO2 absorbing capacity of the earth.
However, there are several studies (Sadiq et al., 2015;
Nabevi-Pelesaraei et al., 2014; Qasemi-Kordkheili
and Nabavi-Pelesaraei, 2014; Khoshnevisan et al.,

2013)- though not many and not from all areas-
which showed  beyond doubt that the nature and
methods of agricultural developments are posing
problems to the environment which can bring about
harmful effects in an ample measure. Thus, before
it is too late, policy measures should be adopted to
restore the balance between agriculture and
environment. The approach as it is rightly pointed
out by researchers should be combination of
economic, institutional and technological measures.

Hypotheses Testing

H01: Technical efficiency scores of farmers are
unequal

HA1: Technical efficiency scores of farmers are
equal

H02: Pure technical efficiency scores of farmers
are unequal

HA2: Pure technical efficiency scores of farmers
are equal

H03: Scale efficiency scores of farmers are
unequal

HA3: Scale efficiency scores of farmers are equal

2. METHODOLOGY

The economy of Jigawa State is largely characterized
by informal sector activities with agriculture as the
major economic activity. Most parts of the state lie
within the Sudan Savannah with elements of Guinea
Savannah in the southern part; enjoys vast fertile
arable land to which almost all tropical crops could
adapt. Multi stage sampling technique was used to
generating a total sampling size of 99 respondents.
In the first stage 3 LGAs viz. Taura, Malam-Madori
and Maigatari were purposively selected due to
high intensity of sesame cultivation. The second
stage involved random selection of 3 villages from
each selected LGA; and the last stage involved
selection of 11 respondents from each village using
simple random sampling technique, given a total
sample size of 99. However, only 96 valid
questionnaires were retrieved.  Instrument for data
collection was pre-tested questionnaire coupled
with interview schedule, which was administered
on the respondents. Tool for data analysis was Data
Envelopment Analysis (DEA).
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Table 1
Equivalents for various sources of energy

Items Unit Equivalent MJ Remarks

Human Labour Man-hour 1.96

Improved seeds Kg 25.5 Processed

Nitrogen Kg 60.60

P2O5 Kg 11.1

K2O Kg 6.7

Herbicides Litre 238

Manure Kg 0.3

Sesame product Kg 25

EMPIRICAL MODEL

Data Envelopment Analysis

The DEA is a non-parametric data analytic
technique whose domain of inquiry is a set of
entities, commonly called decision-making units
(DMUs), which receive multiple inputs and produce
multiple outputs. DEA is a linear programming
model that attempts to maximize a service unit’s
efficiency within the performance of a group of
similar service units that are delivering the same
service. In their original paper Charnes et al. (1978)
introduced the generic term “decision making
units” (DMU) to describe the collection of firms,
departments, or divisions which have multiple
incommensurate inputs and outputs and which are
being assessed for efficiency.

Since then it has been successfully used in
many different sectors to assess and compare the
efficiency of DMUs. CCR model which was built
on the assumption of constant returns to scale (CRS),
was suggested by Charnes and Cooper (1984); also
called global efficiency model. Later, Banker et al.
(1984) introduced the BCC model based on variable
returns to scale (VRS); also called the local efficiency
model. DEA models are broadly divided into two
categories on the basis of orientation: input-oriented
and output-oriented. Input-oriented models have
the objective of minimizing inputs while
maintaining the same level of outputs, whereas
output-oriented models focus on increasing outputs
with the same level of inputs. In this study an input-
oriented (VRS) DEA model was used to determine
efficient and inefficient DMUs. Efficiency models
are given below:

The CCR Efficiency Model

It is also called technical efficiency model and the
main assumption behind it is “constant returns to
scale”, under which the production possibility set
is formed without any scale effect. As Charnes et al.
(1978) reported the LP model deployed to generate
the CCR efficiency factors of the DMUs considered
is as follows.

The CCR model (to be solved for each DMUK0
):

Max �CCR (k0) = �� 00

n
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Where Uj is the weight for output j; �i is the
weight for input i; m the number of inputs; n the
number of outputs; K the number of DMUS ; Yjk the
amount of output j of DMUK ; and xik the amount of
input I of DMUK

The BCC Efficiency Model

It is also called the pure technical efficiency model.
The main assumption behind it is “variable returns
to scale”, under which the production possibility
set is the convex combinations of the observed units.
Banker et al. (1984) reported the LP model deployed
to generate BCC efficiency factors of the DMUs is
as follows. The BCC model (to be solved for each
DMUK0):
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The inefficiency that a DMU might exhibit may
have different causes: whether it is caused by the
inefficient operation of the DMU itself or by the
disadvantageous conditions, under which the DMU
is operating, is an important issue to be clarified. In
this regard, comparisons of the CCR and BCC
efficiency scores deserve attention. The CCR model
assumes a radial expansion and reduction of all
observed DMUs (and their nonnegative combinations
are possible); while the BCC model only accepts the
convex combinations of the DMUs as the production
possibility set. If a DMU is fully (100%) efficient in
both the CRR and BCC scores, it is operating at the
most productive scale size. If a DMU has full BCC
score, but a low CCR score, then it is locally efficient
but not globally efficient due to its scale size. Thus,
it is reasonable to characterize the scale efficiency
of a DMU by the ratio of the two scores. So, scale
efficiency is defined as:

SE = �CCR/�BCC ...(7)

Where, �CCR and �BCC are the CCR and BCC
scores of a DMU, respectively. SE = 1 shows scale
efficiency (or CRS) and SE < 1 indicates scale
inefficiency. Scale inefficiency can be due to the
existence of either increasing returns to scale (IRS)
or decreasing returns to scale (DRS). Shortcoming
of the SE score is that it does not demonstrate if a
DMU is operating under IRS or DRS. This is
resolvable by simply imposing non-increasing
returns to scale (NIRS) condition in the DEA model.
IRS and DRS can be determined by comparing the
efficiency scores obtained by the BCC and NIRS
models; so, if the two efficiency scores are equal,
then DRS apply; else IRS prevail.

Energy saving target ratio (ESTR) helps to
determine the inefficiency level of energy usage;
index used is as follows:

� �
Energy saving target

(%) 100
Actual energy input

ESTR ...(8)

ESTR represents each inefficiency level of
energy consumption. The value of ESTR is between
zero and unity. A higher ESTR implies higher
energy use inefficiency, and thus, a higher energy
saving amount.

GHG Emissions

CO2 emission coefficients of agricultural inputs were
used to quantifying GHG emissions in sesame

cultivation. GHG emission was calculated by
multiplying the input application rate by its
corresponding emission coefficient (Table 2).

Table 2
GHG emission coefficients of agricultural inputs

Items Unit GHG coefficient
(kg CO2eq. unit–1)

Nitrogen Kg 1.3

P2O5 Kg 0.2

K2O Kg 0.2

Herbicides L 6.3

Field cultivation ha–1 4.0

Fertilizer spreading ha–1 7.6

Spraying herbicides ha–1 1.4

Harvesting ha–1 10.0

RESULTS AND DISCUSSION

Efficiency Scores of Farmers

The results of distribution of DMUs based on the
efficiency score obtained by the application of CCR
and BCC DEA models is shown in Figure (1). As it
is evident, about 9.4 percent (9 DMUs) and 33
percent (34.4 DMUs) from total farmers were
recognized as efficient farmers under constant and
variable returns to scale assumptions, respectively.
Moreover, 48 percent and 60 percent, with respect
to technical and pure technical efficiency scores
recorded efficiency scores between 0.6 and 1.00
scales. Also, when the BCC model was assumed,
only approximately 2.1 percent had an efficiency
score of less than 0.40; whereas, when the CCR
model was assumed, approximately 13 percent
DMUs had an efficiency score of less than 0.40.
Furthermore, observed returns to scale estimation
indicate that almost all technically efficient farmers
(based on the CCR model) were operating at CRS,
revealing optimum scale of their practices.

The summarized statistics for the three
estimated measures of efficiency are given in Table
(3). The results revealed that the mean values of
technical and pure technical efficiency scores were
0.83 and 0.93, respectively; with technical and pure
technical efficiency scores varying from 0.268-1.00,
and 0.36-1.00 scales for technical efficiency and pure
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technical efficiency respectively. The wide variation
in the technical efficiency implies that all the farmers
were not fully aware of the right production
techniques or did not apply them properly, while
wide variation in pure technical efficiency indicates
that the farmers were irrational in resource
allocation at their disposal. For technical efficiency,
farmers who had efficiency score of less than one,
are inefficient in energy use, while for pure technical
efficiency, target DMUs with less than one efficiency
score are using more energy than required, thus,
indicating ample scope for target farmers to improve
their operational practices in enhancing their energy
use efficiency for adjustment strategy.  If  technical
efficiency is assumed, average farmers need to
increase their technical efficiency by 37.6 percent;
worst inefficient farmers need technical efficiency
adjustment of 73.2 percent, and best inefficient
farmers needs adjustment of 3.2 percent respectively
to be on the frontier surface; while if adjustment for
pure technical efficiency is assumed, average
farmers need to reduce their energy inputs by 21
percent; worst inefficient farmers’ needs 63.8 percent

input reduction, and best inefficient farmers require
3.2 percent input reduction respectively, to be on
the frontier surface. The average scale efficiency
score was relatively low (0.804), indicating the
disadvantageous conditions of scale size. This
implies that if all the inefficient farmers operated at
the most productive scale size, about 19.6 percent
savings in energy use from different sources would
be possible without affecting the yield level.
Therefore, raising the yield and decreasing energy
inputs consumption, the inefficient farmers can
increase their energy efficiency.

Based on literature, technical, pure technical
and scale efficiencies scores respectively, of 0.68, 0.78
and 0.88 for green house gas emission in maize
farming in Niger State, Nigeria (Sadiq et al., 2015);
0.85, 0.99 and 0.86 for greenhouse gas emission in
nectarine production in Sari province of Iran
(Qasemi-Kordkheili  and Nabavi-Pelesaraei, 2014);
0.83, 0.98 and 0.84 for greenhouse gas emission in
potato production in Esfahan province of Iran
(Khoshnevisan et al., 2013); 0.894, 0.965 and 0.922
for greenhouse gas emission in orange production

Figure 1: % Distribution of efficiency score
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in Guilan  province of Iran (Nabevi-Pelesaraei et al.,
2014), and 0.972, 0.879 and 0.900 for greenhouse gas
emission in cucumber farming in Iran (Omid et al.,
2011) had been reported.

Table 3
Deciles frequency distributions of efficiency scores

Efficiency level TE PTE SE

� 0.20 2(2.1) 0 0
� 0.30 11(11.5) 2(2.1) 7(7.3)
� 0.40 17(17.7) 2(2.1) 2(2.1)
� 0.50 18(18.8) 15(15.6) 7(7.3)
� 0.60 16(16.7) 17(17.7) 6(6.2)
� 0.70 14(14.6) 11(11.5) 15(15.6)
� 0.80 5(5.2) 11(11.5) 21(21.9)
� 0.90 4(4.2) 5(5.2) 26(27.1)
1.00 9(9.4) 33(34.4) 12(12.5)
Total 96 96 96
Minimum 0.268 0.362 0.339
Maximum 1.00 1.00 1.00
Mode 1.00 1.00 1.00
Mean 0.624 0.79 0.804
SD 0.20 0.190 0.192

Source: Computed from DEAP 2.1 computer print-out ( ):
percentage

Hypotheses Testing

The results of hypotheses testing using Gini
coefficient in conjunction with Lorenz curve
revealed that farmers had equal efficiencies scores
as shown by Gini coefficient indexes for TE, PTE
and SE respectively (Table 3a-3c). However, these
efficiencies parameters were visualized by the
Lorenz curve (Figure 1a-1c). Therefore, all the null
hypotheses were rejected and the alternatives
accepted.

Table 3a
Gini coefficient indexes for hypotheses testing

Items TE PTE SE

Sample Gini coefficient 0.1797 0.1347 0.1283

Estimate of population value 0.1815 0.1361 0.1297

Return to Scale Properties

The BCC model includes both IRS and DRS, while
NIRS model gives DRS. To determine whether a
DMU has IRS or DRS an additional test is required.
The values of TE for both BCC and NIRS were

calculated and their calculated values were
compared. The same value for TE and NIRS
indicates that the DMU has DRS, while different
values imply that the farm has IRS. Results revealed
RTS for some selected DMUs (Appendix), and
indicates that DMUs viz. 1, 14-43, 46-47, 57-59, 65-80
that are efficient under the CRS model are both pure
and scale efficient, and for inefficient farms,
technological change is required for considerable
changes in yield, while the RTS for all efficient farms
based on technical efficiency were operating at CRS.

However, it was observed that 12 DMUs, 74
DMUs and 10 DMUs had CRS, IRS and DRS
respectively (Table 4). Therefore, a proportionate
increase in all inputs leads to more proportionate
increase in outputs; and for considerable changes
in yield, technological changes in practices are
required. The information on whether a farmer
operates at IRS, CRS or DRS is particularly helpful
in indicating the potential redistribution of
resources between the farmers, and thus, enables
them to achieve higher yield value.

Table 4
Characteristics of farms with respect to return to scale

Scale No. of farms Mean energy output

Sub-optimal 74 11414

Optimal 12 19319.44

Super-optimal 10 18800

Source: Computed from DEAP 2.1 computer print-out.

Ranking the Efficient Farmers

In this study for ranking the 21 extreme efficient
farmers, the cross efficiency scores in each cell of
cross efficiency matrix were calculated based on the
CCR model, and these efficient DMUs were
compared together from efficiency point of view
(Table 5). The results and standard deviation of
superior efficient DMUs indicates DMU with Nos.
24, 58 and 91 with cross efficiency scores of 0.538,
0.574 and 0.680 respectively, had the highest average
cross efficiency values; and can be used as criterion
for inefficient farmers or as benchmarking terms for
establishing best practice management. Therefore,
it is the opinion of the researchers that inefficient
DMUs should use the inputs closer to these
reference DMUs.
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Table 5
Average cross efficiency score for 21 superior efficient

farmers

DMU ACE SD Farmer ACE SD

DMU01 0.208 0.283 DMU47 0.197 0.239

DMU02 0.446 0.376 DMU57 0.208 0.237

DMU06 0.256 0.322 DMU58 0.574 0.603

DMU14 0.227 0.252 DMU59 0.242 0.295

DMU24 0.538 0.653 DMU63 0.338 0.293

DMU30 0.335 0.273 DMU65 0.232 0.228

DMU32 0.245 0.500 DMU67 0.236 0.221

DMU37 0.267 0.489 DMU80 0.337 0.217

DMU39 0.490 0.418 DMU83 0.277 0.338

DMU43 0.485 0.403 DMU91 0.680 0.519

DMU46 0.412 0.230

Source: Computed from DEAP 2.1 computer print-out.

Performance Assessment

The performance assessment was investigated by
comparing a particular DMU system with key
competitors DMUs having best performance within
the same group or another group performing similar
functions, process called benchmarking (Table 6).
Efficient DMUs can be selected by inefficient DMUs
as best practice DMUs, making them a composite
DMU instead of using a single DMU as a
benchmark. A composite DMU is formed by
multiplying the intensity vector ë in the inputs and
outputs of the respective efficient DMUs. BCC is
modeled by setting the convexity constraint;
summation of all intensity vectors in a benchmark
DMU must be equal to 1. The results in Table 6
showed the worst inefficient DMUs (DMU89,
DMU76 and DMU75) and the best inefficient DMUs
(DMU31, DMU35, DMU38, DMU61 and DMU69).
For instance, in the case of DMU89 and DMU76,
the composite DMU that represents the best practice
or reference composite benchmark DMU’s is formed
by the combination of DMU24 and DMU32.

This implies that DMU 89 and DMU76 are
closer to the efficient frontier segment formed by
these efficient DMUs, represented in the composite
DMU. Selection of these efficient DMUs was made
on the basis of their comparable level of inputs and
output yield to DMU89 and DMU76. However,
benchmark DMUs for DMU89 and DMU76 are

expressed as 24(0.229) 32(0.771) for DMU89 and
24(0.241) 32(0.759) for DMU76, respectively, where
24 and 32 are the DMU numbers, while the values
between brackets are the intensity vector ë for the
respective DMUs. The high value of intensity vector
� for DMU32 (0.653) indicates that its level of inputs
and output is closer to DMU75 compared to other
DMUs.

Table 6
Performance assessment of farms

DMU PTE score Benchmarks

(%)

DMU89 33.9 24(0.229) 30(0.771)

DMU76 33.9 24(0.241) 32(0.759)

DMU75 34.0 32(0.653) 42(0.347)

DMU31 99.8 80(0.263) 59(0.030) 47(0.134) 46(0.573)

DMU35 99.8 80(0.284) 47(0.111) 59(0.017) 46(0.588)

DMU38 99.9 47(0.010) 80(0.340) 46(0.380) 59(0.270)

DMU61 99.9 47(0.229) 65(0.294) 14(0.230) 57(0.246)

DMU69 99.9 47(0.010) 80(0.340) 46(0.340) 59(0.270)

Source: Computed from DEAP 2.1 computer print-out.

Comparing Input Use Pattern of Efficient and
Inefficient Farmers

The quantity of source wise physical inputs and
output for 12 most efficient and inefficient farmers
based on CCR model were compared (Table 7).
Results revealed that the use of all inputs by efficient
farmers were less than that of inefficient farmers.
However, use of herbicides caused the main
difference between efficient farmers and inefficient
ones; efficient farmers used approximately 41.33
percent less herbicides than inefficient farmers.
Furthermore, production yield for inefficient
framers was observed to be lower than that of
efficient farmers, i.e approximately 57.15 percent
less than the production yield obtained by efficient
farmers.

Setting Tealistic Input Levels for Inefficient
Farmers

A pure technical efficiency score of less than one
for a farmer implies at present conditions he is
consuming higher energy values than required.
Therefore, it becomes imperative to suggest realistic
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respect to crops, and losses reduction by improving
management practices can improve energy use.
Moreover, findings revealed ESTR percentage for
total energy input to be 38.17 percent, implying that,
by adopting the recommendations reported in this
study, on the average about 38.17 percent (1505.58
MJha–1) from total input energy in sesame
production could be saved without affecting the
yield level. Other findings such as Sadiq et al.(2015)
reported that 36.2 percent (768.89 MJha–1) from total
energy input in small-scale maize production in
Niger State, Nigeria could be saved without
affecting the yield level; Sattari-Yuzbashkandi et al.
(2014) found that 26.53  percent (21809.96  MJha–1)
from total energy input in open-field grape
production in East-Azerbaijan of Iran could be saved
without affecting the yield level; Qasemi-Kordkheili
and Nebavi-Pelesaraei (2014) reported that 3.25
percent (1309 MJha–1) from total energy input in
nectarine orchard production in Sari region of Iran
could be saved without affecting the yield level;
Nebavi-Pelesaraei et al. (2014) discovered that 12.9
percent (3314 MJha–1) from total energy input in
orange production in Guilan province of Iran could
be saved without affecting the yield level;
Khoshnevisan et al. (2013) found that 13 percent

Table 7
Amounts of physical inputs and output for efficient

farmers and inefficient farmers

Input Inefficient Efficient Difference
(MJha–1) (MJha–1)  (%)
(A) (B) [(A-B)/A*100]

Human labour 675.84 609.10 9.88

Seed 88.28 83.18 5.78

Nitrogen 1307.97 989.09 24.38

P2O5 239.56 181.17 24.38

K2O 144.48 109.36 24.31

SSP 681.64 470.97 30.91

Manure 480.32 390.98 18.60

Herbicides 321.23 188.45 41.33

Output (sesame kg) 12293.65 19319.44 –57.15

Source: Computed from DEAP 2.1 computer print-out.

levels of energy to be used from each source for
every inefficient farmer in order to avert wastage
of energy. Table 8 provides information for setting
realistic input levels viz. average energy usage in
actual and optimum conditions (MJ ha–1), possible
energy savings and ESTR percentage for different
energy sources. It is evident that, total energy input
could be reduced to 1505.58 MJha–1 while maintaining
the current production level and also assuming no
other constraints factors. Optimum energy required
for agro-chemicals viz. NPK fertilizer, SSP fertilizer
and herbicides are 566.7 MJha–1, 296.9 MJha–1 and
166.96 MJ ha–1, respectively.

Moreover, optimum energy required for
manure, human labour and seeds energy inputs
were 196.65 MJha–1, 251.2 MJha–1 and 27.17 MJha–1,
respectively.

Furthermore, ESTR results revealed that if all
farmers operated efficiently, reductions in Nitrogen,
P2O5, K2O, SSP fertilizer, herbicides, human labour,
manure and seed energy inputs by 33.6%, 34.50%,
33.65%, 44.21%, 52.75%, 40.36%, 35.82% and 30.27%
would be possible without affecting the yield level.
These energy inputs were not efficiently utilized due
to excess use. High percentages of agro-chemical
energy inputs can also be interpreted to be attributed
to subsidized prices and free availability of these
inputs in the study area. Accurate agro-chemical
management by increasing its profitability with

Table 8
Energy saving (MJha-1) from different sources if

recommendations of study are followed

Input Actual Optimum energy Energy saving ESTR
energy requirement (%)
used (MJha–1)
(MJha–1)

Human 701.27 450.07 251.2(16.69) 35.82
labour

Seed 89.76 62.59 27.17(1.81) 30.27

Nitrogen 1296.84 860.32 436.52(28.99) 33.66

P2O5 237.54 155.59 81.95(5.44) 34.50

K2O 143.31 95.08 48.23(3.20) 33.65

SSP 671.55 374.65 296.9(19.72) 44.21

Manure 487.2 290.55 196.65(13.06) 40.36

Herbicides 316.54 149.58 166.96(11.09) 52.75

Total energy 3944.01 2438.43 1505.58 38.17
input

Source: Computation from DEAP 2.1 computer print-out ( ) :
percentage
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input usage by performance monitoring can help
to reduce fertilizer energy inputs, thus minimizing
their environmental impacts. Moreover, integrating
legume’s into the crop rotation, application of
composts, chopped residues or other soil
amendments may increases soil fertility in the
medium term, thus reduce the need for chemical
fertilizer energy inputs.

Improvement in Energy Indices

The energy indices for sesame production in
optimum use of energy are given in Table 9.
Evidently, by optimization of energy use both the
energy ratio and energy productivity indicators
respectively, can improve by 61.68 percent and 61.54
percent.  In optimum consumption of energy inputs,
improvement in net energy indicator by
approximately 16.32 percent will increase to
10733.57MJha–1.

Therefore, it can be inferred that sesame is a
crop with relatively high requirements for
nonrenewable energy resources; its fertilizer
requirement was high and consumes relatively high
amount of herbicides. It’s evident that most farmers
in the study area lack adequate knowledge on
efficient input use and there is a common belief that
productivity increase with increase use of energy
resources. Findings from this research demonstrate
how energy use efficiency in sesame production

(1506.63 MJha–1) from total energy input among
potato growers in province of Esfahan in Iran could
be saved without affecting productivity level;
Mousavi-Avval et al.(2012) reported that 16.4
percent (1571.6 MJha–1) from total energy input in
sunflower production in Golestan province of Iran
could be saved without affecting the yield level.
Also, Mousavi-Avval et al. (2011) reported about 20
percent of overall resources in soybean production
could be reduced if all the farmers operated
efficiently. Therefore, it is possible to advise the
inefficient farmers regarding better operating
practices followed by his peers in order to reduce
the input energy levels to the optimum levels
indicated in the analysis while maintaining the
present output level achieved.

Figure 2 reveals distribution of saving energy
from different sources in sesame production. It was
evident that maximum contribution to the total
saving energy was 28.99 percent from Nitrogen
fertilizer. However, agrochemical viz. NPK fertilizer,
SSP fertilizer and herbicides energy inputs
contributed 68.44 percent to the total saving energy.
From these findings, the researchers/authors
opined that improving usage pattern of these inputs
should be considered as priorities for providing
significant improvement in energy productivity for
sesame production in the study area.  Applying a
better management technique, employing the
conservation tillage methods and also controlling

Figure 2: Total saving energy (1505.58 MJ/ha)



144 International Journal of  Tropical Agriculture © Serials Publications, ISSN: 0254-8755

Sadiq M.S., Singh I.P., Umar S.M., Grema I.J., Usman B.I. and Isah M.A.

may be improved by application of operational
management tools to assess farmers’ performance.
Averagely, considerable savings in energy inputs
may be obtained by adopting best practices of better-
performing farmers in crop production process.
Adoption of energy-efficient cultivation systems
will help in energy conservation and better resource
allocation. Strategies such as providing better
extension and training programs for farmers, and
use of advanced technologies should be developed
in order to increase energy efficiency of agricultural
crop productions in the study area.

Moreover, farmers should be trained with
respect to optimal use of inputs, especially fertilizers
and herbicides application, as well as employing the
new production technologies. Also, based on these
findings agricultural institutes in the study area are
advised to establish energy-efficient and
environmentally healthy sesame production
systems in the study area.

Table 9
Improved energy indices for sesame Production

Items Unit Qty in Qty in Difference
Actual optimum (%)
use use

Energy ratio – 3.34 5.40 61.68

Energy productivity KgMJ–1 0.13 0.21 61.54

Specific energy MJKg–1 7.49 4.63 38.18

Net energy MJha–1 9227.99 10733.57 16.32

Direct energy MJha–1 701.27 450.07 35.82

Indirect energy MJha–1 3242.74 1988.36 38.68

Renewable energy MJha–1 791.03 512.66 35.19

Non-renewable energy MJha–1 3152.98 1925.77 38.92

Total input energy MJha–1 3944.01 2438.43 38.17

Source: Field survey, 2015.

Comparison of GHG Emissions between Efficient
and Inefficient Farmers

GHG emission of efficient and inefficient DMUs was
investigated to determine the role of energy
optimization in environmental condition of sesame
production in the study area (Table 10). Results
revealed the GHG emissions of 12 most efficient and
84 inefficient farmers to be 40.57 kg CO2eq and 56.87

kg CO2eq ha–1, respectively. As it can be seen, the
total GHG emission of inefficient units was more
than GHG emission of efficient farmers by
approximately 28.57 percent. The highest difference
between efficient and inefficient units was observed
in Nitrogen fertilizer (42.08%). Therefore, nitrogen
fertilizer consumption of inefficient units should be
close to that of most efficient. For this purpose, the
selection of recommended finding dose is the best
solution. Also, applying cultural and biological
controls are major solution to reduction of chemical
fertilizers and biocide.

Table 10
Comparison of GHG emissions between efficient and

inefficient farmers

Input Inefficient Efficient Difference
(KgCO2ha–1) (KgCO2ha–1) [(A-B)/A]*100
(A)  (B)

1. Human Labour

Field cultivation 0.112 0.1 10.7

Fertilizer 0.0228 0.0228 0
application

Herbicides 0.0056 0.0042 25
application

Harvesting 0.0592 0.0518 12.5

2. Nitrogen 28.05 21.22 24.4

3. P2O5 4.216 3.26 25.1

4. K2O 3.237 2.448 24.4

5. SSP 12.282 8.486 30.9

6. Herbicides 8.505 4.998 41.5

Total 56.5 40.57 28.2

Source: Computation from DEAP 2.1 computer print-out.

Figure 3 displays the amount of each input for
efficient and inefficient units from GHG emissions
point of view. The results indicated that the GHG
emission of Nitrogen was highest; followed by SSP
fertilizer and then biocide (herbicide). It can be
observed, that Nitrogen fertilizer consumption of
inefficient units was more than that of efficient units.
However, most values of the main inputs of GHG
creator for efficient and inefficient were relatively
not closer. Therefore, Nitrogen fertilizer, SSP
fertilizer and herbicides consumption should be
reduced in all units.
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Reduction of GHG Emission for Sesame Farmers

GHG emission of efficient and inefficient DMUs was
investigated to determine the role of energy
optimization in environmental condition of sesame
production in the study area (Table 11). The total
GHG emissions of actual and optimum are 56
kgCO2eq ha–1 and 34 kg CO2eq.ha–1, respectively.
From the results, it was observed that most amount
of CO2 emission was related to chemical fertilizers,
and then followed by biocide (herbicides).

Therefore, energy consumption can be reduced
by improving some agricultural practices and
technological changes in inefficient DMUs, thereby
reducing the GHG emission in the study area.
Furthermore, results indicated that decreasing
actual GHG emission by 39.29 percent will reduce
GHG emission to 22 kgCO2eqha–1; total GHG
emissions can be reduced by about 22 kgCO2eqha–

1. So, it can be inferred that energy consumption had
a direct relationship with GHG emissions.

Figure 4 displays the share of each potential
input in total GHG reduction in sesame production.
The results indicated that Nitrogen fertilizer had the
highest share in GHG emissions reduction (43%),

Figure 3: The quantity of GHG emission of Sesame production®

followed by SSP fertilizer with 24.7% and biocide
(herbicide) with 20.1%. Therefore, using renewable
sources of energy can lead to cultivation with less
GHG emission.

Table 11
Amounts of GHG emission for actual and optimum

Input Actual Optimum GHG
(KgCO2ha–1) (KgCO2ha–1) reduction

(KgCO2ha–1)

1. H. Labour

Field cultivation 0.116 0.076 0.04

Fertilizer 0.0228 0.015 0.0078
application

Herbicides 0.0056 0.0042 0.0014
application

Harvesting 0.0592 0.037 0.0222

2. Nitrogen 27.82 18.46 9.4

3. P2O5 4.28 2.80 1.5

4. K2O 3.21 2.13 1.1

5. SSP 12.1 6.75 5.4

6. Herbicides 8.38 4.02 4.4

Total GHG emission 56 34.02 21.87

Source: Computed from DEAP 2.1 computer print-out.
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CONCLUSION AND RECOMMENDATIONS

The study investigates energy efficiency in sesame
production in Jigawa State, Nigeria using non-
parametric (DEA) approach to determine farmers’
efficiency.  This methodology helped to identify the
impact of energy use from different inputs on
output, measure efficiency scores of farmers,
segregate efficient farmers from inefficient farmers
and identify wasteful uses of energy by inefficient
farmers. Results indicated that there was substantial
production inefficiencies among the farmers; in such
a way, that 21% potential  reduction in total energy
input use may be achieved if all farmers operated
efficiently and assuming no other constraints on this
adjustment. Comparison between actual and
optimum energy use revealed that 1505.58MJha–1

can be saved if all inefficient DMUs use energy
based on the recommendations of this study.

The comparative results of GHG emissions for
efficient farmers and inefficient farmers revealed
that the amount of CO2 emissions in efficient DMUs
was less than inefficient DMUs. Based on results, it
was observed that the total GHG emission in sesame
production in the study area can be reduced to the
value of 21.87KgCO2 ha–1. However, it was evident
that sesame production in the study area showed a
high sensitivity to non-renewable energy sources
which may result in both environmental
deterioration and rapid rate of depletion of these
energetic resources.

Figure 4: Share of each input in GHG emission reduction

Therefore, policies emphasizing on
development of new technologies to substitute agro-
chemical with renewable energy sources keeping
in view efficient use of energy and lowering
environmental footprints should be enacted.
Furthermore, development of renewable energy
usage technologies such as better management
techniques, employing conservation tillage
methods, utilization of alternative sources of energy
such as organic fertilizers are suggested to reduce
the environmental footprints of energy inputs and
ensure sustainable food production systems.
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