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Abstract. In this paper, we give a generalization of the Nelson Hamiltonian.
Then, by computing explicitly the diffusion constant, we prove a functional

central limit theorem (FCLT) for additive functionals associated with this
Hamiltonian. This result recovers the classical and the relativistic cases.
Finally a fractional version of this FCLT is given.

1. Introduction

Let (Xt)t∈R be an ergodic stationary Markov process and A be its infinitesimal
generator. A central limit theorem for additive functionals of this process is said
to hold for some suitable function f , if

1√
s

∫ st

0

f(Xr)dr

converges to a Brownian motion σ2Bt in the distribution sense as s → ∞. Here
the covariance parameter σ2 is given by

σ2 = 2(f,A−1f)L2 .

This was studied in e.g. [2, 3, 5, 11]. In our setting, we consider the case where
the generator A is derived from a generalization of the Nelson model in quantum
field theory where the particle part is perturbed by a so called Bernstein function
Ψ. We prove in this paper a functional central limit theorem for random process
associated with the Hamilton operator of the generalized Nelson model

HΨ
N = HΨ

p ⊗ 1l + 1l⊗Hf +Hi, (1.1)

in L2(Rd)⊗ Fb(L
2(Rd)), where

HΨ
p = Ψ(−∆) + V (1.2)

denotes the generalized Schrödinger operator, Hf is the free field Hamiltonian and
Hi is the interaction Hamiltonian. Due to the fact that Bernstein functions with
vanishing right limits at the origin are in a one to one correspondence with subor-
dinators, the operators Ψ(−∆) generate subordinate Brownian motion. These are
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non-Gaussian Lévy processes with cadlàg paths (i.e., right continuous paths with
left limits) having jump discontinuities. On the other hand, the boson Fock space
Fb can be realized as an L2-space over a probability space (Q,G) and therefore
an infinite dimensional Ornstein-Uhlenbeck process (ξt)t∈R was derived with path
space C(R, Q), indexed by the real line and taking values in Q. We prove the
functional central limit theorem by using the Kipnis-Varadhan technique which
requires, in its present form, an underlying Markov structure. Then, we construct
our measure P taking in consideration that our coordinate process (Xt)t∈R should
be Markovian. On the other hand, we consider the additive functional of the re-

versible Markov process (Xt)t∈R of the form FΨ
t =

∫ t

0
LΨ
Nf(Xs)ds, where f denotes

a function in L2(Rd) ⊗ L2(Q) and LΨ
N is the ground state transformation of the

generalized Nelson Hamiltonian. Then we deduce a functional central limit theo-
rem for the additive functional FΨ

t relative to P and we give an explicit form of
the variance. The aim here is, in fact, to calculate explicitly the diffusion constant
σ2
Ψ(f) for additive functionals FΨ

t associated to the generalized Nelson model.
The main results in this paper is Theorem 5.3. In Theorem 5.3 we show that

for each t, FΨ
st/

√
s converges to σ2

Ψ(f)Bt as s → +∞, where

σ2
Ψ(f) = 2

(
fφg, [H

Ψ
0 , f ]φg

)
L2(P0)

.

Then we give some examples of the generalized variance. This paper is organized
as follows. In section 2, we introduce the generalized Nelson model in Fock space.
Then, section 3 is devoted to give the representation of the generalized Nelson
model in function space. Section 4 is contributed to construct a P (ϕ)1-process
associated to the generalized Nelson Hamiltonian. In section 5, we prove a Func-
tional central limit theorem of the additive functional associated to the generalized
Nelson model. Then we give some examples of the variance.

2. Generalized Nelson Model in Fock Space

The generalized Nelson Hamiltonian is realized as a self-adjoint operator
bounded from below on some Hilbert space. Since the generalized Nelson model
describes interaction particles and boson field as is already mentioned, the general-
ized Nelson Hamiltonian consists of a particle part, a boson part and an interaction
as follows

HΨ
N = HΨ

p ⊗ 1l + 1l⊗Hf +Hi. (2.1)

We first explain the particle part of the generalized Nelson Hamiltonian. We
begin by defining the function Ψ given in (2.1). Then, we introduce a class B of
functions

B =

{
Ψ ∈ C∞(]0,+∞[),Ψ(x) ⩾ 0 and (−1)n(

dnΨ

dxn
)(x) ⩽ 0 ∀n = 1, 2, · · ·

}
.

An element of B is called a Bernstein function. We also define the subclass

B0 =

{
Ψ ∈ B, lim

x→0+
Ψ(x) = 0

}
.
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Bernstein functions are positive, increasing and concave. B is a convex cone con-
taining the nonnegative constants . Examples of functions in B0 include Ψ(x) =
cxα, c ⩾ 0, 0 ⩽ α ⩽ 1, and Ψ(x) = 1 − e−αx, α ⩾ 0. The energy of the particle
is described by the generalized Schrödinger operator obtained under a class of
Bernstein functions of the Laplacian:

HΨ
p = Ψ(−∆) + V, (2.2)

acting on L2(Rd). The condition on V is mentioned later. This extension includes
beside usual classical, relativistic and fractional Schröıdinger operators of the form
(−∆)

α
2 + V, 0 ⩽ α ⩽ 2 Next we explain the boson part. The boson Fock space Fb

over L2(Rd) is defined by

Fb = Fb(L
2(Rd) =

∞⊕
n=0

(⊗n
symL

2(Rd)). (2.3)

We denote the annihilation operator and the creation operator by a(f) and a∗(f),
f ∈ L2(Rd), respectively, which satisfy canonical commutation relations:

[a(f), a∗(g)] = (f̄ , g)1l, [a(f), a(g)] = 0 = [a∗(f), a∗(g)] (2.4)

on some dense domain of Fb.
In terms of the annihilation operator and the creation operator the field operator

Φ(f) on Fb is defined by

Φ(f) =
1√
2
(a∗(f̄) + a(f)), (2.5)

and its conjugate momentum by

Π(f) =
i√
2
(a∗(f̄)− a(f)). (2.6)

For real-valued L2-functions f and g commutation relations are given by

[Φ(f),Π(g)] = i(f, g), [Π(f),Π(g)] = [Φ(f),Φ(g)] = 0. (2.7)

We shall define the free field Hamiltonian Hf . Denote by dΓ(T ) : Fb → Fb

the second quantization of a self-adjoint operator T : L2(Rd) → L2(Rd). The
self-adjoint operator Hf is in particular defined by

Hf = dΓ(ω), (2.8)

where ω is the dispersion given by

ω = ω(k) =
√
|k|2 + ν2 (2.9)

in L2(Rd) and ν ≥ 0 denotes the mass of a single boson. Then formally we may
write the free field Hamiltonian:

Hf =

∫
Rd

ω(k)a∗(k)a(k)dk. (2.10)

Physically, this describes the total energy of the free field since the term a∗(k)a(k)
gives the number of bosons carrying momentum k, multiplied with the energy ω(k)
of a single boson, and integrated over all momenta. Commutation relations are
given by

[Hf , a(f)] = −a(ωf), [Hf , a
∗(f)] = a∗(ωf) (2.11)
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for f ∈ D(ω) on some dense domain of Fb. Then we deduce that

[Hf ,Π(f)] = −iΠ(ωf). (2.12)

For each x ∈ Rd, the interaction Hi(x) is defined by

Hi(x) =
1√
2

{
a∗(φ̂e−ikx/

√
ω) + a(˜̂φeikx/√ω)

}
, (2.13)

where φ : Rd → R is the so-called charge distribution, φ̂ its Fourier transform and˜̂φ(k) = φ̂(−k). We then define the interaction Hi : H → H by the constant fiber
direct integral

(HiΨ)(x) = Hi(x)Ψ(x), Ψ ∈ H

such that Ψ(x) ∈ D(Hi(x)) for almost every x ∈ Rd. Here we use the identification

H =
{
F : Rd → Fb

∣∣∣∣∫
Rd

∥F (x)∥2Fb
< ∞

}
.

Formally it is written as

Hi(x) =

∫
1√
2ω(k)

(φ̂(k)e−ikxa∗(k) + φ̂(−k)eikxa(k))dk. (2.14)

We will require the following assumptions to be fulfilled throughout the rest of the
paper:

Assumption 2.1. (1) φ̂(k) = φ̂(−k), φ̂/
√
ω, φ̂/ω, φ̂/ω

√
ω ∈ L2(Rd).

(2) The external potential V = V+ − V− is Kato-decomposable. [12]
(3) HΨ

p has a unique strictly positive ground state φp ∈ D(HΨ
p ) with HΨ

p =

Epφp, ∥φp∥2L2(Rd) = 1, where Ep = inf σ(Hp).

(4) Similarly, HΨ
N has a unique strictly positive ground state φg ∈ D(HΨ

N )
with HΨ

Nφg = Eφg, ∥φg∥2 = 1, where E = inf σ(HΨ
N .)

3. Generalized Nelson Model in Function Space

Let K be a Hilbert space over R, defined by the completion of D(1/
√
ω) ⊂

L2(Rd) with respect to the norm determined by the scalar product

(f, g)K =

∫
Rd

f̂(k)ĝ(k)
1

2ω(k)
dk, (3.1)

i.e.,

K = D(1/
√
ω)

∥·∥K

.

Let T : K → K be a positive self-adjoint operator with Hilbert-Schmidt inverse
such that

√
ωT−1 is bounded. Define the space C∞(T ) = ∩∞

n=1D(Tn), and write

Kn = C∞(T )
∥Tn/2·∥K

.

We construct a triplet K+2 ⊂ K ⊂ K−2, where we identify K ∗
+2 = K−2. Write

Q = K−2, and endow Q with its Borel σ-field B(Q), defining the measurable space
(Q,B(Q)).
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Consider the set Y = C(R, Q) of continuous functions on R, with values in Q,
and denote its Borel σ-field by B(Y ). We define a Q-valued Ornstein-Uhlenbeck
process (ξt)t∈R,

R ∋ t 7→ ξt ∈ Q

on the probability space (Y ,B(Y ),G) by ξt(f) = ((ξt, f)) for f ∈ K+2, where
((., .)) denotes the pairing between Q and K+2. Then for every t ∈ R and f we
have that ξt(f) is a Gaussian random variable with mean zero and covariance

EG [ξt(f)ξs(g)] =

∫
Rd

f̂(k)ĝ(k)e−|t−s|ω(k) 1

2ω(k)
dk. (3.2)

Note that by (3.2) every ξt(f) can be uniquely extended to a test function f ∈ K ,
which for simplicity we will denote in the same way.

In what follows we will need conditional measures of this Gaussian measure.
Since the conditional expectation EG [1A|σ(ξ0)] with respect to σ(ξ0) is trivially
σ(ξ0)-measurable, there exists a measurable function h : Q → R such that h ◦
ξ0(ω) = EG [1A|σ(ξ0)](ω). We will use the notation h(ξ) = G(A|ξ0 = ξ). However,
we remark that G(A|ξ0 = ξ) is well defined for ξ ∈ Q \ NA with a null set NA

only. Nevertheless, since Q is a separable complete metric space, there exists a
null set N such that G(A|ξ0 = ξ) is well defined for all A and ξ ∈ Q \ N . The
notation Gξ(·) = G(· |ξ0 = ξ) for the family of conditional probability measures
G(·|ξ0 = ξ) on Y with ξ ∈ Q \ N makes then sense, and it is seen that Gξ is a
regular conditional probability measure. Then we have EG [...] =

∫
Q
EGξ [...]dG(ξ),

where G is the distribution of the random process (ξt)t∈R on the measurable space
(Q,B(Q)), and it is the stationary measure of G. Thus we are led to the probability
space (Q,B(Q),G). Let dN(y) = φ2

p(y)dy, y ∈ Rd is a probability measure on

Rd. Recall that LΨ
p is a self-adjoint operator acting in L2(Rd, dN), which is defined

by LΨ
p = 1

φp
(HΨ

p −Ep)φp. The connection between Fb and L2(Q, dG) is given by

the Wiener-Itô-Segal isomorphism θ : Fb −→ L2(Q, dG) by θΦ(f)θ−1 = ξ(f). Let

P0 = N⊗G. (3.3)

Then P0 is a probability measure on the product space Rd×Q. The unitary equiv-
alence between L2(Rd×Q, dP0) and H is implemented by the unitary operator

Up ⊗ θ : H −→ L2(Rd×Q, dP0).

Then, we have the following identification

H ∼= L2(Rd)⊗ L2(Q) ∼= L2(Rd×Q, dP0). (3.4)

For convenience, we write L2(Rd×Q, dP0) simply as L2(P0), moreover L2(N) and
L2(G) for L2(Rd, dN) and L2(Q, dG), respectively. We define the interaction and
the free field Hamiltonian on L2(P0) by

H̃i(y) = θHiθ
−1(y) = ξ(φ̃(· − y))

for every y ∈ Rd and

H̃f = θHfθ
−1.
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Here φ̃ is the inverse Fourier transform of φ̂/
√
ω. We simplify the notations Hf for

H̃f , and Hi for H̃i in what follows. Then, the Nelson Hamiltonian HΨ
N is unitary

equivalent to HΨ in L2(P0), which is defined by

HΨ = LΨ
p ⊗ 1l + 1l⊗Hf +Hi. (3.5)

Consider the space of càdlàg paths X̃ = D(R,Rd) with values in Rd and the

σ-field B(X̃ ) generated by the cylinder sets of X̃ . Let (bt)t∈R = (BTΨ
t
)t∈R be

the subordinate Brownian motion defined on (X̃ ,B(X̃ )) with respect to a given
Bernstein function Ψ. Here TΨ

t is the Lévy subordinator uniquely associated with
Ψ. In fact, the process (bt)t∈R is càdlàg with Brownian paths at random times
distributed by the law of TΨ

t . Let νx denotes the path measure of this process
starting from x at time t = 0. Then the subordinate Brownian motion is a Lévy
process with the property

E0
ν [e

−iu·bt ] = E0
ν [e

−u·uTΨ
t

2 ] = e−tΨ(u·u
2 ).

The functional integral representation for HΨ
N is obtained by the same way as

for classical and relativistic Nelson Hamiltonians. The Feynman-Kac formula of

e−tHΨ
N can be given by making use of the subordinate Brownian motion (bt)t∈R

and the infinite dimensional OU-process (ξt)t∈R.

Proposition 3.1. Let Φ,Ψ ∈ L2(P0) and s ≤ 0 ≤ t. Then

(Φ, e−(t−s)HΨ
NΨ)L2(P0)

=

∫
Rd×Q

E(x,ξ)
ν⊗G

[
Φ(bs, ξs)φp(bs)e

−
∫ t
s
τbr ξr(φ̃)drΨ(bt, ξt)φp(bt)e

−
∫ t
s
V (br)dr

]
dx⊗ dG.

Proof. The proof is analogue to the proof of [12, Theorem 6.3]. □

4. Reversible Markov Process for the Generalized Nelson Model

By the same procedure as in [6] and [7], we show the existence of a stationary
reversible Markov process (Xt)t∈R generated by the ground state transformation
of HΨ. This class of process called P (ϕ)1-process. Set

dM0 = φ2
gdP0,

which is also a probability measure on Rd×Q since φg is normalized. We define
the unitary operator Ug : L2(Rd×Q, dM0) −→ L2(Rd×Q, dP0) by

Ug : Φ 7→ φgΦ. (4.1)

We also set

S = L2(Rd×Q, dM0). (4.2)

We define the self-adjoint operator LΨ
N in S by the ground state transformation

of HΨ as follows:

LΨ
N =

1

φg
(HΨ − E)φg,
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where E = inf σ(HΨ) and note that φg is strictly positive. Let X̃Q = D(R,Rd×Q)
be the space of càdlàg paths with values in Rd ×Q on the whole real line. Define
the family of set functions {MΛ|Λ ⊂ [0,∞),#Λ < ∞} on Σ#Λ = Σ× · · · × Σ︸ ︷︷ ︸

#Λ

by

MΛ(A0 ×A1 × ...×An)

=
(
1lA0

, e−(t1−t0)L
Ψ
N1lA1

e−(t2−t1)L
Ψ
N1lA1

...1lAn−1
e−(tn−tn−1)L

Ψ
N1lAn

)
S

for Λ = {t0, · · · , tn}. The family of set functions MΛ satisfies the following con-
sistency condition

M{t0,t1,...,tn+m}((×n
i=0Ai)× (×n+m

i=n+1R
d×Q)) = M{t0,t1,...,tn}(×

n
i=0Ai).

Define the projection πΛ : (Rd×Q)[0,∞) −→ (Rd×Q)Λ by ω 7−→ (ω(t0), ..., ω(tn))
for Λ = {t0, ..., tn}. Then,

A = {π−1
Λ (A)|A ∈ Σ#Λ, #Λ < ∞}

is a finitely additive family of sets, and the Kolmogorov extension theorem yields
to the existence of a unique probability measure M on ((Rd×Q)[0,∞), σ(A )) such
that

M(π−1
Λ (A1 × ...×An) = MΛ(A1 × ...×An)

for all Λ ⊂ [0,∞) with #Λ < ∞ and Aj ∈ Σ, and

M{t0,··· ,tn}(A0 × · · · ×An) = EM

 n∏
j=0

1lAtj
(Ztj )

 . (4.3)

Here (Zt)t≥0 denotes the coordinate process defined by

Zt(ω) = ω(t) for ω ∈ X̃ +
Q = D([0,∞),Rd ×Q).

Let Z0 = z = (y, ξ) ∈ Rd×Q. Define the regular conditional probability measure
on ((Rd×Q)[0,∞), σ(A )) by

Mz(·) = M(·|Z0 = z), z ∈ Rd×Q.

Since the distribution of Z0 is dM0, we note that

M(A) =

∫
Rd×Q

Ez
M[1lA]dM0.

Definition 4.1. A process (Yt)t∈R is said to be reversible if (Yt1 , Yt2 , · · · , Ytn) has
the same distribution as that of (Yτ−t1 , Yτ−t2 , · · · , Yτ−tn) for all t1, ..., tn, τ ∈ Z.

Lemma 4.2. (Markov property) The process (Zt)t≥0 is a Markov process on

the probability space (X̃ +
Q , σ(A ),M) with respect to the natural filtration σ(Zt, 0 ⩽

s ⩽ t), and e−tLΨ
N is its associated Markov semigroup.

Proof. The proof is inspired from [6, Lemma 3.4] with a simple modification. □

Now, for our purpose below it will be important to consider Markov processes
(Zt)t≥0 extended over the whole time-line R instead of defining them only on R+.

Consider the product probability space (
̂̃X +

Q , Ã ,M̃) with
̂̃X +

Q = X̃ +
Q × X̃ +

Q ,
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Ã = A × A and M̃ = M × M. Let (Z̃t)t∈R denotes the stochastic process
defined by

Z̃t(ω) =

{
Zt(ω

1) t ≥ 0,
Z−t(ω

2) t ≤ 0,

on the product space (
̂̃X +

Q , Ã ,M̃) for ω = (ω1, ω2) ∈ ̂̃X +
Q . It easy to see that Z̃t

and Z̃s for t > 0 and s < 0 are independent and Z̃t
d
= Z̃−t for all t ∈ R. Moreover,

the extended process (Z̃t)t∈R has a shift invariance property, i.e., for f0, · · · fn ∈ S
and −t = t0 ⩽ t1 ⩽ · · · tn = t, we have

EM̃

[ n∏
j=0

fj(Z̃tj )
]
= EM̃

[ n∏
j=0

fj(Z̃tj+s)
]

=
(
f0, e

−(t1+t)LΨ
N f1 · · · e−(t−tn−1)L

Ψ
N fn

)
S

. (4.4)

Let Z̃· : (
̂̃X +

Q , Ã ,M̃) → (X̃Q,A ) be a measurable function. Define the image
measure

P = M̃ ◦ Z̃−1
·

on X̃Q. Then the coordinate process (Xt)t∈R on the probability space (X̃Q,A ,P)

is equivalent to (Z̃t)t∈R on the probability space (
̂̃X +

Q , Ã ,M̃) in the distribution
sense.

Lemma 4.3. The process (Xt)t∈R is a reversible, ergodic Markov process under
P.

Proof. Let f, g ∈ L2(Rd ×Q, dM0). We have

EP [f(Xt)g(Xs)] =
(
f, e−|t−s|LΨ

Ng
)

S
.

Then (Xt)t∈R is a reversible Markov process under P. By Proposition 3.1, we can

see that the semigroup e−tHΨ
N is positive, then (Xt)t∈R is ergodic. □

5. Diffusion Constant and Generalized FCLT

The main result of this section is to prove a generalized functional central limit
theorem for the Nelson model with Bernstein function and to give an explicit
expression of the variance. Our main theorem will englobe both classical and
relativistic cases discussed in [6] and give rise to a general theorem by introducing
a class of functions acting on the particle part.
For suitable function f ∈ D(LΨ

N ) ⊂ S , consider the following additive functional
of the reversible Markov process associated to the generalized Nelson Hamiltonian

FΨ
t =

∫ t

0

LΨ
Nf(Xs)ds. (5.1)

For given f , we denote by

σ2
Ψ(f) = lim

t→∞

1

t
EP [(F

Ψ
t )2].

The aim of the following result is to calculate explicitly the diffusion constant
σ2
Ψ(f) for additive functionals FΨ

t in the generalized Nelson model.
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Lemma 5.1. Let f ∈ D(LΨ
N) be a non-constant function. Assume that

EP [f
2(Xt)] < ∞ and EP [(L

Ψ
Nf)

2(Xt)] < ∞ for every t ≥ 0. Then

σ2
Ψ(f) = 2

(
fφg, [H

Ψ
0 , f ]φg

)
L2(P0)

> 0. (5.2)

Proof. Writing Tt = e−tLΨ
N , and using the shift invariance and Markov properties

of (Xt)t⩾0, we obtain

1

t
EP

[(∫ t

0

drLΨ
Nf(Xr)

)2
]

=
1

t
EP

[∫ t

0

ds

∫ t

0

drLΨ
Nf(Xr)L

Ψ
Nf(Xs)

]
=

1

t

∫ t

0

ds

∫ t

0

drEP [L
Ψ
Nf(X0)L

Ψ
Nf(X|r−s|)]

=
1

t

∫ t

0

ds

∫ t

0

drEP
[
LΨ
Nf(X0)EP [L

Ψ
Nf(X|r−s|) |F0]

]
=

1

t

∫ t

0

ds

∫ t

0

dr
(
T|s−r|L

Ψ
Nf, L

Ψ
Nf

)
S

=
2

t

∫
0≤r≤s≤t

drds
(
Ts−rL

Ψ
Nf, L

Ψ
Nf

)
S

=
2

t

∫
0≤r≤s≤t

drds
(
TrL

Ψ
Nf, L

Ψ
Nf

)
S

=
2

t

∫
0≤r≤s≤t

drds
(
TrL

Ψ
Nf, L

Ψ
Nf

)
S

= 2

∫ t

0

dr(1− r

t
)
(
TrL

Ψ
Nf, L

Ψ
Nf

)
S

.

Using now reversibility of P, i.e., LΨ
N is a self-adjoint operator, we obtain(

TrL
Ψ
Nf, L

Ψ
Nf

)
S

=
(
T r

2
LΨ
Nf, T r

2
LΨ
Nf

)
S

is positive and the function t 7→ (1 − r
t )

(
TrL

Ψ
Nf, L

Ψ
Nf

)
S

is increasing. Then by
the monotone convergence theorem

σ2
Ψ(f) = lim

t→∞

1

t
EP

[
(FΨ

t )2
]
= 2

∫ ∞

0

(
TrL

Ψ
Nf, L

Ψ
Nf

)
S

= 2
(
f, LΨ

Nf
)
K .

Let HΨ
0 = Ψ(−∆)⊗ 1l +Hf ⊗ 1l. We have

(HΨ − E)fφg = (HΨ
0 +Hi + V − E)fφg

= HΨ
0 fφg + f(Hi + V − E)φg = [HΨ0, f ]φg.

Then

σ2
Ψ(f) = 2

(
f, LΨ

Nf
)
S

= 2
(
fφg, [H

Ψ
0 , f ]φg

)
L2(P0)

.

Next we prove that σ2
Ψ(f) > 0. Suppose that σ2

Ψ(f) = 0, i.e.,
√
LΨ
Nf = 0. Since

(Xt)t∈R is an ergodic process and
√
LΨ
Nf = 0 implies LΨ

Nf = 0, equality σ2
Ψ(f) = 0

implies that f is a constant function, which is not true. □

We can obtain a functional central limit for the additive functional FΨ
t by using

the fundamental result below, see [11, Theorem 1.8].
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Proposition 5.2. (Kipnis-Varadhan) Let (Ω,F , (Ft)t≥0, µ) be a filtered prob-
ability space and (A,µ0) a measurable space, where µ and µ0 denote probability
measures on Ω and A respectively. Let (Yt)t≥0 be an A-valued Markov process
with respect to (Ft)t≥0. Assume that (Yt)t≥0 is a reversible and ergodic Markov
process with respect to µ. Let F : A → R be a µ0 square integrable function with∫
A
Fdµ0 = 0. Suppose in addition that F is in the domain of L−1/2, where L is

the generator of the process (Yt)t≥0. Let

Rt =

∫ t

0

F (Ys)ds.

Then there exists a square integrable martingale (Nt)t≥0 with respect to (Ft)t≥0,
with stationary increments, such that

lim
t→∞

1√
t

sup
0≤s≤t

|Rs −Ns| = 0 (5.3)

in probability with respect to µ, where R0 = N0 = 0. Moreover,

lim
t→∞

1

t
Eµ[|Rt −Nt|2] = 0. (5.4)

Now, we state our generalized functional central limit theorem:

Theorem 5.3. Let f ∈ D(LΨ
N ) be a non-constant function. If EP [f

2(Xt)] < ∞
and EP [(L

Ψ
Nf)2(Xt)] < ∞ for every t ≥ 0. Then the random process (FΨ

t )t≥0

satisfies a functional central limit theorem relative to P and the limit variance is
given by

σ2
Ψ(f) = 2

(
fφg, [H

Ψ
0 , f ]φg

)
L2(P0)

.

Proof. By lemma 4.3 the process (Xt)t≥0 is a reversible, ergodic Markov process
under P. We have

EP [L
Ψ
Nf(Xt)] =

(
φg, (H

Ψ − E)fφg

)
=

(
(HΨ − E)φg, fφg

)
= 0.

We can easily deduce by Kipnis-Varadhan Proposition 5.2 that (FΨ
t )t≥0 is a mar-

tingale up to a correction term that disappears in the scaling limit and then the
theorem follows by [11, Corollary 1.9]. □

Remark 5.4. By the same way we can obtain a FCLT associated to the Fractional
Nelson model: For 0 < α < 2, let Hα

N acting on H be the fractional Nelson
Hamiltonian given by

Hα
N = Hα

p ⊗ 1l + 1l⊗Hf +Hi,

where Hα
p = (−∆)

α
2 + V denotes the fractional Schrödinger operator. The above

transformations and constructions can be repeated for the fractional Nelson Hamil-
tonian. We denote by

Fα
t =

∫ t

0

Lα
Nf(Xs)ds,

where Lα
N is the ground state transformation of the fraction Nelson Hamiltonian.

Then, the process (Fα
t )t≥0 satisfies a functional central limit theorem relative to
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P with variance

σ2
α(f) = 2 (fφg, [H

α
0 , f ]φg)L2(P0)

,

where Hα
0 = (−∆)

α
2 ⊗ 1l +Hf ⊗ 1l.

5.1. Examples. Now, by the following proposition we give some interesting ex-
amples of the variance σ2

Ψ(f) by choosing specific functionals related to particle-
field operators. For this, we assume that h ∈ L2(Rd) is any test function, and
γ ∈ Rd any test real vector. Moreover the vector in L2(Q), which is associated
with the conjugate momentum Π(h) in Fb, is denoted by the same symbol Π(h).
Thus we have

[ξ(h),Π(h′)] =
1

2
(h, h′). (5.5)

Example 1 [f(x, ξ) = (γ · x)ξ(h)]
We have

[H0, (γ · x)ξ(h)] = [Ψ(−∆) +Hf , (γ · x)ξ(h)]
= [Ψ(−∆), (γ · x)]ξ(h) + (γ · x)[Hf , ξ(h)].

σ2
Ψ(f) = 2 ((γ · x)ξ(h)φg, [H0, (γ · x)ξ(h)]φg)

= 2 ((γ · x)ξ(h)φg, [Ψ(−∆), (γ · x)]ξ(h)φg)

+ 2 ((γ · x)ξ(h)φg, [Hf , ξ(h)](γ · x)φg)

= 2
∑

1≤j,k≤d

γjγk (ξ(h)φg,Ψ
′(−∆)ξ(h)φg) δij

− 4
∑

1≤j,k≤d

γjγk (ξ(h)φg,∇k∇jΨ
′′(−∆)ξ(h)φg) + 2∥(γ · x)φg∥(ωh, h).

Example 2 [ f(x, ξ) = (γ · x)eiξ(h)]
We have

[H0, (γ · x)eiξ(h)] = [Ψ(−∆) +Hf , (γ · x)eiξ(h)]

= [Ψ(−∆), (γ · x)]eiξ(h) + (γ · x)[Hf , e
iξ(h)].

Hence, we have

σ2
Ψ(f) = 2

(
(γ · x)eiξ(h)φg, [H0, (γ · x)eiξ(h)]φg

)
= 2

∑
1≤j,k≤d

γjγk (φg,Ψ
′(−∆)φg) δij − 4

∑
1≤j,k≤d

γjγk (φg,∇k∇jΨ
′′(−∆)φg)

+ ∥(γ · x)φg∥L2(P)(ωh, h) + 2 ((γ · x)φg,Π(ωh)(γ · x)φg)L2(P) .

Example 3 [ f(x, ξ) = ei(γ·x)+iξ(h)] We have

[H0, e
iγ·x+iξ(h)] = [Ψ(−∆) +Hf , e

iγ·x+iξ(h)]

= [Ψ(−∆), eiγ·x]eiξ(h) + eγ·x[Hf , e
iξ(h)].

Since

e−iγ·xΨ(−∆)eiγ·x = Ψ
(
− (∇− iγ)2

)
.
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Hence

Ψ(−∆)eiγ·x = eiγ·xΨ
(
− (∇− iγ)2

)
,

then

[Ψ(−∆), eiγ·x] = eiγ·xΨ
(
− (∇− iγ)2

)
− eiγ·xΨ(−∆).

We deduce that

σ2
Ψ(f) = 2

(
ei(γ·x)+iξ(h)φg, [H0, e

iγ·x+iξ(h)]φg

)
= 2

(
φg,Ψ

(
(i∇− γ)2

)
φg

)
− 2 (φg,Ψ(−∆)φg) + 2 (φg,Π(ωh)φg)

+ (ωh, h).
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