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Abstract. The new class of Gaussian processes which are obtained by a
compact perturbation in the reproducing kernel of Wiener process is in-

troduced. The finite families of increments of our processes on small time
intervals behave as increments of Wiener process. Consequently a lot of
asymptotical properties of Wiener process are inherited. The law of iterated
logarithm, the analogue of the Levy modulus of continuity and almost unifor-

mity of hitting distribution on the small circles are proved. The renormalized
Fourier–Wiener transform of the self-intersection local time for compactly
perturbed Wiener process is constructed.

1. Introduction

In this article we consider self-intersection local times for one class of planar
Gaussian processes. The interest to the self-intersection local times of planar
Brownian motion has a long history since the theorem of Dvoretzky, Erdös, Kaku-
tani [3] which established the existence of multiple self-intersections. The various
kinds of renormalization were proposed for the self-intersection local times of pla-
nar Brownian motion and certain Levy processes in the articles [4, 5, 10, 15, 16].
Most of these articles essentially use the Markov property of the considered pro-
cess. The aim of this paper is to present an approach to investigation of planar
Gaussian processes which does not use the Markov property. We introduce a new
class of Gaussian processes which are obtained with the help of compact pertur-
bation in the reproducing kernel of Wiener process. Such processes inherit many
properties of Wiener process. As an example we prove here the law of iterated
logarithm, the analogue of the Levy modulus of continuity and almost uniformity
of hitting distribution on the small circles. The finite families of small increments
of our processes behave like the increments of Wiener process. This allows us to
prove that compactly perturbed Wiener process has strong local nondeterminism
property, which is a generalization of local nondeterminism property introduced
by S.Berman [1]. Finally we present the renormalization for Fourier–Wiener trans-
form of the self-intersection local times for compactly perturbed Wiener process.
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338 ANDREY A. DOROGOVTSEV AND OLGA L. IZYUMTSEVA

2. Compactly Perturbed Wiener Process

Let ξ be the Gaussian white noise in the space L2([0; 1]) [9]. Suppose that S is
a compact operator in L2([0; 1]) with ‖S‖ < 1. Denote by I the identity operator
in the same space.

Definition 2.1. The process

x(t) = ((I + S)1[0;t], ξ)

is called by the compactly perturbed Wiener process.

In the sequel we will use notation g0(t) = 1[0;t]. Note that in the case S = 0
the process x is a Wiener process. Due to the properties of compact operator S
the process x inherits properties of Wiener process on the small intervals of time.
For example, it satisfies the law of iterated logarithm. To formulate the precise
statement we need some additional notations. For any interval [a; b] ⊂ [0; 1] denote
by Qa,b the operator of multiplication on 1[a;b]. It is known [7] that the compact
operator S has the analog of absolute continuity property. Namely

‖SQa,b‖ → 0, b− a→ 0.

Denote

ϕ(t) = sup
b−a≤t

‖SQa,b‖.

Theorem 2.2. Let ϕ(t) = O(
√
t), t→ 0. Then almost surely,

lim
t→0

x(t)√
2tlln1

t

= 1.

Proof. Since lim
t→0

w(t)√
2tlln 1

t

= 1 then it is enough to check that with probability 1

lim
t→0

(Sg0(t), ξ)√
2tlln1

t

= 0. (2.1)

To prove (2.1) we will use the Borel–Cantelli lemma. Put h(t) =
√

2tlln 1
t and

tn = θn for some 0 < θ < 1. Denote by η(t) = (Sg0(t), ξ). We need to estimate

P
{

sup
θn+1≤t≤θn

η(t) > εh(θn)
}
. (2.2)

Let us use the Berman inequality [12]. Recall its statement. Suppose that y(t), t ∈
T ⊂ Rd is a centered Gaussian field on a set T. Denote by

p(r) = sup
|s−t|≤r

√
E(yt − ys)2.

Define the Fernique integral I : R+ → [0;∞] by the following formula

I(δ) =

∫ ∞

0

p(δe−u2

)du.
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It is known [12] that

P{sup
T
y(t) > r} ≤ C

(
1− Φ

( r
σ

))
/
(
I−1

(1
r

))d
, (2.3)

where

σ =
√

sup
T

Var y(t), Φ(u) =

∫ u

−∞

1√
2π
e−

x2

2 dx.

In our case d = 1, σ ≤
√
θnϕ(θn),

E((η(t)− η(s)))2 = ‖S1[s,t]‖2,

p(r) = sup
θn+1≤s<t≤θn

t−s≤r

‖S1[s,t]‖ ≤
√
θn − θn+1ϕ(r). (2.4)

Due to (2.3)

P
{

sup
θn+1≤t≤θn

η(t) > εh(θn)
}
≤ c
(
1− Φ

(εh(θn)
σ

))
/I−1

( 1

εh(θn)

)
. (2.5)

Since

1− Φ(r) ≤ 1√
2π

1

r
e−

r2

2 ,

then (2.5) is less or equal to

c
σ

εh(θn)
e−

ε2h2(θn)

2σ2 /I−1
( 1

εh(θn)

)
,

where c is some positive constant.
Define

αn :=
σ

εh(θn)
e−

ε2h2(θn)

2σ2 /I−1
( 1

εh(θn)

)
and check that

∞∑
n=1

αn <∞. (2.6)

Notice that for the Fernique integral the following estimate holds

I(δ) ≤
√
θn − θn+1

∫ ∞

0

ϕ(δe−u2

)du.

Put F (δ) =
∫∞
0
ϕ(δe−u2

)du. It is obvious that

1

I−1
(

1
εh(θn)

) ≤ 1

F−1
(

1
εh(θn)

)√
θn − θn+1

. (2.7)

Since ϕ(t) = O(
√
t), t→ 0, then

F (δ) ≤ c
√
δ. (2.8)

The estimates (2.4), (2.7), (2.8) imply that

αn ≤ cεh(θn)(θn)3e
− ε2h2(θn)

2c2(θn)2 . (2.9)

It follows from (2.9) that (2.6) holds. The Borel–Cantelli lemma ends the proof of
the theorem. �
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340 ANDREY A. DOROGOVTSEV AND OLGA L. IZYUMTSEVA

Further we discuss the Levy modulus of continuity [11, 14] for compactly per-
turbed Wiener process.

Theorem 2.3. Let ϕ(t) = O(
√
t), t→ 0. Then almost surely,

lim
h→0

sup
0≤t≤1−h

|x(t+ h)− x(t)|√
2h ln 1

h

= 1.

Proof. In case of Wiener process Levy proved [11, 14] that almost surely,

lim
h→0

sup
0≤t≤1−h

|w(t+ h)− w(t)|√
2h ln 1

h

= 1.

Here it is sufficient to check that

P

{
w : ∀ ε > 0 ∃ δ : ∀ h ∈ (0; δ) ∀ t ∈ [0; 1− h]

|(Sg0(t, t+ h), ξ)|√
2h ln 1

h

< ε

}
= 1,

(2.10)
where g0(t, t+ h) = 1[t;t+h].

Define ψ(t) =
√
2t ln 1

t . For 0 < θ < 1 put hn = θn and estimate

P

{
sup

θn+1≤h≤θn
sup

0≤t≤1−h

(Sg0(t, t+ h), ξ)

ψ(θn)
> ε

}
.

Let us apply the Berman inequality to the Gaussian field

y(v) = (Sg0(t, t+ h), ξ), v ∈ T,

where

T = {(t, h) : 0 ≤ t ≤ 1− h, θn+1 ≤ h ≤ θn} ⊂ R2.

Put M = {0 ≤ t1 ≤ 1− h1, 0 ≤ t2 ≤ 1− h2, θ
n+1 ≤ hi ≤ θn,

i = 1, 2 : ‖(t1, h1)− (t2, h2)‖ ≤ r}. Notice that

p(r) = sup
M

√
E(S(g0(t1, t1 + h1)− g0(t2, t2 + h2)), ξ)2

= sup
M

‖S(g0(t1, t1 + h1)− g0(t2, t2 + h2)‖

≤ sup
M

‖S‖‖g0(t1, t1 + h1)− g0(t2, t2 + h2))‖ ≤ c
√
r,

with some positive constant c. It implies that in our case I(δ) ≤ c
√
δ. By using

the Berman inequality [12] with d = 2 we conclude that

P
{
sup
T
y(u) > εψ(θn)

}
≤ c

σ

εψ(θn)
e−

ε2ψ2(θn)

2σ2 /I−1
( 1

εψ(θn)

)2
.

Since σ ≤ ϕ(θn) ≤ cθn then the last expression less or equal to αn =

c(εψ(θn))3θne
− ε2ψ2(θn)

2(θn)2 . Since
∑∞

n+1 αn < +∞ then applying Borel–Cantelli lem-
ma one can get the statement of the theorem. �
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COMPACTLY PERTURBED WIENER PROCESS 341

The next statement shows that the planar compactly perturbed Wiener process
hits the small circle from its center with the almost uniform distribution. Here
we consider planar process x(t) = (x1(t), x2(t)), where x1 and x2 are independent
copies of the compactly perturbed Wiener process.

For process x define τxr = inf{t : ‖x(t)‖ = r} (τxr = 1 if max[0;1] ‖x(t)‖ < r).

Theorem 2.4. Let ϕ(t) = o(ln t)−3, t → 0. Then the distribution of the random
vector 1

rx(τ
x
r ) converges weakly to the uniform distribution on the unit circle, when

r → 0.

Proof. Since for r > 0, t ∈ [0; 1]

P{τwr < t} = P
{
max
[0;1]

‖w(s)‖ ≥ r√
t

}
.

Consequently

P{τwr < t} → 1,
r√
t
→ 0.

In the future we will suppose, that t→ 0 in a such way that

r√
t
→ 0. (2.11)

Put η(t) = ((Sg0(t), ξ), (Sg0(t), ξ2)), where ξ1, ξ2 are independent white noises.
Then x(t) = w(t) + η(t). Let us recall the Slepian comparison inequality [13].

Lemma (Slepian). Let ξ and ζ be mean zero Rn-valued Gaussian random
variables such that for an arbitrary 0 ≤ j, k ≤ n

E(ζj − ζk)
2 ≤ E(ξj − ξk)

2.

Then E supj,k |ζj − ζk| ≤ E supj,k |ξj − ξk|.

Note that

Emax
[0;t]

‖η(s)‖ ≤ E(max
[0;t]

|η1(s)|+max
[0;t]

|η2(s)|)

= 2Emax
[0;t]

|η1(s)| ≤ 2E max
s1,s2∈[0;t]

|η1(s1)− η1(s2)|. (2.12)

Applying the Slepian inequality one can obtain that (2.12) is less or equal to

2ϕ(t)E max
s1,s2∈[0;t]

|w(s1)− w(s2)| = 2
√
tϕ(t)E max

s1,s2∈[0;t]
|w(s1)− w(s2)| = c

√
tϕ(t).

Consequently it is possible to take δ → 0 in a such way that

P{max
[0;t]

‖η(s)‖ < δ} → 1,

and δ
r → 0. For example it is enough to take δ =

√
tϕ(t)1/2, r =

√
tϕ(t)1/4. On the

set {τwr < t} ∩ {max[0;t] ‖η(s)‖ < δ} the following relations holds

τwr−2δ ≤ τxr−δ ≤ τwr .
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342 ANDREY A. DOROGOVTSEV AND OLGA L. IZYUMTSEVA

Consequently on this set∥∥∥ 1

r − δ
x(τxr−δ

)
− 1

r
w(τwr )

∥∥∥
≤
∥∥∥(1
r
− 1

r − δ

)
w(τwr )

∥∥∥+ 1

r − δ

∥∥∥x(τxr−δ)− w(τwr )
∥∥∥

≤
(1
r
− 1

r − δ

)
r +

1

r − δ
δ +

1

r − δ
· 2 · max

[τwr−2δ;τ
w
r ]

‖w(s)− w(τwr−2δ)‖.

To get the desired convergence it remains to estimate

max
[τwr−2δ;τ

w
r ]

‖w(s)− w(τwr−2δ)‖

on the set {τwr < t}. Using the strong Markov property of w and independence of
its coordinates w1 and w2 we conclude that

max
[τwr−2δ;τ

w
r ]

‖w(s)− w(τwr−2δ)‖

≤ {max
[0;ζ]

w̃1(s) + min(r,max
[0;ζ]

w̃2(s)}+ δ.

Here w̃1 and w̃2 are independent Wiener processes, w̃1(0) = δ and ζ is the moment
of the first hitting zero by w̃1 abridged by 1. Using independence one can see, that

E{min(r,max
[0;ζ]

|w̃2(s)|)} ≤ EE(max
[0;ζ]

w̃2(s)|ζ) ≤ cE
√
ζ.

One can check that

M
√
ζ ∼ δ ln

1

δ2
, δ → 0.

Now using Levy inequality [8] one can get the following estimate

εP{max
[0;ζ]

w̃1(s) > ε} ≤ cEw̃1(min(1, ζ)) = cδ,

where c is some positive constant. Hence

P - lim
r→0

1

r − δ
max

[τwr−2δ;τ
w
r ]

‖w(s)− w(τwr−2δ)‖ = 0.

It finishes the proof. �

The compactly perturbed Wiener processes have another property which is im-
portant for consideration of the self-intersection local times. This is the strong
local nondeterminism property. The property of local nondeterminism was intro-
duced by S.Berman in [1]. It reflects the independence between the increments of
the process. If the process is defined as an inner product with white noise

x(t) = (g(t), ξ), t ∈ [0; 1],

then the strong local nondeterminism property can be formulated as a condition
on the increments of g. Suppose, that the function g is such, that
∀ 0 ≤ t1 < . . . < tn ≤ 1 :

Γt1...tn = G(∆g(t1), . . . ,∆g(tn−1)) > 0.

Here G(e1, . . . , em) is the Gram determinant for the vectors e1, . . . , em.
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COMPACTLY PERTURBED WIENER PROCESS 343

Definition 2.5. The process x (or the function g) is strongly locally nondetermined
if for arbitrary k ≥ 2 and subset M ⊂ {1, . . . , k − 1}

Γt1...tk ∼ G(∆g(ti), i /∈M)
∏
i∈M

‖∆g(ti)‖2,

when maxi∈M ∆ti → 0.

The condition of this definition means that the small increments of x are in
some sense uniformly independent. Let us check that compactly perturbed Wiener
process satisfies Definition 2.5.

Lemma 2.6. Suppose that ‖S‖ < 1, then the function g(t) = (I +S)g0(t) has the
strong local nondeterminism property.

This lemma was proved in [2] but here we present more straightforward proof.

Proof. Firstly, note that for an arbitrary δ > 0

inf{G(g(t′′1)− g(t′1), . . . , g(t
′′
n)− g(t′n)) : 0 ≤ t′1 < t′′1 ≤ . . . ≤ t′n < t′′n ≤ 1,

min
i=1,n

(t′′i − t′i) ≥ δ} > 0.

This relation obviously follows from the existence of (I+S)−1. Also it follows from
the compactness of operator S that

‖g(t′′)− g(t′)‖ ∼
√
t′′ − t′, t′′ − t′ → 0.

Now consider the sequence {0 ≤ tk1 < . . . < tkn ≤ 1, k ≥ 1} and the subset
M ′ ⊂ {1, . . . , n− 1} such that

max
i∈M ′

tki+1 − tki → 0, k → ∞,

lim
k→∞

min
i/∈M ′

tki+1 − tki > 0.

Again using compactness of S, one can easily check that

Γtk1 ,...,t
k
n
∼ G(g(ti+1)− g(ti), i /∈M ′),

∏
i∈M ′

(tki+1 − tki ), k → ∞.

The statement of the lemma follows from this relation by the standard arguments.
Lemma is proved. �

It is interesting to compare the strong local nondeterminism with the local
nondeterminism [1]. In our terms (using representation with the function g) the
local nondeterminism property can be formulated as follows.

Definition 2.7. The process x (or the function g) is locally nondermined if for
every n ≥ 2

lim
tn−t1→0

Γt1...tn

Γt1...tn−1‖∆g(tn−1)‖2
> 0.
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Evidently this condition follows from the condition of Definition 2.1. The back-
ward statement is not true.

It was mentioned that the local nondeterminism property was useful condition
for existence of local times. In the next section we will discuss the renormalization
of the self-intersection local times for compactly perturbed Wiener process. May
be it can be built for strongly nondetermined processes, but at the present moment
we can not prove this.

3. Renormalization of the Fourier–Wiener Transform for
the Self-intersection Local Times

In this section we consider

T x
k =

∫
∆k

k−1∏
i=1

δ0(x(si+1)− x(si))d~s,

where ∆k = {0 ≤ s1 ≤ . . . ≤ sk ≤ 1}. This formal expression can be considered
as a self-intersection local time for process x. It is well known that for the Wiener
process the self-intersection local time needs renormalization to be properly de-
fined [4, 16]. Here we propose the renormalization for the formal Fourier–Wiener
transform of the self-intersection local time for x. Let us recall that for random
variable α which has a finite second moment and is measurable with respect to
the white noise (ξ1, ξ2) its Fourier–Wiener transform [17] is

T (α)(h1, h2) = EαE(h1, h2) = Eα exp{(h1, ξ1) + (h2, ξ2)−
1

2
‖h1‖2 −

1

2
‖h2‖2}.

It is well-known [9], that Fourier–Wiener transform uniquely determines random

variable α. To consider the Fourier–Wiener transform of
∏k−1

i=1 δ0(x(si+1)− x(si))
one can substitute δ0 by the two-dimensional Gaussian density

fε(u) =
1

2πε
e−

‖u‖2
2ε

and pass to the limit when ε→ 0.
It can be checked that the formal Fourier–Wiener transform is

T
( k−1∏

i=1

δ0(x(si+1)− x(si))

)
(h1, h2) =

e
− 1

2

(
‖Pt1...tkh1‖2+‖Pt1...tkh2‖2

)
Γt1...tk

,

where Γt1...tk is a Gram determinant constructed on ∆g(t1), . . . ,∆g(tk−1) (we
suppose that for any 0 ≤ t1 < t2 < . . . < tk ≤ 1, Γt1...tk 6= 0), g(t) = (I + S)g0(t),
Pt1...tk – is a projection on the linear span of (∆g(t1), . . . ,∆g(tk−1)). We will
construct regularization [6] for∫

∆k

e−
1
2 (‖Pt1...tkh1‖2+‖Pt1...tkh2‖2)

Γt1...tk

d~t

because this integral is divergent on every diagonal of the simplex ∆k.

Denote by ∆̃g(t1), . . . , ∆̃g(tk−1) the orthonormal system which is obtained
from ∆g(t1), . . . ,∆g(tk−1) via the orthogonalization procedure. Since the el-

ements ∆g(t1), . . . ,∆g(tk−1) are linearly independent all the elements ∆̃g(t1),
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COMPACTLY PERTURBED WIENER PROCESS 345

. . . , ∆̃g(tk−1) are non-zero. For M ⊂ {1, . . . , k − 1} denote by PM the projec-

tion on ∆̃g(ti), i ∈M. The main result of this section is the following theorem.

Theorem 3.1 ([2]). For an arbitrary h ∈ L2([0; 1]) the following integral converges∫
∆k

Γ−1
t1...tk

( ∑
M⊂{1,...,k−1}

(−1)|M |e−
1
2‖PMh‖2

)
d~t.

Proof. Let ∆1, . . . ,∆n be disjoint intervals (t11, t
1
2), . . . , (t

n
1 , t

n
2 ) of [0; 1]. Suppose

that ∆ig = g(ti2)− g(ti1), G(∆1g, . . . ,∆ng) is a Gram determinant constructed on
∆1g, . . . ,∆ng. Since for any n ≥ 1 (see Lemma 2.6)

cn = inf
t11,t

1
2,...,t

n
1 ,t

n
2∈[0;1]

G(∆1g, . . . ,∆ng)∏n
j=1(t

j
2 − tj1)

> 0,

then ∫
∆k

Γ−1
t1...tk

∣∣∣∣∣ ∑
M⊂{1,...,k−1}

(−1)|M |e−
1
2‖PMh‖2

∣∣∣∣∣d~t
≤ c

∫
∆k

1∏k−1
i=1 (ti+1 − ti)

∣∣∣∣∣ ∑
M⊂{1,...,k−1}

(−1)|M |e−
1
2‖PMh‖2

∣∣∣∣∣d~t.
One can check that∫

∆k

1∏k−1
i=1 (ti+1 − ti)

∣∣∣∣∣ ∑
M⊂{1,...,k−1}

(−1)|M |e−
1
2‖PMh‖2

∣∣∣∣∣d~t
=

∫
∆k

k−1∏
j=1

1− e−
1
2 (h,∆̃g(tj))

2

tj+1 − tj
d~t ≤

∫
∆k

k−1∏
j=1

(h, ∆̃g(tj))
2

tj+1 − tj
d~t.

Consider the last integral ∫ 1

tk+1

(h, ∆̃g(tk−1))
2

tk − tk−1
dtk.

Notice that

∆̃g(tk−1) =
∆g(tk+1)− Pt1...tk−1

∆g(tk−1)

‖∆g(tk−1)− Pt1...tk−1
∆g(tk−1)‖

.

Since the process x is strongly locally nondeterministic, then

‖∆g(tk−1)− Pt1...tk−1
∆g(tk−1)‖2 =

Γt1...tk

Γt1...tk−1

∼ ‖∆g(tk−1)‖2, tk − tk−1 → 0.

Also,

‖∆g(tk−1)‖2 ∼ tk − tk−1, tk − tk−1 → 0.

That is why

‖∆g(tk)− Pt1...tk−1
∆g(tk)‖2

tk − tk−1
→ 1, tk − tk−1 → 0.
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It implies that there exists the positive constant c such that

‖∆g(tk−1)− Pt1...tk−1
∆g(tk−1)‖2

tk − tk−1
≥ c.

Consequently∫ 1

tk−1

(h, ∆̃g(tk−1))
2

tk − tk−1
dtk

≤ c

∫ 1

tk−1

(h,∆g(tk−1)− Pt1...tk−1
∆g(tk−1))

2

(tk − tk−1)2
dtk

≤ 2c

[∫ 1

tk−1

(h,∆g(tk−1)− Pt1...tk−1
∆g(tk−1))

2

(tk − tk−1)2

]
dtk

≤ 2c

[∫ 1

tk−1

(h,∆g(tk−1))
2

(tk − tk−1)2
dtk +

∫ tk

tk−1

(h, Pt1...tk−1
∆g(tk−1))

2

(tk − tk−1)2
dtk

]
.

Consider in L2([tk−1; 1]) integral operator with the kernel

k(s1, s2) =
1

s2 − tk−1
1{s2>s1}.

Let us check that k defines bounded operator in L2([tk−1; 1]) using the Shur test
[7]. If there exists positive functions p, q : [tk−1; 1] → (0,∞) and α, β such that∫ 1

tk−1

k(s1, s2)q(s2)ds2 ≤ αp(s1),∫ 1

tk−1

k(s1, s2)p(s1)ds1 ≤ βq(s2),

then k corresponds to bounded operator with the norm less or equal to αβ.
Put

p(s1) =
1√

s1 − tk−1
,

q(s2) =
1√

s2 − tk−1
.

Then ∫ 1

tk−1

k(s1, s2)q(s2)ds2 =

∫ 1

s1

1

(s2 − tk−1)
3
2

ds2 ≤ 1√
s1 − tk−1

,∫ 1

tk−1

k(s1, s2)p(s1)ds1 =

∫ s2

tk−1

1√
s1 − tk−1

ds1 ·
1

s2 − tk−1
=

2√
s2 − tk−1

.

So we get the following estimate

2

∫ 1

tk−1

h(s1)

∫ 1

s1

h(s2)

s2 − tk−1
ds2ds1 ≤ 8‖h‖2.

Consequently∫ 1

tk−1

(h,∆g(tk−1))
2

(tk − tk−1)2
dtk =

∫ 1

tk−1

((I + S∗)h,∆g0(tk−1))
2

(tk − tk−1)2
dtk
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≤ c · ‖(I + S∗)h‖2 ≤ c′ · ‖h‖2 (3.1)

and∫ 1

tk−1

(h, Pt1...tk−1
∆g(tk−1))

2

(tk − tk−1)2
dtk =

∫ 1

tk−1

((I + S∗)Pt1...tk−1
h,∆g0(tk−1))

2

(tk − tk−1)2
dtk

≤ c · ‖(I + S∗)Pt1...tk−1
h‖2 ≤ c′ · ‖h‖2.

The estimates (3.1), (3) imply that∫ 1

tk−1

(h, ∆̃g(tk−1))
2

tk − tk−1
dtk ≤ c′′ · ‖h‖2.

By returning to the integral ∫
∆k

k−1∏
j=1

(h, ∆̃g(tj))
2

tj+1 − tj
d~t

we have the following an equality∫
∆k

k−1∏
j=1

(h, ∆̃g(tj))
2

tj+1 − tj
d~t

=

∫
∆k−1

k−2∏
j=1

(h, ∆̃g(tj))
2

tj − tj−1
·
∫ 1

tk−1

(h, ∆̃g(tk−1))
2

tk − tk−1
dtkdt1 . . . dtk−1

≤ c′′‖h‖2
∫
∆k−1

k−2∏
j=1

(h, ∆̃g(tj))
2

tj+1 − tj
d~t.

Repeating the analogous procedure k − 1 times we get the following estimate∫
∆k

k−1∏
j=1

(h, ∆̃g(tj))
2

tj+1 − tj
d~t ≤ c′′′‖h‖2(k−1)

which ends the theorem. Theorem is proved. �

It is easy to see, that in case S = 0 (Wiener process) the proposed renormal-
ization coincides with the Rosen renormalization [16].

References

1. Berman, S.: Self-intersections and local nondeterminism of Gaussian processes, Ann. of

Probab. 19 (1991) 160–191.
2. Dorogovtsev, A.A., Izyumtseva, O.L.: On regularization of the formal Fourier–Wiener trans-

form of the self-intersection local time of a planar Gaussian process, Theory of stochastic
Processes 17(33) (2011) 28–38.

3. Dvoretzky, A., Erdös, P., and Kakutani, S.: Multiple points of paths of Brownian motion in
the plane, Bulletin of the Research Counsil of Israel (1954) 364–371.

4. Dynkin, E. B.: Regularized self-intersection local times of planar Brownian motion, Ann.

Probab. 16 (1988) 58–74.
5. Dynkin, E. B.: Polynomials of the occupation field and related random fields, J.Funct. Anal.

58 (1984) 20–52.
6. Gelfand, M., Shilov, G.: em Generalized functions. Properties and operations, Academic

Press, Boston, MA, 1964.

89



348 ANDREY A. DOROGOVTSEV AND OLGA L. IZYUMTSEVA

7. Halmosh, P. and Sander, V.: Bounded Integral Operators on L2 Spaces, Springer, Berlin,

1978.
8. Kallenberg, O.: Foundation of Modern Probability, Springer, New York, 2002.
9. Kuo, Hui-Hsiung: White Noise Distribution Theory, CRC Press, 1996.

10. LeGall, J.-F.: Wiener sausage and self-intersection local times, J.Funct. Anal. 88 (1990)

299–341.
11. Levy, P.: Processes stochastiques et mouvement Brownian, Deuxième édition revue et aug-
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