Breast Cancer Detection using Classification Techniques in Digital Mammography

S. Punitha*, S. Ravi*, M. Anousouya Devi** and J. Vaishnavi**

ABSTRACT

Early breast cancer diagnosis is a challenging task for the radiologists without which the cancer death rate can be increased among women globally. Digitital mammography is the powerful technique which helps diagnosing breast cancers in premature stages preventing unnecessary biopsies and radiation treatments by proper screening and abnormality detection. The malignancy can be found in patients in the presence of masses and microcalcifications in the breast region. Successful analysis of the breast tumor relies on features extracted from the cancer suspicious areas and classification of features using classifier or combinations of the classifier. This paper summarizes all the existing classification techniques used in digital mammography for classifying the detected masses and microcalcifications as normal or begnin or malignant.

Keywords: Classification; Segmentation; Clusters of Micorcalcification (MMC); Free Response Operating Curve (FROC); Receiver Operating Charatersitics (ROC)

1. INTRODUCTION

Breast cancer is life killing disease through the existence of debilitating growths influencing ladies mostly after the age of 30 all over the world. Early diagnosis of the breast cancers by the radiologist reduces the death rate globally. Many techniques are available for the detection of breast cancers among which digital mammography is the familiar and successful technique currently used by the radiology people. Mammograms are collected from patients who are suspected for breast cancers mostly as full field mammograms where the image detection and classification is high due to the high image quality. The main sign of breast cancers in Digital Mammograms is the existence of abnormalities such as breast masses, single or clustered microcalcification, lesions, nodules and architectural changes in the breast and the nipples.

The Computer Aided Diagnosis (CAD) mainly has four stages for classification of the abnormalities using Digital Mammograms. The input image is pre-processed which involves contrast enhancement using some filters. The segmentation is done by extracting the regions of interest (ROI) from the background. Thenthe features such as shape, size, color, texture, density, topology and morphological features are derived from the image. Finally, the derived features are fed into an appropriate classifiers to classify the images as normal or abnormal. Some approaches used multiple classifiers, where the output of the first classifier is fed as the input to second classifier to classify the abnormal tumors as begnin or malignant. Fig. 1 depicts the classification scheme for breast cancer findingin digital mammograms. The evaluation of the classification scheme for digital mammograms is done by testing the schemes using different databases and plotted as Receiver Operating Curve (ROC) using true positive and false positive

^{*} Department of Computer Science School of Engineering and Technology Pondicherry University, Pondicherry, India, *Emails:* punitharesearch@gmail.com, sravicite@gmail.com

^{**} Department of Computer Science School of Engineering and Technology Pondicherry University, Pondicherry, India, *Emails:* anousouyadevi@gmail.com, roshugee@gmail.com

Figure 1: Classification Scheme for Breast Cancer Detection

as parameters. Higher the ROC area indicates that the classification performance is accurate. Another metric used for the evaluation is the FROC where the curve is plotted for true positive as a function of average number of false positives.

This paper summarizes majority of the currently used techniques for the classification used in breast cancer detection. The section 2 of the paper includes classification schemes based on the training data involving two types such as supervised and unsupervised classifiers. The section 3 involves classification schemes based on pixel information which includes pixel based andsub pixelclassifiers. The section 4 involves the classification schemes based on parametersused called parametric and nonparametric classifiers. The section 4 and 5 includes the discussion and conclusion of the paper.

2. CLASSIFICATION TECHNOIUES FOR BREAST CANCER DETECTION BASED ON TRAINING DATA

2.1. Supervised Classification

The supervised classification are conventional techniques in which the system is trained with a known set of pixels and then the classifier classifies the images as normal or abnormal.Examples are Distance based, AdaBoost, Decision Tree, Random forest classifiers.

Wei Qian et al. [1] introduced a detection algorithm by involving two challenges finding the presence of MCC in mammograms and classification using CAD for differentiating between the benign and malignant tumors.Chun-Chu Jen [2] proposed an automatic detection system for the classification of abnormal mammograms from the mammographic dataset. The textural features are derived from the images using binary level quantization and the suspicious mass regions are identified. Thepreprocessing of this system consists of noise elimination, binary conversion, breast extraction, Orientation finding and the pectoral muscle elimination. Then an automatic detection classifier is based on principal component analysis and Euclidean distances among the images that are tested and the centroids of the images in the entire mammographic dataset. Agood learningalgorithm is proposed by BrijeshVerma et al. [3]. The algorithm uses additional neurons for benign and malignant classification in the hidden layer for each output class for improving memorization ability. The network is trained by combining weightsof minimum distance and estimation of direct outputs.

An automatic system is introduced by Arnau et al. [4] based on derivation of local features for detecting MCC and masses. The initial training set learns and selects salient features at each round. Then these features are finally tested to detect the individual microcalcifications and Adaboost classifier. An approach is defined for accurately estimating the contour of abnormalities in mammograms by Mario Molinara et al. [5]. This approach is defined on the assumption that the location of the center of the mass and an external contour is available. This approach incorporates a classifier based on boosting method which is trained on the core and the external contour so that the classifier classifies Tomasz Arodz et al. [6]proposed two pattern recognition methods relied on AdaBoost and SVM based technique and evaluated based on different circumstances. The AdaBoost based method perfectly identifies majority of the malignant masses and lesion types where as SVM based technique does not find the indication of abnormal tissues novel method is proposed by DaeHoeKim et al. [7] in which the images are first pre-processed to extract the region of interest(ROI). The stellate features are further extracted from three sub regions such as the core, inner and outerparts based on the statistical characteristics for individual sub regions. The classification is done through AdaBoost learning for classifying the masses as normal benign and malignant masses. Ciro D Elia et al. [8] introduced an automatic detection of clustered MCC based on multi classifier approach. The geometric and texture features are derived from the regions of interest and heuristic filter is used to identify the best features for classification. The formed clusters are further classified for malignancy using a Gentle AdaBoost classifier for individual clusters and then they are combined to form the final decision for malignancy.

D. Brzakovic et al. [9] proposed tumor detection in mammograms which involves two steps. Then the pixel groupings are fed to the classifier based on four level hierarchical structure which uses Bayes classifier for decision according to certain measurements such as shape and intensity in order to classify benign and malignant tumors. N. Karssemeijer et al. [10] gives amethod for the detection of stellate patterns in mammograms. The classification uses a classifier which uses the pixel orientation map by constructing new operators that varies according to the straight lines radial patterns.H.D. Li, M. Kallergi et al. [11] derived a technique for the detection through segmentation and discrimination of breast tumors. The classification is done classifying the masses as normal and malignant based on a binary tree for decision. An artificial intelligence algorithm is designed by L. Zhen et al. [12] which involves extraction of the regions of interests using the fractal dimension analysis. The segmentation of the images are done through dogsand-rabbits clustering algorithm. Classification of the useful portion of images are done through three level tree type classifier which uses variance and inside gradient, compactness and edge variance at each level for classifying the masses as normal and malignant.Rodrigo Pereira Ramos et al. [13] proposed a computer aided method of masse detection and false positive reduction for the classification of breast tumors in x ray mammograms. The texture features are derived using the gray level co co-occurrence matrix, wavelets, rigdelets transforms. The best features are selected using a genetic algorithm. The segmentation in the regions of interest are done through the Random Forest algorithm which is a data mining method divides the data into segments without overlapping. This algorithm works on a collection of classification tress with bootstrap samples used for training the classifier with random features.

2.2. Unsupervised Classification

The unsupervised classification techniques analyses large set of pixels which are not known before and then group them according to the natural properties of the pixels. Examples of unsupervised classifiers include cluster based, association rule mining and extreme machine learning classifiers. The Unsupervised classification consumes major amount of time for execution when compared to supervised classification techniques. This section presents some of the techniques used for digital mammograms in past and recent researches.

A detection algorithm is demonstrated by Murk J. Bottema et al. [14] which consists of primary detection of candidate calcifications, model fitting, and estimation of parametersafter which finally finding if the candidate is a true calcification or not by clustered classification technique. Best fit model parameters are used for detection and classification. Xi-Zhao Li et al. [15] proposed an algorithm for classification of breast masses using high order textons. The segmentation is through k means method of clustering and the clusters are identified in the feature vector space which forms the higher order textons. The first order texton maps are identified using Euclidean distance method. Vipul Sharma Sukhwinder Singh [16] presented the correlation-based feature selection (CFS) and sequential minimal optimization (SMO) based on kernels for the classification of fatty and dense mammogram. Texture analysis is done to quantify the texture of parenchyma patterns of breast on the regions of interest. To minimize the dimensionality and to differentiate between breast tissue densities the correlation based feature selection is used. The classification is done through sequential minimal optimization SMO.

Aswini Kumar Mohanty et al. [17] proposed a system that has three stages. First, the region of interest (ROI) is calculated with 256×256 pixels size sets. Next stage is the feature extraction for finding twenty six features which is capable of finding the difference between normal and cancerous tissues, maximizing the classification rate. The third stage is classifying the extracted features based on association rule mining to classify the normal and cancer developing tissues. An algorithm for texture based classification using associative mining for rules used for classification for medical image analysis is introduced by Deepa S. Deshpande et al. [18]. The algorithm uses GLCM algorithm to find out the texture features from the mammographic images. From the features extracted associative rules are formed. Aswini Kumar Mohanty et al. [19] proposes a method for classification of breast masses using correlated rule mining. The images are preprocessed by resizing and finding out the regions of interest. The Statistical and texture features are formed using the gray level co occurrence matrix method (GLCM). The classification is done through the Correlated association rule mining which takes association framed using the features extracted. The purning is done using the CorClass algorithm. The classification is done based on the decision list and the weighted combination of the association rules based on which the best rule is selected for classification. Zhiqiong Wang et al. [20] demonstrated an algorithm for breast tumor detection along with classification using extreme machine learning. The images are preprocessed using a median filter through which the noises are reduced and the images are enhanced in contrast. The breast edge segmentation is done through the wavelet modulus maxima transform method, region growing techniques and morphological operation. Then five texture features and five geometrical features are extracted and a two dimensional input vector is formed and fed in to the Extreme Machine Learning classifier for the classification of breast masses.

3. CLASSIFICATION TECHNIIQUES FOR BREAST CANCER DETECTION BASED ON PIXEL INFORMATION

3.1. Per pixel classification

Per pixel classification where each data points in the image is processed individually.Example of these type of classification are K–Nearest Neighbour Classifier.

An automatic mammographic risk classification system is proposed by Zhili Chen1et al. [21] based on the breast density by using a hierarchical structure drawn from the higher sets of the images. A shape tree and a density tree is drawn which gives the saliency and independency measures based on which the shapes of interest which are dense regions are derived and further they are used in classification. Zhili Chen et al. [22] presented an algorithm for Topological modelling for the detection coupled classification of the groups of microcalcifications using K-Nearest Neighbour classifier. This extracts the topological features based on multiscalemorphology. A group of topological based features are formed from the graph which is build based on the connectivity of the clusters of microcalcifications. After which features are fed into the KNN based classifier to classify the cluster as benign or malignant Xingwei Wang et al. [23] developed an interactive computer aided diagnosis for detection with classification of masses using content based retrieval based on K nearest neighborclassifier. This system consists of the user interface that contains the options to the user to query an image, displaying the classification score, displaying the reference images. A region growing algorithm based on many layers topographic regiongrowth and an approach based on contours is used for segmentation of the masses. CBIR algorithm compares and retrieves a group of K reference images that are equal to the queried image.

3.2. Sub Pixel classification

The Sub Pixel Classification works by extracting the information regarding different classes of the same pixel. Examples include Fuzzy logic and pixel based Classifiers.

Arnau Oliver et al. [24] introduced a method for automatic detection of microcalcification along with cluster detection based on a boosting classifier. A word dictionary is created using a bank of filters for a set of patches that contain the microcalcifications which helps in the classification of images containing clusters of microcalcifications. This dictionary and the patches which contain positive and negative tissues of breast cancer are fed as the input to the Gentleboostclassifier. These patches are classified pixel by pixel using a dictionary trained classifier. Gisele Helena et al. [25] introduced a Fuzzy logic based computer aided system for the grouping of breast masses in mammograms. Animage set of 40 from DDSM database are described using the image descriptor constructed on BI-RADS classification standard. The classification is done through fuzzy modelling in two steps. In the first step, the nodules and calcifications are classified using the visual attributes. The second step builds a fuzzy inference system with three input parameters such as shape coefficient; contour coefficient and density coefficient. The Mamdani method is used as an inference model. The rules are framed using different combinations of the input coefficients. A machine learning algorithm called Fuzzy Omega algorithm is used to represent the experts knowledge by generating the membership function based on statistical analysis of data. A fuzzy rule method for the discrimination of breast masses dependent on BI-RADS categories for shapes is developed by A.Vadivel et al. [26]. The images are preprocessed using gray threshold based approach. A set of 17 shape and margin features are extracted using a set of mathematical functions. The rules are then constructed based on the features using Mamdani based fuzzy inference model. The best rules are selected using Decision tree algorithm based on the depth of the tree which is usually set as 1.Based on the fuzzy rules framed the fuzzy membership functions are generated and the breast masses are classified as bengin or malignant.

4. CLASSIFICATION TECHNIQUES FOR BREAST CANCER DETECTION BASED ON PARAMETRS USED

4.1. Parametric Classification

The parametric classification mainly works under the data distribution assumptions. Linear Discriminant Analysis Classifier is one of the best examples for Parametric Classification.

B. Sahiner et al. [27] studied the impact of the accuracy for classification by the automatic mass segmentation technique by comparing the automated segmentation technique by the manual methods involving two radiologists on a group of 100 masses using distance measures of the data set of six tests based on statistical properties were performed and the classification is done for two feature sets extracted using linear discriminate analysis and the stepwise feature selection. An algorithm is introduced by L.M. Bruce et al. [28] for classification of the shapes of the masses in the mammographic images using linear discriminant analysis classifier to classify masses as round masses, nodular and stellate masses. The feature extraction is done through the shape analysis and the multiresoultion and uniresolution shape features are extracted. These shape features of the manually segmented masses are fed to the LDA classifier

4.2. Non Parametric Classification

These type of Classification Techniques does not rely on the probability density of the images. Examples include Support Vector Machine, Maximum Likelihood Classifiers and Expert System Classifiers.

Daniel RodriguesEriceira et al. [29] introduced an sequence of steps for detection of the breast masses in the asymmetric regions by using different functions formed using spatial description with variogram and cross-variogram. The cross variogram functions identifies the asymmetric regions using structural variations done using bilateral registration of left and right breasts pairs of patients waiting for diagnosis. Then on those asymmetric regions the varogram functions are applied to classify the masses as normal or abnormal.Defeng Wang et al. [30] proposed a Structured SVM(s-SVM) model to determine if the region of the mammogram which are doubted for cancers is normal or cancerous by considering the patterns of clusters of trainingset involved. Many features including curvilinear features, features based on texture, Gabor features along with multi-resolution features are formed from the images which are taken as the sample set after which, the salient features are derived from recursive feature elimination algorithm. An algorithm is framed by Alfonso Rojas Domínguez and Asoke K Nandi [31] to find out the group of six features framed for differentiation of mass margins. Three famous classifiers namely Bayesian classifier, Fisher's linear discriminant analysis classifier and a support vector machine classifier are used for prediction on each of features extracted. T.S. Subashini et al. [32] proposed a method for assessment of breast tissue density which involves preprocessing, feature extraction and classification. Statistical features that imply the texture are given as the input to the support vector machine classifier to classify it into any of the three classes namely, fatty, glandular and dense tissues. De Vito et al. [33] developed an algorithm for the classification of microcalcifications in breast images using a multi expert system. This algorithm combines the decision of multiple exerts system in order to find the malignancy of the microcalcifications. For the classification of single micro calcification the algorithm uses mC-EXPERT system and for the classification of the clustered microcalcification.

5. DISCUSSION

The table 1 summarizes of the Supervised Classification techniques for breast cancer detection for mammograms. The supervised classification techniques are one in which the classifier is trained using a training set and then these knowledge is used for classification of the medical images. The main advantage is that the training sets are reusable and these techniques have self assessment. The main disadvantage of these techniques is the appropriate selection of suitable training sets and the cost of training the classifier.

The Table 2 lists the Unsupervised Classification techniques for breast cancer in which the natural properties are considered for classification. The advantage of the unsupervised techniques is the low cost and its suitable for the unknown pixel classification. The disadvantages of the these techniques is the time complexity if these techniques are high and the results cannot be of expected.

The Table 3 summarizes of the classification techniques based on pixel information. The main advantage of pixel based classification is that the cost of pixel based classification is low when compared to object based classification and the disadvantage is that it does not take the spatial properties of the pixels in to account.

The Table 4 summarizes the classification techniques based on parameter used. The advantage of these techniques is it gives more accuracy when it is used for recognition applications due to its high computational capacity. The demerit is that the parameters selection is of tedious job without which the classification accuracy will be reduced. The Digital mammograms used in many techniques are the x ray images which are digitized.

Author	Classifier	Abnorm- ality	Features Extracted	Segment- ation	Merits	Demerits	Accuracy	Database
Wei Qian et al. [1]	Distance based classifier	Microcal- cification clusters (MCC)	Average contrast, greylevel deviation	An Ada- ptive Seg- mentation method	Overcomes the problems of the Kernel based region grouping by using grouping	No cluster ori- ented analysis for discovering new features	Sensitivity 92.5%, 2.4 FP per image	Set of 30 full mammograms
Chun-Chu Jen et al. [2]	Abnorm- ality dete- ction classifier (ADC)	Abnormal and nor- mal breast masses	The text- ural ,geo- metric and shape features	Gray Level Quanti- sation	Useful for large data sets of images with various abnormalities	Lack of auto- mated system with changing parameters	Sensitivity 88%	322 images from Digital Database for Screening Mammography
Brijesh Verma [3]	Trained neural classfier	Beginin and malignant breast masses	BI-RADS features, Grey level- based features	_	Capacity for new training patterns learning	Not fully automatic	Classification rate 100% and 94% on training and test set.	DDSM and other benchmark Databases
Arnau Oliver et al. [4]	Boosted Classifier	Microcal- cification clusters (MCC)	Local features	Bank of Filters	It also detects clusters of microcal- cifications	No tested with large databases	80% sensiti- vity at 1 false positive cluster	322 imaegs of the MIAS database
Mario Molinara et al. [5]	Boosting- Based Classifier	Begnin, malignant and normal masses	Gray level and spatial features	Region and edge based	Accurate segmentation of masses of mammograms	Need for two contours	_	Digital Database for Screening mammography
Tomasz Arodz et al. [6]	Improved AdaBoost Classifier	Malignant masses and lesions	Intensity features	Set of Gabor Filters	Identifies majority of the malignant masses and lesion types	No image feature identification	Classifier accuracy is 90% for masses	Set of 40 masses and 720 non- lesions
Dae Hoe Kim et al. [7]	Variable selection using Ada Boost learning	Normal, begnin and malignant masses	Region based stellate features	Multi Thers- holding	Encoding of the physical char- acteristics of the stellate patterns	stellate patterns has not been included	ROC is 9187 0.929, 0.9567 for Decision tree, LDA, SVM	DDSM consisting of 140 mamm- ograms
Ciro D Elia et al. [8]	Multi- Classifier Approach	(MCC) as positive or negative	Mean, Area, Aspect Ratio, Gradient	Tree Structured MRF	Efficient for clusters with large variations	Not many features has been analysed	Cluster dete- ction rate is 90 % with one falser positive per image	40 images from Nijmegen database
D. Brzakovic et al. [9]	Determi- stic Class- ifiers	Malignant- cancerous lesions	Edge distance variation, Edge intensity variation	Fuzzy Pyrramid Linking	This system is good in detect- ing the regions which need further biopsy.	Does not accurately help for actual recognition	Classification accuracy 85% detection accuracy was 95%	25 samples of mammograms
N. Karssemeijer et al. [10]	Classifier using Gaussian derivative operators	Speculat- ed lesions and archi- tectural distortions	Stellate features	Wavelets	The abnorm- ality can be detected at a high specificity level	High computation time	The detection accuracy is 90% one false positive	50 images from MIAS database
H.D. L.M.	Fuzzy	Suspicious	Radio-	MRF	Classification	Has not been	Sensitivity is	90 images

 Table 1

 The analysis of Supervised classification techquies for breast cancer detection

(Indie I Coma	.)	
---------------	----	--

Author	Classifier	Abnorm- ality	Features Extracted	Segment- ation	Merits	Demerits	Accuracy	Database
Kallergi et al. [11]	Binary Decision Tree	and nor- mal breast masses	graphic, Density related features.		of abnormality breast masses < 10mm	used for large databases	90%	
L. Zhen, A.K. Chan et al. [12]	Binary tree Classifier	Suspicious Unsus- picious breast masses	<i>Gradient</i> <i>within</i> <i>current</i> <i>region</i> , area, com- pactness,	Dog and Rabbit Clustering	Low false alarm rate with high detection	Less gray level value matched with the back- ground.	Sensitivity level of 97.3% FP 3.92	MIAS database of 322 images
Rodrigo et al. [13]	Data Mining Classifier	Breast masses	Texture features	Wavelets	Reduced set of features with high classi- fication rate	Not generalizable	ROC curve AUC = 0.90	DDSM consisting of 120 images

Table 2
Performance analysis of UNSupervised classification techniues for breast cancer detection

Author	Classifier	Abnorm- ality	Features Extracted	Segment- ation	Merits	Demerits	Accuracy	Database
Murk J. Bottema et al. [14]	Cluster based Classifier	Lobular and DCIS (small cell)	Radius, size and circum- ference	-	Detects points in the image for correct classi- fication of the image identify- ing the maligi- nant cluster	Cannot be used for the detect- ion of other abnormalities	Fraction of true positive detect- ion is 60%. Classification is 69%.	Film mammograms from archives of Breast Screen SA in Adelaide, SA, Australia.
Xi-Zhao Li et al. [15]	Higher order texton classifier	Begnin and mali- gnant breast tumors in both sides	BI-RADS features	-	Great increase in classification performance	Increase in computational complexity	Classification rate is 96.19%	320 images from Digital Database of Screening Mammograms
Vipul Sharma Sukhwinder Singh et al. [16]	CFS–SMO based classifier	Fatty and dense breast masses	BI-RADS features	K means Clustering	Effectively differentiates between the texture patterns.	BI-RADS standard has to be used for more accuracy	Accuracy 96.46% with 100% sensitiv- ity and 88.23% specificity	Mini-MIAS The database contains 322 images in mediolateral- oblique (MLO) view
Aswini Kumar Mohanty et al. [17]	Data mining classifier	Cancerous and non- cancerous abnormal- ities	First-order statistics features, second order statistics	_	The large pot- ential for cancer detection	Only eight features are used	Sensitivity of 96.5% and a specificity of 96.88%	DDSM database
Deepa S. Deshpande et al. [18]	Associat- ion rule mining classifier	Normal, benign, and mali- gnant bre- ast masses	Texture features	Wavelets	More time efficient compared to Apriori algorithm	Less number of association rules decreas- ing the accu- racy	Classification rate obtained is Normal masses 100% Malignant masses 84% Benign 100%	322 images from Mammo graphic Image Analysis Society (MISA)

(Table 2 contd...)

Author	Classifier	Abnorm- ality	Features Extracted	Segment- ation	Merits	Demerits	Accuracy	Database
Aswini Kumar Mohanty et al. [19]	Correlated association rule mining classifier	Begnin and malignant breast masses	Mean, standard deviation, Entropy, skewness	Object Based Segment- ation.	Enhanced feature set such as topological features	The proposed method works well for both images with or without deno- ising	The method yields 98.6% sensitivity and 97.4% speci- ficity	DDSM Con- sisting of 402 images
Zhiqiong Wang et al. [20]	Extreme Learning machine Classifier	Normal and abno- rmal breast tumors	Five text- ural eat- ures and five mor- phological features	Mor- phological operations and region based	High Accuracy	High com- putational complexity	Receiver operating curve is 0.1 -1	482 images from Tumor Hospital of Liao Ning Province

Table 3	
Performance analysis of classification techniques based on pixel inform	ation

Author	Classifier	Abnorm- ality	Features Extracted	Segment- ation	Merits	Demerits	Accuracy	Database
			P	ER PIXEL	CLASSIFICATI	ON		
Zhili Chen et al. [21]	KNN	MCC breast as begnin and malignant	Topologi- cal features	K means Clustering	Highly effective in reducing the region of interest	Shape and texture features has not been included for classification	Classification 96% and the ROC curve reached up to 0.96	MIAS, DDSM and full field Datasets
Zhili Chen et al. [22]	Density map	Breast masses classified using BIRADS classes	Shape and density features	MRF	Quantifies the density and tracks the changes in breast density	Lack of a fully automated system using density map classification	Classification rate for MIAS and DDSM databases are 76.01% and 81.22%	Full MIAS database and DDSM database
Xingwei Wang et al. [23]	CBIR based KNN	Normal and sus- picious mass regions	Local and global image features	Region growth and active contour	User friendly Functions	No BIRADS classification	(ROC) curve increased from 0.865 ± 0.006 to 0.897 ± 0.005	Dataset with database with 1800 images
		6	S	UBPIXEL (CLASSIFICATI	NC		
Arnau Oliver et al. [24]	Gentle boost	Positive or negative microcal- cification patches	Local image features	Thers holding	The approach is fully automatic	The approach has not been tested for large databases	Sensitivity of 80% with 1 FP/image	232 images form MIAS database
Gisele Helena et al. [25]	Fuzzy rule	Contour, shape and density features	Nodules and mic- rocalci- fications	Fuzzy Modelling	The input co efficient are selected by semantically and friendly way	Does not con- firm to BIRADS classification standard	Accuracy of 76.67% for nodules and 83.34% for calcifications is achieved	(DDSM) consisting of 40 images
A. Vadivel et al. [26]	Fuzzy rule	Bi-RADS Shape features	Breast Mases and Calci- fications	Thers- holding	Combination of oval and round masses with 100% accuracy	This approach has not been used for 3D images	ILOR 87.76%, RO 100%, RL 95.45%	Total of 224 DDSM mamm- ogram masses

Author	Classifier	Abnorm- ality	Features Extracted	Merits	Demerits	Accuracy	Segmentation	Database
B. Sahiner et al. [27]	Linear dis- criminant analysis and step- wise sel- ection classifier	Texture, morpholo- gical, and speculation features	Normal, begnin and malignant breast masses	Robust to both hand segment- ation and automated segment- ation	Only less features have been extracted in order to classify	ROC was 0.89 for classific- ation and 0.88 ROC for the segmentation	Active Contour Model	A set of 249 films from 102 patients
L.M. Bruce et al. [28]	LDA Classifier	Multi resolution Shape Features	Nodular masses ly- mphomas, and stellate masses.	Not only classifies a single shape mass but concent- rates on all types of shapes	The system is not fully automated	Classification rates are 83% and 80%	The Wavelet transform modulus- maxima method	Data set containing 60 digitized mammo- graphic images
Daniel Rodrigues Ericeira et al. [29]	Trained SVM Classifier	Tissue texture features	Mass and Non Mass	Handles both the left and right breast in multi views	No detailed Classification	Sensitivity 100% Specificity 67.56%	Cross- variogram function.	100 mammograms form DDSM database
Defeng Wang et al. [30]	Structured support vector machine Classifier	Curvili- near feat- ures, text- ure featu- res, Gabor features and multi- resolution features	Normal and Cancerous masses	Structured SVM has good detection perform- ance in co- mparison to SVM	Kernel parameter selection is not automatic	Classification rate is 95.4%	Edge detection using Gabor Filters	DDSM.
Alfonso Rojas Domínguez et al. [31]	Support vector machine classifier	Contrast, edge strength, edge-sig- nature in- formation, relative gradient orientation	Benign or malignant breast masses microcal- cifications	Design of classifi- cation features with more discrimin- ative power.	Only limited feature set	Sensitivity & specificity values of. 0.6 and 0.8, res- pectively	Dynamic- programming- based method and region- growing method	MIAS database
T.S. Subashini, et al. [32]	Radial basis function kernel SVM	Fatty, glandular and dense tissue	Statistical features	More accurate Classi- fication	More features have not been added	Classifier accuracy of 95.44%.	Gray level thresholding and connected component labelling	Mini-MIAS digital database
S.De Vito et al. [33]	Multiple Expert Classifier	Malignant clusters and masses	Shape and texture	Use of two Expert classifiers	Not fully automatic	75.37% classification	Nil	40 image set

 Table 4

 Performance analysis of classification btechniues based on PARAMETERS USED

6. CONCLUSION

The paper lists out the survey of major existing classifiers used in the image Classification techniques used in Digital Mammography. The classifiers described in this survey classifies all the abnormalities which occurs in the high and low density areas of the breast such as distortions, lesions, nodules, masses, microcalicifcation clusters. Some techniques also gives the classification indicating the stages of the cancers to give an effective assistance to the radiologists.

REFERENCES

- [1] Wei Qian, Fei Mao, XuejunSun, et al., An improved method of region grouping for microcalcification detection in digital mammograms, Computerized Medical Imaging and Graphics 26 (2002) 361-368, Elsevier
- [2] Chun-Chu Jen, Shyr-Shen Yu, Automatic detection of abnormal mammograms in mammographic images, Expert Systems with Applications 42 (2015) 3048-3055, Elsevier
- [3] BrijeshVerma, Novel network architecture and learning algorithm for the classification of mass abnormalities in digitized mammograms, Artificial Intelligence in Medicine (2008) 42, 67-79, Elsevier
- [4] Arnau Oliver, Albert Torrent, Xavier Llado, et al., Automatic microcalcification and cluster detection for digital and digitised mammograms, Knowledge-Based Systems 28 (2012) 68-75, Elsevier
- [5] Mario Molinara, Claudio Marrocco and Francesco Tortorella, A Boosting-Based Approach to Refine the Segmentation of Masses in Mammography, ICIAP 2013, Part II, LNCS 8157, pp. 572-580, 2013, Springer
- [6] Tomasz Arodz Marcin Kurdziela, Erik O.D. Sevre David A. Yuen, Pattern recognition techniques for automatic detection of suspicious-looking anomalies in mammograms, Computer Methods and Programs in Biomedicine 79 (2005) 135-149, © Elsevier
- [7] Dae Hoe Kim, JaeYoung Choi, Yong Man Ro, Region based stellate features combined with variable selection using AdaBoost learning in mammographic computer-aided detection, Computers inBiologyandMedicine 63 (2015) 238-250, Elsevier
- [8] Ciro D Elia, Claudio Marrocco, Mario Molinara and Francesco Tortorella, Detection of Clusters of Microcalcifications in Mammograms: a Multi Classifier Approach, 21st IEEE International Symposium on Computer-Based Medical Systems
- [9] D. Brzakovic, X.M. Luo, P. Brzakovic, An approach to automated detection of tumors in mammograms, IEEE Trans. Med. Imaging 9 (3) (1990) 233-241.
- [10] N. Karssemeijer, G.M. Brake, Detection of stellate distortions in mammograms, IEEE Trans. Med. Imaging 15 (5) (1996) 611-619.
- [11] H.D. Li, M. Kallergi, L.P. Clarke, V.K. Jain, R.A. Clark, Markov random field for tumor detection in digital mammography, IEEE Trans. Med. Imaging 14 (3) (1995) 565-576.
- [12] L. Zhen, A.K. Chan, An artificial intelligent algorithm for tumor detection in screening mammogram, IEEE Trans. Med. Imaging 20(7) (2001) 559-567.
- [13] Rodrigo Pereira Ramos, Marcelo Zanchetta do Nascimento, Danilo Cesar Pereira, Texture extraction: An evaluation of ridgelet, wavelet and co-occurrence based methods applied to mammograms, Expert Systems with Applications 39 (2012) 11036-11047, Elsevier
- [14] Murk J. Bottema Johnn P. Slavotinek, Detection and classification of lobular and DCIS (small cell) microcalcificationsin digital mammograms, Pattern Recognition Letters 21 (2000) 1209-1214© Elsevier
- [15] Xi-Zhao Li, Simon Williams, Murk J. Bottema Constructing and applying higher order textons: Estimating breast cancer risk, Pattern Recognition 47 (2014) 1375-1382, Elsevier
- [16] Vipul Sharma · Sukhwinder Singh, CFS–SMO based classification of breast density using multiple texture models, Med Biol Eng Comput (2014) 52:521-529, Springer
- [17] Aswini Kumar Mohanty, ManasRanjan Senapati, Saroj Kumar Lenka, An improved data mining technique for classification and detection of breast cancer from mammograms, Neural Comput & Applic (2013) 22: S303-S310, Springer
- [18] Deepa S. Deshpande, Archana M. Rajurkar, Ramchandra M. Manthalkar, Medical image analysis an attempt for mammogram classification using texture based association rule mining, IEEE conference on computer vision, pattern recognition, Image processing and graphics, 2013, pp. 1-5.
- [19] Aswini Kumar Mohanty, Manas Senapati, Swapnasikta Beberta, Saroj Kumar Lenka, Mass classification method in mammograms using correlated association rule mining, Neural Comput & Applic (2013) 23: 273-281.

- [20] Zhiqiong Wang, GeYub, Yan Kang, Yingjie Zhao, Qixun Qu, Breast tumor detection in digital mammography based on extreme learning machine, Neurocomputing 128 (2014) 175-184, Elsevier
- [21] Zhili Chen, Arnau Oliver, Erika Denton, and Reyer Zwiggelaar, Automated Mammographic Risk Classification Based on Breast Density Estimation, IbPRIA 2013, LNCS 7887, pp. 237-244, Springer
- [22] Zhili Chen, Harry Strange, Arnau Oliver et al., Topological Modeling and Classification of Mammographic Microcalcification Clusters, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, Vol. 62, No. 4, April 2015, pp. 1203-1214.
- [23] Xingwei Wang & Lihua Li & Wei Liu & Weidong Xu & Dror Lederman & Bin Zheng, An Interactive System for Computer-Aided Diagnosis of Breast Masses, J. Digit Imaging (2012) 25: 570-579, Springer
- [24] Arnau Oliver, Albert Torrent, Xavier Llado, Meritxell Tortajada, Lidia Tortajada, Melcior Sentis, Jordi Freixenet, Reyer Zwiggelaar, Automatic microcalcification and cluster detection for digital and digitised mammograms, Knowledge-Based Systems 28 (2012) 68-75, Elsevier
- [25] Gisele Helena, Barboni Miranda, Joaquim Cezar Felipe, Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization, Computers in Biologyand Medicine 64 (2015) 334-346, Elsevier
- [26] A. Vadivel, B. Surendiran, A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories, Computers in Biology and Medicine 43 (2013) 259-267, Elsevier
- [27] B. Sahiner, N. Petrick, H.P. Chan, Computer-aided characterization of mammographic masses: accuracy of mass segmentation and its effects on characterization, IEEE Trans. Med. Imaging 20 (12) (2001) 1275-1284.
- [28] L.M. Bruce, R.R. Adhami, Classifying mammographic mass shapes using the wavelet transform modulus-maxima method, IEEE Trans. Med. Imaging 18 (1999) 1170-1177.
- [29] Daniel Rodrigues Ericeir et al., Detection of masses based on asymmetric regions of digital bilateral mammograms using spatial description with variogram and cross-variogram functions, Computers in Biology and Medicine 43 (2013) 987-999, Elsevier
- [30] Defeng Wang, Lin Shi, Pheng Ann Heng, Automatic detection of breast cancers in mammograms using structured support vector machines, Neurocomputing 72 (2009) 3296-3302, Elsevier
- [31] Alfonso Rojas Domínguez, Asoke K. Nandi, Toward breast cancer diagnosis based on automated segmentation of masses in mammograms, Pattern Recognition 42 (2009) 1138-1148, Elsevier
- [32] T.S. Subashini, V. Ramalingam, S. Palanivel, Automated assessment of breast tissue density in digital mammograms, Computer Vision and Image Understanding 114 (2010) 33-43, Elsevier
- [33] S. De Vito, F. Tortorella, M. Vento, Automatic classification of clustered calcifications by a multi expert systems, IEEE International Conference on image analysis and processing, Year: 1999, pp. 464-469.