
I J C T A, 9(19) 2016, pp. 9211-9219
© International Science Press

* USICT, GGSIPU, New Delhi, India, E-mails: rashmimsit@gmail.com; Anju_kochhar@yahoo.com
** IGDTUW, New Delhi, India

A Comparative Study of Object-Oriented
Software Testing Tools
Rashmi Sharma*, Anju Saha* and A. K. Mahapatra**

ABSTRACT

Software testing is one of the most essential steps of software development. Testing is the process of evaluating a
system or its modules with the intent to find whether it fulfills the particular requirement or not. Software testing
tools facilitate developers and testers to easily automate the procedure of testing in software development. Automated
testing tools are competent of executing tests, reporting outcomes and comparing consequences with earlier test
runs. Tests conceded out with these tools can be run repetitively, at any point of time. An ample range of software
automated testing tools are accessible in the market. Some tools are free while others need a paid license. But it is
significant for a user to choose a suitable tool for software testing. This research paper presents a feasibility study
based on different parameters of object oriented software testing tools, mainly java testing tools that help developers
or users to select the appropriate tool based on their requirements. In this paper, we analyze the concepts and
features supported by three open source object oriented testing tools, namely CodePro AnalytiX, JUnit Test Builder
(JUB) and Evosuite on the selected target application. The aim of this work is to explore these testing tools to
access eccentrically pros and cons of these tools based on certain parameters, so that we can select an appropriate
testing tool for the developed software. The main finding is that choice of testing tool depends mainly on application
under test (AUT) and learning curve of the tool. If the learning time of the tool is acceptable for the desired goal,
then one may select that tool. On the basis of execution of these testing tools on a target application, we have
analysed that CodePro AnalytiX is much easier to use.

Keywords: Software Testing, Automated Testing, Test Case Generation, Java, CodePro AnalytiX, JUB, Evosuite,
AUT.

I. INTRODUCTION

Software testing is a branch of software development where perseverance is crucial. Software testing is the
method of determining software quality by executing the software with appropriate test cases to conclude
if the proposed software requirements are being satisfied. The IEEE [1] standard glossary defines testing as
the process of analyzing a software item to detect the variances between existing and required situations
and to evaluate the features of the software items. Testing is vital because previous work on software
testing [2], [3], [4] indicates that software reliability is defined via testing and around fifty percent of the
software development cost for software projects is spent on testing [5]. Researchers [6], [7], [8] claim that
more effort spent on testing will result in improved quality software. Thus, it is essential to indulge more
resources in software testing. Software testing can be done either manually or via automated testing tools.
In manual software testing [9], software tester prepares the test cases for various levels of code, executes
the test cases and reports the results. Manual software testing is labor intensive, time demanding and very
expensive. The effort required will be same each time, as manual test is not reusable. Thus manual testing
has limited visibility and needs to be repeated by all stakeholders. Also, some errors may remain uncovered
in manual testing. Due to this repetitive and labor intensive behavior of manual software testing, it is
necessary to trim down human testing.

9212 Rashmi Sharma, Anju Saha and A. K. Mahapatra

Limitations of manual testing can be overcome by automated testing. In automated testing, tester runs
the script on a testing tool that generate the suitable test cases. Tester may or may not be aware of the inside
details of the system under test. ISTB [10] defines automated testing as the use of software, to control the
implementation of tests, the comparison of actual results to expected results, the setting up of test
prerequisites, and other test control and reporting tasks. Automated software testing of software projects
automatically verifies their key functionality, tests for regression and can run a large number of tests in a
short period of time. On the basis of the license associated with these testing tools, the automated testing
tools can be classified as: open source test tools and commercial/paid test tools. Open source test tools are
freely available tools as, they don’t require any license and can be downloaded from the internet or can be
obtained from the vendor without any cost. Also, code of the application is also accessible to user for
further enhancements. For commercial testing tools, a license has to be purchased to explore the full
functionality of the tool. The cost may vary as per the functionality of the tool. Because of the repetitive
nature of software testing, it is necessary to identify appropriate software testing tool for the system under
test. In this paper, we discuss three open source object oriented software testing tools namely, CodePro
AnalytiX, JUnit Test Case Builder (JUB) and Evosuite and compare them on the basis of few parameters to
determine their usability and effectiveness, that helps in the selection of appropriate testing tool. The
remaining paper is structured as follows: Section II converses the background work done on software
testing tools. Section III describes the methodology used in this research. In this, we provide the details of
tool and parameters identified for evaluation. Section IV gives the conclusion part and future scope.

II. RELATED WORK

This section describes the work done by various researchers on software testing tools. J. Meek et al. [11]
presented the design and execution of an automated software testing tool. This tool creates test cases
automatically for specific three-variable functions. In each test case, an output is generated and compared
to a computed expected test result obtained from an input file. This research provides designers with an
assurance that the implemented system achieves a very high level of correctness. Meenu and Yogesh Kumar
[12] provided a viability study based on different parameters of commercial tools such as the Selenium,
SoapUI and open source automation testing tool named HP Unified Functional Testing (UFT), TestComplete
(TC). They concluded that user can select a testing tool depending on the type of application to be tested,
budget, and the productivity required for that application. Selenium, SoapUI, HP UFT and TC all are
extremely fine tools. Each tool has its own advantages and disadvantages. For the application under test,
SoapUI is the best tool among the four.

Tarik Sheth and Dr. Santosh Kumar Singh [13] selected three testing tools namely, RFT, Ranorex, and
Janova. They concluded that selection of software testing tools depends on the context. It takes time, effort
and software testing goal to know which tool is best suitable to use. T.Illes et al. [14] provided a systematic
approach to derive an evaluation criteria of software testing tools. They compared three capture and replay
tools and concluded that defined criteria can be effectively applicable on evaluation of test tools. Stefen
Wagner et al. [15] worked on case study using various projects from industrial environment. They compared
three bug finding tools namely, FindBugs, PMD and QJPro and found that bug finding tools can save cost
and tools should be improved in terms of false positive ratio and tolerance of different programming styles.
Koushik Sen and Gul Agha [16] presented a tool paper on CUTE and jCUTE. Their approach was based on
concolic testing,that can execute a program both concretely and symbolically. Catherine Oriat [17] in her
paper presented Jartege tool, which generates random unit test cases for Java classes specified in Java
Modelling Language (JML). Christoph Csallner and Yannis Smaragdakis [18] discussed JCrasher which is
an automatic robustness testing tool for java. JCrasher can be integrated in eclipse IDE. Anthony J.H.
Simons [19] in their work discussed a tool named JWalk for systematic unit testing in the perspective of
agile methods. Elsa Gunter et al. [20] discussed PET (Path exploration tool) which is an interactive software

A Comparative Study of Object-Oriented Software Testing Tools 9213

testing tool. Elvira Albert et al. [21] presented jPET tool which work as an automatic test case generator for
java (TCG).In the next section, we discuss the methodology adopted for the comparison of object oriented
software testing tools.

III. METHODOLOGY USED

The research in this paper includes:

1. Selecting a set of tools for evaluation

2. Identifying a set of parameters for evaluation of tools

3. Selecting the target application

4. Testing the target application using each selected tool and gathering the resulting data

5. Results Interpretation

3.1. Selection of Tools

In this research, we are focusing on object oriented software testing tools. Hence, we are using java testing
tools. Table 1 provides details of the automated testing tools used in this study. It consists of name and
version of the tool used, type of input, user interface of the tool, source in which tool is written, and last
attribute specifies the work done by previous researchers.

Table 1
Automated Software Testing Tools

Name Version Input Interface Source Research Publications

Evosuite [36] Evosuite-1.0.3 Class File Command Line Java [26],[27],[28],[29],[30]

JUnit Test Case Builder (JUB) [37] 0.1.2 (2002) Source File Eclipse Plug-in Java [31]

CodePro AnalytiX [35] 7.1.0 Source File Eclipse Plug-in Java [22],[23],[24],[25]

3.2. Identification of parameters for the comparison of tools

Identification of parameters provides a way to compare different tools effectively. On the basis of this
comparison, user can select an appropriate tool as per his requirements. Here we are classifying our parameters
in to the following metrics:

1. Tool Feature Metric

2. Tool Usability Metric

3. Tool Debugging Metric

4. Tool Requirement Metric

5. Tool Performance Metric

These metrics are influenced from the work done by N. Bordelon [32] on comparison of automated
software testing tools. Table 2 provides the details of identified metrics and parameters measured under
them.

3.3. Target Application

In this study, Java open source software “Apache Lucene” is used for the comparison of testing tools.
Apache Lucene is [33] a high-performance, full-featured text hunt engine library. Many versions of Lucene
are available, we have used Lucene 4.10.2 core API. Its specifications are given in Table 3:

9214 Rashmi Sharma, Anju Saha and A. K. Mahapatra

Table 2
Parameters Used for Comparison of Testing Tools

Table 3
Apache Lucene Specifications

Project Used System Number Number of Lines of Number of Number of Number of
Requirements of Classes Code Fields Methods Lines

Packages

Apache Java Version 6 or 33 727 98,186 5029 7991 168,699

Lucene[33] higher

3.4. Testing Apache Lucene

All the three software testing tools have been used, evaluated and compared on Apache Lucene. In this
section, we discuss the testing of apache Lucene on the three selected testing tools.

3.4.1. Evosuite

Evosuite tool develops unit tests for java software. It is a Search based testing tool (SBST) which uses
genetic algorithm to generate test suites. It develops entire test suites targeting all coverage goals at the
same time. Figure 1 describes the evosuite process of test suite generation.

A Comparative Study of Object-Oriented Software Testing Tools 9215

Figure 1: Evosuite Process [33]

We run evosuite from command line. The following command is used to generate test cases from the
compiled apache lucene source:

Java –jar evosuite-1.0.3.jar –projectCP= “C:\Users\skumar3\Desktop\phd\evosuite demo\lucene”
–target= “C:\Users\skumar3\Desktop\phd\evosuite demo\lucene”

It will create two files: evosuite-reports and evosuite-tests.

1) Evosuite-reports contains statistics.csv file, which has target class, criterion used, coverage, total
goals and covered goals as its attributes. The specifications of these attributes are as follows: a)
Target class specifies the class under test. b) Coverage criteria are used to guide test generation. A
coverage criterion signifies a finite set of coverage goals, and a common method is to target single
such goal at a time, creating test inputs either symbolically or with a search-based approach. c)
Coverage is a measure that describes the degree to which source code of a program is tested by a
particular test suite.

2) Evosuite-tests, produce two files for every class under test. For example: For IndexFiles.class ,it
creates: evosuite-tests\org\apache\lucene\demo\ IndexFiles_ESTest.java and evosuite-
tests\org\apache\lucene\demo\ IndexFiles_ESTest_scaffolding.java

The scaffolding confirms that tests are always executed in the same stable state, so they should fail only
if they reveal a bug. Tests are in the IndexFiles_ESTest.java file. Figure 2 shows the demonstration of
evosuite on apache lucene.

3.4.2. JUnit Test Case Builder (JUB)

Junit Test case builder is installed on Eclipse-Helios and Junit test cases are generated for each class file.
JUB’s framework is built on Builder pattern (GoF) with white box test generation support. This tool generates
test cases having 0 for integers and null for other input variables. Figure 3 shows the generation of test
cases via JUB. After this step, package name prefix with “unittest” is created which has the test files. For
example, in this case a package named unittest.org.apache.lucene.demo is created which thus contains
IndexFilesTest.Java file.

3.4.3. CodePro AnalytiX

CodePro AnalytiX plugin is installed on eclipse-helios and test cases are generated. The CodePro JUnit
Test Case generation ability helps us to automate the design of complete JUnit test cases. It does this
through a blend of both static code analysis and by dynamically implementing the code to be tested in order
to detect the behavior of code. Test cases will be generated as a separate project. Figure 4 shows the way to
generate test cases using CodePro AnalytiX.

9216 Rashmi Sharma, Anju Saha and A. K. Mahapatra

Figure 2: Generation of Test Cases via Evosuite Figure 3: Generation of Test Cases via JUB

Figure 4: Generation of Test Cases via CodePro AnalytiX

3.5. Results Interpretation

Now, we compare these tools on the basis of above mentioned metrics. Table 4 summaries the comparison:

Table 4
Comparison of Software Testing Tools

contd. table 4

A Comparative Study of Object-Oriented Software Testing Tools 9217

IV. CONCLUSION AND FUTURE SCOPE

As software testing tools are very important part of software testing process and it is very critical to select
the appropriate tool for testing. It requires an ample amount of time and effort to understand any particular
tool. Also, the selection is based on Application under test (AUT). The ideal testing tool should be one,
with good user interface, easy to install and for which sufficient number of tutorials are available. In this
study, we compare Evosuite, JUB and CodePro AnalytiX on a set of parameters. A well framed evaluation
guide is available for CodePro AnalytiX, but for JUB or Evosuite only some web links are there for help.
Thus, we found the learning curve of CodePro AnalytiX much smaller than Evosuite and JUB. Moreover,
CodePro AnalytiX provides additional features like computation of metrics, analysis of dependencies among
packages, auditing of code. These additional functionalities make it more usable and effective than its
counterparts. Also, CodePro AnalytiX displays all the issues in currently opened editor itself, which is
much more appropriate than selecting packages or projects and then trigger a scan on them. Thus, in this
study, we found that CodePro AnalytiX is much simpler and more powerful than JUB and Evosuite. Our
future research will focus on providing a survey of both commercial and open source object oriented
software testing tools with more refined criteria. We plan to extend this research on atleast ten open source
object oriented projects, so that we may get a more general result.

REFERENCES
[1] IEEE Press, IEEE Standard glossary of software engineering technology, ANSI/IEEE Std. 610.12., 1990.

[2] R. Brown and M. Lipow, “Testing for software reliability” ,Proc. ACM Int. Conf. on reliable software, pp. 518-527, New
York, 1975.

9218 Rashmi Sharma, Anju Saha and A. K. Mahapatra

[3] H. Pham., “Software reliability and testing”, IEE Computer society press, 1995.

[4] A.Bertolino, “Software testing research:achievements,challenges,dreams”, Future of software engineering(FOSE), IEEE
Computer society, 2007.

[5] Beizer, “Software testing techniques (second edition)”, Van Nostrand Reinhold Co., 1990.

[6] Joseph P.Cavano and James A. McCall, “A framework for the measurement of software quality”, Proc. ACM software
quality assurance workshop on functional and performance issues., New York, 1978.

[7] D. Hamlet, “An essay on software testing for quality assuance”, Annals of software engineering, vol.4, pp.1-9, Springer,
1997.

[8] J. R. Horgan,S.London and M. R. Lyu, “Achieving software quality with testing coverage measures”, Computer, IEEE
Computer society, vol. 27, pp. 60-69, 1994.

[9] P. Ammann and J.Offutt, “Introduction to software testing”, Cambridge university press, 2008.

[10] International software testing qualifications board, “Standard glossary of terms used in software testing, version 3.01”.

[11] J. Meek,N. Debnath, I. Lee and H. Lee, “Algorithmic design and implementation of an automated testing tool”, IEEE Int.
Conf. on Information technology, pp. 54-59, 2011.

[12] Meenu and Y. Kumar, “Comparative analysis of automated functional testing tools”, Int. Journal of emerging technologiesand
innovative research, vol. 2, pp. 42-48, 2015.

[13] T. Sheth and Dr. S. K. Singh, “Software test automation-approach on evaluating test automation tools”, Int.Journal of
scientific and research publications, Vol. 5, 2015.

[14] T. Illes, A. Herrmann, B. Paech and J. Ruckert, “Criteria for software testing tool evaluation-a task oriented view”, Int.
software quality institute,Proc. of the 3rd world congress for software quality, vol. 2, pp. 213-222, 2005.

[15] S.Wagner, J. Jurjens, C. Koller and P. Trishberger, “Comparing bug finding tools with reviews and tests”, Testing of
communicating systems, springer, LNCS, vol. 3502, pp. 40-55, 2005.

[16] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing and explicit path model-checking tools (Tool paper)”,
CAV, LNCS, vol. 4144, pp. 419-423, 2006.

[17] C. Oriat, “Jartege: A tool for random generation of unit tests for java classes”, QoSA-SQQUA, LNCS, vol. 3712, pp. 242-
256, 2005.

[18] C. Csallner and Y. Smaagdakis, “JCrasher:An automatic robustness tester for java”, software –practice and experience,
vol.34, pp. 1025-1050, 2004.

[19] A. J. H. Simons, “JWalk: A tool for lazy,systematic testing of java classes by design introspection and user interaction”,
Automated software engineering,vol. 14, pp. 369-418, springer, 2007.

[20] E. Gunter, R. Kurshan and D. Peled, “Per” An interactive software testing tool”, CAV, LNCS, vol. 1855, PP. 552-556,
2000.

[21] E. Albert et al., “jPET:An automatic test case generator for java”, Proc. 18th working conference on reverse engineering,IEEE
Computer society, pp. 441-442, 2011.

[22] R. Terra, L.F. Miranda, M.T. Valente and R.S. Bigonha, “Qualitas.class corpus:A compiled version of the qualitas corpus”,
Sigsoft software engineering notes 38, pp. 1-4, 2013.

[23] M. Sensalire, P. Ogao and A.Telea, “Classifying desirable features of software visualization tools for corrective maintenance”,
Proc. ACM symposium on software visualization, New York, 2008.

[24] R.Plösch, A. Mayr, G. Pomberger and M. Saft, “An approach for a method and a tool supporting the evaluation of the
quality of static code analysis tools”, SQMB, 2009.

[25] A. K. Tripathi and A.Gupta, “A controlled experiment to evaluate the effectiveness and the efficiency of four static
program analysis tools for java programs”, Proc. 18th Int. Conf. on evaluation and assessment in software engineering,
ACM, New York, 2014.

[26] G. Fraser and A. Arcuri, “Evosuite:Automatic test suite generation for object-oriented software”, Proc. 19th ACM Sigsoft
symposium and 13th european conference on foundations of software engineering, ACM, New York, 2011.

[27] G. Fraser and A. Arcuri, “Evosuite at the SBST 2016 tool competition”, Proc. 9th Int. workshop on search based software
testing, ACM, pp. 33-36, New York, 2016.

[28] J.M. Rojas, G. Fraser and A. Arcuri, “Automated unit test generation during software development:A controlled experiment
and think-aloud observations”, Proc. Int. Symposium on software testing and analysis, pp. 338-349, 2015.

[29] G. Fraser, A. Arcuri and P. McMinn, “A memetic algorithm for whole test suite generation”, Journal of systems and
software, vol. 103, pp. 311-327, 2015.

A Comparative Study of Object-Oriented Software Testing Tools 9219

[30] Y. Pavlov and G. Fraser, “Semi-automatic search based test generation”, IEEE Fifth Int. conference on software
testing,verification and validation.

[31] S.Wang, “Comparison of unit level automated test generation tools”,software testing,verification and validation workshop,
2009.

[32] N. Bordelon, D. Reinicke, B. Patterson and L. Noble, “A comparison of automated software testing tools”,annals of the
master of science in computer science and information systems at UNC Wilmington.

[33] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites, Proc. 11th Int. conference on quality software,pp.31-
40,2011.

[34] http://lucene.apache.org

[35] https://marketplace.eclipse.org/content/codeproanalytix

[36] http://evosuite.org

[37] http://jub.sourceforge.net

