IJCTA, 9(19) 2016, pp. 9211-9219
© International SciencePress

A Comparative Study of Object-Oriented
Software Testing Tools

Rashmi Sharma’, Anju Saha” and A. K. Mahapatra™

ABSTRACT

Software testing isone of the most essential steps of software devel opment. Testing is the process of eval uating a
system or its modules with the intent to find whether it fulfills the particular requirement or not. Software testing
toolsfacilitate devel opersand testersto eas |y automate the procedure of testing in software devel opment. Automated
testing tools are competent of executing tests, reporting outcomes and comparing consequences with earlier test
runs. Tests conceded out with these tools can berun repetitively, at any point of time. An ample range of software
automated testing tool sare accessiblein the market. Sometoolsarefreewhile othersneedapaid license. But it is
significant for a user to choose a suitabletool for softwaretesting. Thisresearch paper presents afeasibility study
based on different parameters of object oriented softwaretesting tools, mainly javatesting toolsthat help devel opers
or users to select the appropriate tool based on their requirements. In this paper, we analyze the concepts and
features supported by three open source object oriented testing tools, namely CodePro AnalytiX, JUnit Test Builder
(JUB) and Evosuite on the selected target application. The aim of this work is to explore these testing tools to
access eccentrically prosand cons of thesetools based on certain parameters, so that we can select an appropriate
testing tool for the devel oped software. Themain finding isthat choiceof testing tool depends mainly on application
under test (AUT) and learning curve of the tool. If the learning time of thetool is acceptable for the desired goal,
then one may select that tool. On the basis of execution of these testing tools on a target application, we have
analysed that CodePro AnalytiX ismuch easier to use.

Keywords: Software Testing, Automated Testing, Test Case Generation, Java, CodePro AnalytiX, JUB, Evosuite,
AUT.

. INTRODUCTION

Software testing is a branch of software development where perseverance is crucial. Software testing isthe
method of determining software quality by executing the software with appropriate test casesto conclude
if the proposed software requirements are being satisfied. The |EEE [1] standard glossary definestesting as
the process of analyzing a software item to detect the variances between existing and required situations
and to evaluate the features of the software items. Testing is vital because previous work on software
testing [2], [3], [4] indicates that software reliability is defined via testing and around fifty percent of the
software development cost for software projectsis spent on testing [5]. Researchers[6], [7], [8] claim that
more effort spent on testing will result in improved quality software. Thus, it is essential to indulge more
resources in software testing. Software testing can be done either manually or via automated testing tools.
In manual software testing [9], software tester prepares the test cases for various levels of code, executes
the test cases and reports the results. Manual software testing is labor intensive, time demanding and very
expensive. The effort required will be same each time, as manual test is not reusable. Thus manual testing
has limited visibility and needs to be repeated by all stakeholders. Also, some errors may remain uncovered
in manual testing. Due to this repetitive and labor intensive behavior of manual software testing, it is
necessary to trim down human testing.

USICT, GGSIPU, New Delhi, India, E-mails. rashmimsit@gmail.com; Anju_kochhar @yahoo.com
" IGDTUW, New Delhi, India

9212 Rashmi Sharma, Anju Saha and A. K. Mahapatra

Limitations of manual testing can be overcome by automated testing. In automated testing, tester runs
the script on atesting tool that generate the suitable test cases. Tester may or may not be aware of the inside
details of the system under test. ISTB [10] defines automated testing as the use of software, to control the
implementation of tests, the comparison of actual results to expected results, the setting up of test
prerequisites, and other test control and reporting tasks. Automated software testing of software projects
automatically verifies their key functionality, tests for regression and can run a large number of testsin a
short period of time. On the basis of the license associated with these testing tools, the automated testing
tools can be classified as: open source test tools and commercial/paid test tools. Open source test tools are
freely available tools as, they don't require any license and can be downloaded from the internet or can be
obtained from the vendor without any cost. Also, code of the application is aso accessible to user for
further enhancements. For commercial testing tools, a license has to be purchased to explore the full
functionality of the tool. The cost may vary as per the functionality of the tool. Because of the repetitive
nature of software testing, it is necessary to identify appropriate software testing tool for the system under
test. In this paper, we discuss three open source object oriented software testing tools namely, CodePro
AnalytiX, JUnit Test Case Builder (JUB) and Evosuite and compare them on the basis of few parametersto
determine their usability and effectiveness, that helps in the selection of appropriate testing tool. The
remaining paper is structured as follows: Section |1 converses the background work done on software
testing tools. Section 111 describes the methodology used in this research. In this, we provide the details of
tool and parameters identified for evaluation. Section IV gives the conclusion part and future scope.

II. RELATED WORK

This section describes the work done by various researchers on software testing tools. J. Meek et al. [11]
presented the design and execution of an automated software testing tool. This tool creates test cases
automaticaly for specific three-variable functions. In each test case, an output is generated and compared
to a computed expected test result obtained from an input file. This research provides designers with an
assurance that the implemented system achieves avery high level of correctness. Meenu and Yogesh Kumar
[12] provided a viability study based on different parameters of commercial tools such as the Selenium,
SoapUI and open source automation testing tool named HP Unified Functional Testing (UFT), TestComplete
(TC). They concluded that user can select atesting tool depending on the type of application to be tested,
budget, and the productivity required for that application. Selenium, SoapUl, HP UFT and TC all are
extremely fine tools. Each tool has its own advantages and disadvantages. For the application under test,
SoapUI isthe best tool among the four.

Tarik Sheth and Dr. Santosh Kumar Singh [13] selected three testing tools namely, RFT, Ranorex, and
Janova. They concluded that selection of software testing tools depends on the context. It takestime, effort
and software testing goal to know which tool is best suitableto use. T.llleset al. [14] provided a systematic
approach to derive an evaluation criteria of software testing tools. They compared three capture and replay
tools and concluded that defined criteria can be effectively applicable on evaluation of test tools. Stefen
Wagner et al. [15] worked on case study using various projectsfromindustrial environment. They compared
three bug finding tools namely, FindBugs, PMD and QJPro and found that bug finding tools can save cost
and tools should be improved in terms of false positive ratio and tolerance of different programming styles.
Koushik Senand Gul Agha[16] presented atool paper on CUTE and JCUTE. Their approach was based on
concolic testing,that can execute a program both concretely and symbolically. Catherine Oriat [17] in her
paper presented Jartege tool, which generates random unit test cases for Java classes specified in Java
Modelling Language (JML). Christoph Csallner and Yannis Smaragdakis [18] discussed JCrasher which is
an automatic robustness testing tool for java. JCrasher can be integrated in eclipse IDE. Anthony J.H.
Simons [19] in their work discussed a tool named JWalk for systematic unit testing in the perspective of
agile methods. Elsa Gunter et a. [20] discussed PET (Path exploration tool) whichisan interactive software

A Comparative Study of Object-Oriented Software Testing Tools 9213

testing tool. ElviraAlbert et al. [21] presented JPET tool which work as an automatic test case generator for
java(TCG).In the next section, we discuss the methodology adopted for the comparison of object oriented
software testing tools.

1. METHODOLOGY USED
The research in this paper includes:

Selecting a set of tools for evaluation

Identifying a set of parameters for evaluation of tools

Selecting the target application

Testing the target application using each selected tool and gathering the resulting data

a M W DN P

Results Interpretation

3.1. Selection of Tools

In this research, we are focusing on object oriented software testing tools. Hence, we are using java testing
tools. Table 1 provides details of the automated testing tools used in this study. It consists of name and
version of the tool used, type of input, user interface of the tool, source in which tool is written, and last
attribute specifies the work done by previous researchers.

Tablel
Automated Software Testing Tools
Name \ersion Input Interface Source Research Publications
Evosuite [36] Evosuite-1.0.3 ClassFile CommandLine Java [26],[27],[28],[29],[30]
JUnit Test Case Builder (JUB) [37] 0.1.2 (2002) SourceFile EdipsePlug-in Java [31]
CodePro AnalytiX [35] 7.1.0 SourceFile EclipsePlug-in Java [22],[23],[24],[25]

3.2. Identification of parameters for the comparison of tools

| dentification of parameters provides a way to compare different tools effectively. On the basis of this
comparison, user can select an appropriatetool asper hisrequirements. Herewe are classifying our parameters
in to the following metrics:

1. Tool Feature Metric
Tool Usability Metric
Tool Debugging Metric
Tool Requirement Metric
Tool Performance Metric

a s~ w NN

These metrics are influenced from the work done by N. Bordelon [32] on comparison of automated
software testing tools. Table 2 provides the details of identified metrics and parameters measured under
them.

3.3. Target Application

In this study, Java open source software “Apache Lucene” is used for the comparison of testing tools.
Apache Lucene is[33] a high-performance, full-featured text hunt engine library. Many versions of Lucene
are available, we have used Lucene 4.10.2 core API. Its specifications are given in Table 3:

9214 Rashmi Sharma, Anju Saha and A. K. Mahapatra
Table?2
Par ametersUsed for Comparison of Testing Tools
S.No Type of | Description Name of Parameter Description
Metric
Tool Feature| This metric provides all the Installation This parameter describes whether installation
1. Metric basic functionalities | Required/Cloud Based is required for the tool or it is available as a
supported by the tool. These cloud based tool.
functionalities are present
out-of-box in the tool and | Programming Knowledge This parameter determines whether knowledge
require no intervention from of programming/Scripting language is required
the user or developer. This or not.
metric basically captures the
functional requirements of | List of Features This parameter lists all The
the software. Features/Functionalities supported by the tool.

2. Tool Usability | This metric determines, with | Ease of Installation This parameter determines, how easy or
Metric how much ease one can use difficult it is to install the tool.

the functionalities of the - -

tool. This metric determines User Friendly Interface This parameter determines, how easy or

the non-functional difficult it is to use a particular tool.

requirements of the software Availability of Tutorial This parameter determines that for a particular

and hence determines the tool “Instruction manual” exits or not.

learning curve for the tool. Understanding of error | This parameter determines, how easy or
messages difficult it is to understand the error message

generated by the tool.

3. Tool This metric determines the | Documentation of error | This parameter determines, how well
Debugging ease with which we can message Logs documented are the error logs. With how much
Metric debug our code. ease user can debug the code from error logs.

Generation of Test Cases This parameter determines, how easily test
cases can be generated with the tool.

4. Tool This metric lists all the Programming Language This parameter determines the programming
Requirement mandatory requirements language required to run the tool effectively.
Metric needed for the tool to install

and run the software. System Requirements This parameter determines the operating
system, hardware and software required for the
tool to run.
Testing Environment This parameter determines whether the testing
environment is based on Command line
interface or GUL

Table3
Apachel ucene Specifications
Project Used System Number Number of Lines of Number of Number of Number of
Requirements of Classes Code Fields Methods Lines
Packages
Apache JavaVersion6or 33 727 98,186 5029 7991 168,699
Luceng[33] higher

3.4. Testing Apache Lucene

All the three software testing tools have been used, evaluated and compared on Apache Lucene. In this
section, we discuss the testing of apache Lucene on the three selected testing tools.

3.4.1. Evoauite

Evosuite tool develops unit tests for java software. It is a Search based testing tool (SBST) which uses
genetic algorithm to generate test suites. It develops entire test suites targeting all coverage goals at the
same time. Figure 1 describes the evosuite process of test suite generation.

A Comparative Study of Object-Oriented Software Testing Tools 9215

Random indtial test suites Test suite evolution Minimized test suite
with maximized coverage
-
e D 0 EIED
) | ¥
Colalx]

Figure 1: Evosuite Process [33]

We run evosuite from command line. The following command is used to generate test cases from the
compiled apache lucene source:

Java—jar evosuite-1.0.3,jar project CP=" C:\Users\skumar 3\Desktop\phd\evosuite demo\lucene’
—target= “ C:\Users\skumar 3\Desktop\phd\evosuite demo\lucene”

It will create two files. evosuite-reports and evosuite-tests.

1) Evosuite-reports contains statistics.csv file, which has target class, criterion used, coverage, total
goals and covered goals as its attributes. The specifications of these attributes are as follows:. @)
Target class specifies the class under test. b) Coverage criteria are used to guide test generation. A
coverage criterion signifies afinite set of coverage goals, and a common method isto target single
such goal at a time, creating test inputs either symbolicaly or with a search-based approach. c)
Coverage is a measure that describes the degree to which source code of a program is tested by a
particular test suite.

2) Evosuite-tests, produce two files for every class under test. For example: For IndexFiles.class ,it
creates. evosuite-tests\org\apache\lucene\demo\ IndexFiles ESTest.java and evosuite-
tests\org\apache\lucene\demo\ IndexFiles ESTest scaffolding.java

The scaffolding confirms that tests are always executed in the same stable state, so they should fail only
if they reveal a bug. Tests are in the IndexFiles ESTest.java file. Figure 2 shows the demonstration of
evosuite on apache lucene.

3.4.2. JUnit Test Case Builder (JUB)

Junit Test case builder is installed on Eclipse-Helios and Junit test cases are generated for each class file.
JUB’sframework isbuilt on Builder pattern (GoF) with white box test generation support. Thistool generates
test cases having O for integers and null for other input variables. Figure 3 shows the generation of test
cases via JUB. After this step, package name prefix with “unittest” is created which has the tet files. For
example, in this case a package named unittest.org.apache.lucene.demo is created which thus contains
IndexFilesTest.Java file.

3.4.3. CodePro AnalytiX

CodePro AnalytiX plugin is installed on eclipse-helios and test cases are generated. The CodePro JUnit
Test Case generation ability helps us to automate the design of complete JUnit test cases. It does this
through ablend of both static code analysis and by dynamically implementing the code to be tested in order
to detect the behavior of code. Test caseswill be generated as a separate project. Figure 4 showsthe way to
generate test cases using CodePro AnalytiX.

9216

Rashmi Sharma, Anju Saha and A. K. Mahapatra

o e—— B apache - Java - LUCENE4.10.2
File

Edit
- ME] -

BN CAOWINDOWS s s tem3 Phermd. v T T —

Souice Refaclor

1854 statoment

(- Project Explorer ::<
[J] teesinklc
| Token.javi
TakenFilre

| Tokenizer]
TokenStre
T Whitespac
Whitespad

BOEEE

Waordlistl ¢
|#] package.h
collation
demo

NE

7| Indexfiles,

& IndexF
J] SearchFild
t document
index

B

B #

mEssayEs
queryHarcer
scarch

store

util

| LucencPackay

o 8 8 &

E] package.htrml
M unittest

Figure 2: Generation of Test Cases via Evosuite

New o

Go Into

|SearcnF

Show In Alt+ Shift+'W

carcnrilesfll

New
Open Type Hierarchy FA
Open Call Hierarchy Ctrls Alt=H
Show In Alt-Shift- W
Open 3
Upen With

Copy CtrlsC
Copy (ualitied Name

Pasre CreleV
Delete Delete
Remove fror ntext Ctri+Alt+ Shift+ Dc
Build Path

Suurce All+5hifl+5
Refactor All+Shift+ T
Impurl..

Dxport...

Refiesh F5

References
Declarations
Toggle Class Load Dreakpoint

Duild JUnit Test Case
Run A=

Figure 3: Generation of Test Casesvia JUB

¥| SearchFiles.java

pfrchFiles ()
Copy CtrleC
Copy Qualified Name o
s CtriaV ;;«:e“xn main(Stringl] args)
> Delete Delete N rAmrs o ATESeh- e P
' e from bt | I+ Shifts ’ 43 Audit Code]
Build Path » | 43 Audit Code Using...
Rafactor Alt+Shift+T » | 144 Compute Metrics
E=y Import... |49 Compute Metrics Using
e Export... Ju Generate Factory Classes
Refresh FS Ty Generate Test Cases
Close Project Y, Find Similar Code
Jnrelat Py
‘ L Check Spelling
Validate 43 Repair Javadoc
Show in Remote Systems view B2 | Anehae Depanduncies
Run As >
e s A » | M@ Uninstrument Code Coverage |
Profie A , | # Instrument for Code Coverage |
CodePro Tools > | Explore !
Teamn L |
Compare With >

Figure 4: Generation of Test Cases via CodePro AnalytiX

3.5. Results Interpretation

Now, we compare these tools on the basis of above mentioned metrics. Table 4 summaries the comparison:

Table4
Comparison of Software Testing Tools

-

1) Tool Feature Metric

is required

Parameter Name Evosuite JUB CodePro AnalytiX
Installation Yes Yes Yes
Required/Cloud Based
Programming Knowledge Knowledge of command-line commands Yes No

JUnit test case generator,
Independent of externally
enforced environment.

Generation of JUnit 4 tests for the
selected classes, Optimization of
different coverage criteria.Tests are
minimized.Generation of JUnit asserts to
capture the current behavior of the tested
classes.

List of Features

Defect Detection, Repair and
Reporting, Automated JUnit Test
Creation, JUnit Test Editor, Code
Coverage Exploration, Static Code
Investigation.

contd. table 4

A Comparative Study of Object-Oriented Software Testing Tools

2) Tool Usability Metric

Parameter Name

Evosuite

JUB

CodePro AnalytiX

Ease of Installation

For Command-line: Require Knowledge
of command line syntaxes to execute jar
file.

In eclipse, it is also required to M2
eclipse plugin installed.

The jub.zip file accessible
for download has jub.jar
and plugin.xml files. These
files should be placed in
eclipse plugin folder.

Can be installed in eclipse using the url:
http://dl.google.com/eclipse/inst/codepr
oflatest/3.6[35]

User Friendly Interface

Yes (Eclipse)

Yes

Yes

Availability of Tutorial

No basic tutorial is available.

No tutorial is available.
Website is also very raw.
http://jub.sourceforge.net/

[37]

Evaluation guide is available, which is
very helpful and easy to use.

Understanding of Error

Error messages are not very clear and

Error messages are

Error messages are properly

Message not properly documented. properly documented. documented.
3) Tool Debugging Metric
Parameter Name Evosuite JUB CodePro AnalytiX

Documentation of error
message Logs

Not well documented.

Error logs are well
documented but some
errors may arise randomly
and thus need eclipse
restart.

Logs are very well documented, but
exact root cause of some errors occurred
during testing is very tedious to find.

Generation of Test Cases

Following command is used to generate
test case:- Java —jar evosuite-1.0.3 jar -
projectCP=
“C:\Users\skumar3\Desktop\phd\evosuit
e demo\lucene” —target=
“C:\Users\skumar3\Desktop\phd\evosuit
e demo\lucene”

Select a particular class
for which test case need to
be generated.

Select a particular package for which
test case need to be generated.

4) Tool Requirement Metric

Parameter Name

Evosuite

JUB

CodePro AnalytiX

Programming Language

Java

Java

Java

System Requirements

Support Eclipse (Plugin) and require
JDK environment, if running via
command line

Supports Eclipse and
VisualAge for java

CodePro seamlessly integrates into any
Eclipse-based JDK environment.

Testing Environment

Command line

Windows GUI

Windows GUI

9217

V. CONCLUSION AND FUTURE SCOPE

As software testing tools are very important part of software testing process and it is very critical to select
the appropriate tool for testing. It requires an ample amount of time and effort to understand any particular
tool. Also, the selection is based on Application under test (AUT). The ided testing tool should be one,
with good user interface, easy to install and for which sufficient number of tutorials are available. In this
study, we compare Evosuite, JUB and CodePro AnalytiX on aset of parameters. A well framed evaluation
guide is available for CodePro AnalytiX, but for JUB or Evosuite only some web links are there for help.
Thus, we found the learning curve of CodePro AnalytiX much smaller than Evosuite and JUB. Moreover,
CodePro AnalytiX providesadditional features like computation of metrics, andysisof dependenciesamong
packages, auditing of code. These additional functionalities make it more usable and effective than its
counterparts. Also, CodePro AnalytiX displays al the issues in currently opened editor itself, which is
much more appropriate than selecting packages or projects and then trigger a scan on them. Thus, in this
study, we found that CodePro AnalytiX is much simpler and more powerful than JUB and Evosuite. Our
future research will focus on providing a survey of both commercial and open source object oriented
software testing tools with more refined criteria. We plan to extend this research on atleast ten open source
object oriented projects, so that we may get a more general result.

REFERENCES

[1] IEEE Press, IEEE Standard glossary of software engineering technology, ANSI/IEEE Sd. 610.12., 1990.

[2] R.BrownandM. Lipow, “Testing for softwarereliability” ,Proc. ACM Int. Conf. on reliable software, pp. 518-527, New
York, 1975.

9218 Rashmi Sharma, Anju Saha and A. K. Mahapatra

[3] H.Pham., “Softwarereliability andtesting”, |EE Computer society press, 1995.

[4] A.Bertalino, “ Softwaretesting research:achievements,challenges,dreams’, Future of software engineering(FOSE), IEEE
Computer society, 2007.

[5] Beizer, “Softwaretesting techniques (second edition)”, Van Naostrand Reinhold Co., 1990.

[6] Joseph P.Cavano and James A. McCall, “A framework for the measurement of software quality”, Proc. ACM software
quality assurance workshop on functional and performanceissues., New York, 1978.

[7]1 D.Hamlet, " An essay on softwaretesting for quality assuance”, Annals of software engineering, vol.4, pp.1-9, Springer,
1997.

[8] J. R.Horgan,S.London and M. R. Lyu, “Achieving software quality with testing coverage measures’, Computer, | EEE
Computer society, vol. 27, pp. 60-69, 1994.

[9] P.Ammann and J.Offutt, “Introduction to softwaretesting”, Cambridge university press, 2008.

[10] International software testing qualifications board, “ Standard gl ossary of terms used in softwaretesting, version 3.01”.

[11] J. Meek,N. Debnath, I. Leeand H. Lee, “Algorithmic design and implementation of an automated testing tool”, |EEE Int.
Conf. on Information technol ogy, pp. 54-59, 2011.

[12] Meenuand Y. Kumar, “ Comparative analys sof automated functional testing tools’, Int. Journa of emerging technologiesand
innovativeresearch, vol. 2, pp. 42-48, 2015.

[13] T. Sheth and Dr. S. K. Singh, “Software test automation-approach on evaluating test automation tools’, Int.Journal of
scientific and research publications, Val. 5, 2015.

[14] T. llles, A. Herrmann, B. Paech and J. Ruckert, “Criteria for software testing tool evaluation-atask oriented view”, Int.
software quality institute,Proc. of the 3 world congress for software quality, val. 2, pp. 213-222, 2005.

[15] S.Wagner, J. Jurjens, C. Koller and P. Trishberger, “Comparing bug finding tools with reviews and tests’, Testing of
communi cating systems, springer, LNCS, vol. 3502, pp. 40-55, 2005.

[16] K. Sen and G Agha, “CUTE and jCUTE: Concolic unit testing and explicit path model-checking tools (Tool paper)”,
CAV, LNCS, vol. 4144, pp. 419-423, 2006.

[17] C. Oriat, “Jartege: A tool for random generation of unit testsfor javaclasses’, QoSA-SQQUA, LNCS, val. 3712, pp. 242-
256, 2005.

[18] C. Csallner and Y. Smaagdakis, “ JCrasher:An automatic robustness tester for java’, software —practice and experience,
vol.34, pp. 1025-1050, 2004.

[19] A. J H. Simons, “JWalk: A tool for |azy,systematic testing of java classes by design introspection and user interaction”,
Automated software engineering,val . 14, pp. 369-418, springer, 2007.

[20] E. Gunter, R. Kurshan and D. Peled, “Per” An interactive software testing tool”, CAV, LNCS, vol. 1855, PP. 552-556,
2000.

[21] E.Albertet ., “JPET:An automatictest casegenerator for java’, Proc. 18" working conference on reverseengineering,| EEE
Computer society, pp. 441-442, 2011.

[22] R. Terra, L.F. Miranda, M.T. Valenteand R.S. Bigonha, “ Qualitas.class corpus.A compiled version of the quaitas corpus’,
Sigsoft software engineering notes 38, pp. 1-4, 2013.

[23] M. Sensalire, P Ogaoand A.Teeg, “ Classfying desirablefeatures of softwarevisualization toolsfor corrective maintenance’,
Proc. ACM symposi um on software visualization, New York, 2008.

[24] R.PlGsch, A. Mayr, G Pomberger and M. Saft, “An approach for a method and a tool supporting the evaluation of the
quality of static code analysistools’, SQMB, 2009.

[25] A. K. Tripathi and A.Gupta, “A controlled experiment to evaluate the effectiveness and the efficiency of four static
program analysis tools for java programs”, Proc. 18" Int. Conf. on evaluation and assessment in software engineering,
ACM, New York, 2014.

[26] G Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for object-oriented software”, Proc. 19" ACM Sigsoft
symposium and 13" european conference on foundations of software engineering, ACM, New York, 2011.

[27] G Fraser and A. Arcuri, “Evosuite at the SBST 2016 tool competition”, Proc. 9" Int. workshop on search based software
testing, ACM, pp. 33-36, New York, 2016.

[28] JM. Rojas, G Fraser andA. Arcuri, “Automated unit test generation during software development: A controlled experiment
and think-al oud observations’, Proc. Int. Symposium on softwaretesting and analysis, pp. 338-349, 2015.

[29] G Fraser, A. Arcuri and P. McMinn, “A memetic algorithm for whole test suite generation”, Journal of systems and
software, vol. 103, pp. 311-327, 2015.

A Comparative Study of Object-Oriented Software Testing Tools 9219

[30] Y. Pavlov and G. Fraser, “Semi-automatic search based test generation”, IEEE Fifth Int. conference on software
testing,verification and validation.

[31] S.Wang, “Comparison of unit level automated test generation tools’,softwaretesting, verification and validation workshaop,
2009.

[32] N. Bordelon, D. Reinicke, B. Patterson and L. Noble, “A comparison of automated software testing tools” ,annal s of the
master of science in computer science and information systems at UNC Wilmington.

[33] G Fraser andA. Arcuri, “Evolutionary generation of wholetest suites, Proc. 11" Int. conference on quality software,pp.31-
40,2011.

[34] http://lucene.apache.org

[35] https://marketplace.eclipse.org/content/codeproanal ytix
[36] http://evosuite.org

[37] http://jub.sourceforge.net

