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Abstract. In the context of representation theorems for conditional and
multi-period risk measures, we will extend the work, started in [9], on locally

convex modules over the ring λ = L
∞

(G), by adding an order or a lattice
structure. The dual spaces of lattice λ-modules turn out to be topologically
and Dedekind-complete λ-modules. For Banach lattice modules a version of
the Namioka-Klee theorem will be proved, as well as the subdifferentiability
of λ-convex functions on the interior of their domains. The completeness of

L
p

λ
- and L

(p2,p1)
λ

-modules will be shown and their dual modules characterized.
Similarly, we will establish the duality between Morse and their corresponding
Orlicz λ-modules.

1. Introduction

In [9] we studied locally convex modules over the ring λ = L∞(G) of bounded
variables of a sub-σ-algebra G. This has been done in the understanding that
a broader functional analytic base for representation theorems of conditional or
multi-period risk measures would be rather useful.

There the dual spaces of these locally convex λ-modules are studied, an adapted
version of the Bipolar theorem is established, and new forms of the Krein-Šmulian
theorem as well as of the Alaoglu-Bourbaki theorem are given.

Here we are going to continue this analysis of λ-modules by introducing order
or lattice structures. These additional tools seem to be necessary since in some
important cases topological and order convergences do not coincide. This requires
additional properties like the Fatou property to guarantee the (semi-)continuity of
those risk measures in the order convergence sense (see [6] or [12]).

Our first result concerns the dual spaces of locally convex lattice λ-modules.
We will show that they are topologically and Dedekind-complete (i.e. order-
complete) lattice λ-modules. Consequently we are confronted with the question of
the Dedekind-semi-continuity for conditional risk measures on dual modules.

Similar to [21], [3], and [17], we will also show a version of the Namioka-Klee
theorem for Banach lattice λ-modules where a λ-convex function is continuous and
subdifferentiable in the interior of their domain of definition.
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As examples we will treat the λ-modules of Lp
λ and L

(p1,p2)
λ in section 8. In

several cases as for example that of entropic risk measures, it is necessary to use
Orlicz spaces or their subspaces Orlicz hearts (see [5] and [4]). The subdifferen-
tiability of the entropic risk measure on an Orlicz module has been dealt with in
[17]. In section 9 we investigate the dual modules of some Orlicz (resp. Morse)
λ-modules.

2. Locally Convex Modules Over λ = L∞

We will continue the research started in [9] and recall the main notations used
there.

For a probability space (Ω,F ,P) with a sub-σ-algebra G ⊆ F we denote by
(G ∩ A)+ the set of all A′ ∈ G with A′ ⊆ A and P(A′) > 0 (similar for F+).
The set of all F -measurable (resp. G-measurable) real random variables is L0

(resp. L0(G)), while L
0
was the set of all F -measurable variables with values in

[−∞,∞]. For any space L of random variables its positive orthant was L+ :=
{X ∈ L| X ≥ 0}, while we set L♯ := {X ∈ L| ∃ ε > 0 with X ≥ ε}. Equalities
and inequalities of random variables are understood to hold P almost surely, in
particular X > Y means that P(X > Y ) = 1. The multiplication with 0 is
dominant: i.e. 0

0 = 0 · ∞ = 0 · (−∞) = 0.
We continue to study modules using the space λ := λ(G) := L∞(G) as ring

whose generic element will most of the time be denoted by ζ. The constant element
which equals 1 in λ is given by 1I. As mentioned λ♯ :=

{
ζ ∈ λ| ∃ ε > 0 with ζ ≥

ε · 1I
}
. The space λ is endowed with the topology of the norm

‖ζ‖λ := ‖ζ‖∞ . (2.1)

For p ∈ [1,∞] and G ⊆ F1 ⊆ F , we introduce the conditional norms ‖·‖p,F1
on L0

by

‖X‖p,F1
:=

{
limn→∞ E

[
|X |p ∧ n

∣∣F1

]1/p
for p < ∞,

ess. inf
{
ζ ∈ L

0

+(F1)
∣∣ ζ ≥ |X |

}
for p = ∞,

(2.2)

where X ∈ L0. As it is well known, for p ∈ [1,∞), the conjugate exponent q to p
is defined by

q :=

{
p/(p− 1) if 1 < p < ∞,
+∞ if p = 1.

(2.3)

Let’s recall some definitions from [9]:

Definitions 2.1.

(i) A λ-module E is a set with an additive operation “+” and a multiplication
“·” by the elements of the ring λ:
(a) E × E → E, (X1, X2) 7→ X1 +X2 and
(b) λ× E → E, (ζ,X) 7→ ζ ·X .

(ii) The λ-module E is a topological one if E has a topology T such that the
module operations (i.a) and (i.b) are continuous w.r. to the corresponding
product topologies.

(iii) A subset D of the λ-module E is called:
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(a) λ-absorbent if for all X ∈ E there is ζ ∈ λ+ such that X ∈ ζ ·D,
(b) λ-balanced if ζ ·X ∈ D for all X ∈ D and ζ ∈ λ with ‖ζ‖λ ≤ 1,
(c) λ-convex if ζ ·X1 + (1 − ζ) ·X2 ∈ D for all X1, X2 ∈ D and ζ ∈ λ

with 0 ≤ ζ ≤ 1.
(iv) A function q := q|·| : E → λ+ is a λ-seminorm on E if for X,X1, X2 ∈ E

and ζ ∈ λ:
(a) q|ζ ·X | = |ζ| · q|X |,
(b) q|X1 +X2| ≤ q|X1|+ q|X2|.
In addition,
(c) if q|X | = 0 implies X = 0, then q is a λ-norm on E. In this case

(E, q) is called a normed λ-module.
(v) For η ∈ λ♯, we let

Bq,η(X) := {Y ∈ E| q|Y −X | ≤ η} (2.4)

denote the q-ball of radius η around X ∈ E. We write Bq,η := Bq,η(0)
and Bq,r(X) := Bq,r1I(X) for r ∈ (0,∞) .

Since for any η ∈ λ♯ we find some real r > 0 with η ≥ r · 1I, we can replace Bq,η

by Bq,r almost everywhere in the following.
Let q be a λ-seminorm and η ∈ λ♯. The q-ball Bq,η is a λ-convex, -absorbent,

and -balanced subset of E. We generalize the simple set Bq,η to the following
system: Let Q be a family of λ-seminorms on E. Then

UQ :=
{
BQf ,η

∣∣Qf is a finite subset of Q and η ∈ λ♯

}
where (2.5)

BQf ,η :=
{
X ∈ E

∣∣ sup
q∈Qf

q|X | ≤ η
}

(2.6)

defines a system of λ-convex, -absorbent, and -balanced subsets of E, closed under
finite intersections. If we generate a topology TQ on the λ-module E by using
the system UQ as a neighborhood base of 0 ∈ E, then the properties (iv.a) and
(iv.b) of definition 2.1 show that E is a topological λ-module. Therefore (E,Q)
is a locally convex λ-module with the topology TQ in the sense of the following
definition.

Definition 2.2. The λ-module E is locally convex if it has a neighborhood base
U of 0 ∈ E with the following properties:

(i) 0 ∈ U for all U ∈ U ,
(ii) U is downward filtrated: for all U1, U2 ∈ U there exists U ∈ U with

U ⊆ U1 ∩ U2,
(iii) for all U ∈ U there exists U ′ ∈ U with U ′ + U ′ ⊆ U ,
(iv) for all U ∈ U and ζ ∈ λ♯ there exists U ′ ∈ U with ζ · U ′ ⊆ U ,
(v) all U ∈ U are λ-absorbent, -balanced, and -convex.

The topology TU is defined by the fact that a subset O ⊆ E is open if and only if
for all X ∈ O there exists U ∈ U with X + U ⊆ O.

Obviously, the properties (i) to (v) imply that (E, TU ) is a topological λ-module
in the sense of definition 2.1. In [9] we have shown that the topology TU of a locally
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convex λ-module E with a neighborhood base U of 0 is Hausdorff if and only if
⋂

U∈U

U = {0}. (2.7)

Assumption 2.3. Whenever we deal with a locally convex λ-module E in the
following sections, we always consider condition (2.7) to be complied with.

For any finite subset Qf = {q1, . . . qn} ⊆ Q it evidently holds that

{X | inf
1≤i≤n

qi |X | ≤ η} ⊆ {X |
∑

1≤i≤n

1IAi
· qi |X | ≤ nη}

for all Ai ∈ G+, and so
∑

1≤i≤n 1IAi
· qi |·| is a λ-seminorm, too. Therefore, there

is no restriction on making the following

Assumption 2.4. If qi ∈ Q and Ai ∈ G+ for 1 ≤ i ≤ n, then
∑n

i=1 1IAi
·qi |·| ∈ Q.

The locally convex topology on the λ-module E is now defined by the neigh-
borhood base

UQ =
{
Bq,η :=

{
X ∈ E

∣∣q|X | ≤ η
}∣∣ q ∈ Q, η ∈ λ♯

}
. (2.8)

Let (E,Q) be a locally convex λ-module satisfying assumptions 2.3 and 2.4.
From [9] we quote the following definitions and the characterization of continuous
λ-linear functions on E:

Definitions 2.5.

(i) A net (Xι)ι∈I in E is a Cauchy net if for all η ∈ λ♯ and q ∈ Q there exists
ιq,η ∈ I such that for all ι1, ι2 ≥ ιq,η

Xι1 −Xι2 ∈ Bq,η. (2.9)

(ii) The λ-module E is complete if every Cauchy sequence has a limit in E.
(iii) In the case Q = {‖·‖} with a λ-norm ‖·‖, a complete λ-module (E, ‖·‖)

is called a Banach λ-module.

If (E,Q) is a locally convex λ-module with a set Q of λ-seminorms and the
topology TQ, then we denote the λ-dual space of E by E′, i.e. E′ is the λ-module
of all continuous λ-linear functions Z : E ∋ X 7→ 〈X,Z〉 ∈ λ with

〈ζ1 ·X1 + ζ2 ·X2, Z〉 = ζ1 · 〈X1, Z〉+ ζ2 · 〈X2, Z〉 (2.10)

for all ζi ∈ λ and Xi ∈ E, i = 1, 2.

Proposition 2.6. On the locally convex λ-module (E,Q) with assumption 2.4, a
λ-linear function Z : E → λ is continuous if and only if there exist q ∈ Q and
η ∈ λ♯ such that for all X ∈ E

|〈X,Z〉| ≤ η · q|X | . (2.11)

Let us recall the following definitions from [9]. For q ∈ Q, the conjugate λ-
seminorm is given by

q′|Z| := ess. sup
{
|〈X,Z〉|

∣∣ X ∈ Bq,1

}
(2.12)
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for Z ∈ E′. It can easily be seen that q′|·| is indeed a λ-seminorm on E′. By
Q′ := {q′ | q ∈ Q} we denote the set of conjugate λ-seminorms on E′. The q′-ball
of radius η around Z ∈ E′ is

Bq′,η(Z) := {Z ′ ∈ E′| q′|Z ′ − Z| ≤ η} (2.13)

where q′ ∈ Q′ and η ∈ λ♯.
Similar to (2.11), we have

|〈X,Z〉| ≤ q|X | · q′|Z| (2.14)

for all X ∈ E and Z ∈ E′.

Proposition 2.7. For a locally convex λ-module (E,Q) the dual λ-module (E′,Q′)
is complete.

The proof is given in [9].

3. Hahn-Banach-Theorems for Locally Convex λ-modules

The following theorems of Hahn-Banach type for locally-convex λ-modules
(E,Q) have been shown in [9]. For the first purely algebraic theorem, a proof
using a scalarization method for module-linear functions taking values in a dual
module space of a normed vector space can be found in [14]. In [23] a direct proof
is given taking order complete lattice modules as image spaces.

As usual, a function ϕ : E → λ is called λ-sublinear if ϕ(ζ ·X) = ζ · ϕ(X) and
ϕ(X1 +X2) ≤ ϕ(X1) + ϕ(X2) for all ζ ∈ λ+, X,X1, X2 ∈ E.

Theorem 3.1. Consider a λ-sublinear function ϕ : E −→ λ, a λ-submodule C of
E and a λ-linear function Z : C −→ λ such as

〈X,Z〉 ≤ ϕ(X) for all X ∈ C.

Then Z extends to a λ-linear function Z : E → λ such as 〈X,Z〉 ≤ ϕ(X) for all
X ∈ E.

The second Hahn-Banach type theorem concerns the separation of a compact
convex set C and a disjoint closed convex set D. In the classical separation theo-
rem, the continuous linear separating functional shows a uniform positive distance
between C and D, also called strong separation (see [1]). In the λ-module case
we have to pay a price to get this strong separation: If for some A ∈ G+ we have
1IB ·C ∩ 1IB ·D = ∅ for all B ∈ (G ∩A)+, then for any ε > 0 we find some Aε ⊆ A
with P(A \Aε) < ε such that 1IAε

·C can be strongly separated from 1IAε
·D by a

continuous linear functional. It turns out that this separation property is sufficient
to get the results we are looking for.

Theorem 3.2. Let C and D be λ-convex non-empty subsets of a locally convex
λ-module (E,Q) with C compact and D closed. For some A ∈ G+, suppose that
we have

1IB · C ∩ 1IB ·D = ∅ (3.1)

for all B ∈ (G ∩A)+. Then for ε > 0, there exist a set Aε ⊂ A with P(A\Aε) < ε,
a λ-linear continuous function Z : E → λ, and η ∈ λ♯ such that

1IAε
· (〈Y, Z〉+ η) ≤ 1IAε

· 〈X,Z〉 (3.2)
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for all X ∈ C and Y ∈ D.

4. Ordered λ-Modules

Now, we will introduce a λ-module E with an order structure.

Definition 4.1. The λ-module E is ordered, if E is endowed with a partial order
≤ such that for all X1, X2, X3 ∈ E and all ζ ∈ λ+

(i) X1 ≤ X2 implies X1 +X3 ≤ X2 +X3,
(ii) 0 ≤ X1 implies 0 ≤ ζ ·X1.

The partial order ≤ induces the positive orthant E+, resp. the negative orthant
E− in E

E+ :=
{
X
∣∣ 0 ≤ X ∈ E

}
resp. E− := −E+. (4.1)

Obviously, X1 ≤ X2 if and only if X2 −X1 ∈ E+, i.e. the partial order ”≤” is
characterized by E+.

The triplet (E,E+,Q) denotes a locally convex ordered λ-module where the
order is given by the positive orthant E+ and the topology by the set Q of λ-
seminorms. In this case, we denote by E+ the closure of E+ in E.

Definition 4.2. A continuous λ-linear function Z ∈ E′ is called positive if
Z(E+) ⊆ λ+.

By E′
+ we denote the positive orthant of the dual module E′, i.e. the cone of

all continuous positive λ-linear functions Z ∈ E′. The cone E′
− := −E′

+ is the
negative orthant in E′. Furthermore, we set

E′
± := E′

+ − E′
+, (4.2)

the space of continuous λ-linear functions Z for which continuous positive λ-linear
Z1 and Z2 with Z = Z1 − Z2 exist.

An application of theorem 3.2 shows the existence of continuous positive λ-linear
functions (see also [19] for the scalar case).

Proposition 4.3. Let (E,E+,Q) be a locally convex ordered λ-module and X0 ∈
E. Then there exist a continuous positive λ-linear function Z ∈ E′, η ∈ λ♯, and

A ∈ G+ with 1IA · (〈X0, Z〉+ η) ≤ 0 if and only if X0 6∈ E+.

Remark 4.4. The proof below makes use of the following mathematical tool: For
X ∈ E and a subset C ⊆ E, we define

X ⊓ C := ess. sup{A ∈ G, 1IA ·X ∈ 1IA · C}. (4.3)

Proof. The necessity of the last condition is clear. Conversely, set D := E+ and
assume X0 6∈ D. With A′ := (X0 ⊓ E+)

c ∈ G+ the condition (3.1) is met, i.e.
1IB ·X0 /∈ 1IB ·D for all B ∈ (G ∩A′)+. By theorem 3.2, we find A ∈ (G ∩A′)+, a
continuous λ-linear function Z ′ and η ∈ λ♯ with 1IA · (〈Y, Z ′〉+ η) ≤ 1IA · 〈X0, Z

′〉
for all Y ∈ E+. Setting Z := −1A · Z ′ we find 1IA · (〈X0, Z〉 + η) ≤ 〈Y, Z〉 for
all Y ∈ E+. Since E+ is a cone, we get Z(E+) ≥ 0 and 1IA · (〈X0, Z〉 + η) ≤ 0
in particular which shows that Z is positive and meets the asserted inequality for
X0. �
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Corollary 4.5. Let (E,E+,Q) again be a locally convex ordered λ-module with
E+ ∩ E− = {0}.

(i) The positive orthant E+ is closed in (E,Q) if and only if

E+ =
{
X ∈ E

∣∣ 〈X,Z〉 ≥ 0 for all Z ∈ E′
+

}
. (4.4)

(ii) If E+ is closed, then E′
± separates points in E.

Proof. (i) The sufficiency of (4.4) is obvious and the necessity follows immediately
from proposition 4.3.
(ii) AnyX 6∈ E+, X 6= 0 can be separated from 0 by a Z ∈ E′

+. IfX ∈ E+, X 6= 0,
then by assumption −X 6∈ E+ and now −X can be separated from 0 by some
Z ∈ E′

+. �

5. Locally Convex Lattice λ-modules

One of our aims is to show that positive λ-linear functions on a Banach lattice
λ-module are necessarily continuous. Since this result is even true for λ-convex
functions, we shall state it in a more general context in the next section. Here, we
will introduce the lattice structure in a locally convex λ-module.

Definition 5.1.

(i) The ordered λ-module E is called a lattice λ-module or a Riesz λ-module
if (E,E+) has the lattice property, i.e. max(X1, X2) and min(X1, X2)
exist for all X1, X2 ∈ E .
A module lattice E leads to the definitions:

X+ := sup(X, 0), X− := sup(−X, 0), |X | := X+ +X− (5.1)

for all X ∈ E.
(ii) The lattice λ-module (E,E+) is called Dedekind-complete (also called

order-complete) if each net (Xι)ι∈I , directed upwards and bounded above
by an element of E, has a supremum supι∈I Xι in E.

The following property, also called the Riesz decomposition property, is well
known for lattices (see also [1], 8.9).

Proposition 5.2. A lattice λ-module (E,E+) has the decomposition property: For
X1, X2, Y ∈ E+ with 0 ≤ Y ≤ X1 +X2, there exists Y1, Y2 ∈ E+ with Y1 ≤ X1,
Y2 ≤ X2, and Y1 + Y2 = Y .

Proof. We just need to set Y1 = Y ∧ X1 ∈ E+ and Y2 = Y − Y1 ∈ E+ since
Y2 = Y − Y ∧X1 = 0 ∨ Y −X1 ≤ 0 ∨X2 = X2. �

Definitions 5.3.

(i) A λ-seminorm q on a lattice λ-module (E,E+) is called a lattice λ-
seminorm if it holds that q|X | ≤ q|X ′| for all X,X ′ ∈ E with |X | ≤ |X ′|.
If in addition, ‖·‖ is a λ-norm we call it a lattice λ-norm and (E,E+, ‖·‖)
is called a normed lattice λ-module.

(ii) If (E,E+,Q) is a lattice λ-module whose topology is induced by a family
Q of lattice λ-seminorms satisfying assumptions 2.3 and 2.4, then we call
(E,E+,Q) a locally convex lattice λ-module.
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(iii) The normed lattice λ-module (E,E+, ‖·‖) is called a Banach lattice λ-
module if the normed lattice λ-module (E, ‖·‖) is (topologically) complete
in the sense of definition 2.5 (ii).

Obviously, a lattice λ-seminorm q is symmetric:

q(X) = q(−X) = q(|X |) (5.2)

for all X ∈ E.

Proposition 5.4. Let (E,E+,Q) be a locally convex lattice λ-module. Then

(i) The lattice operations ∧,∨ : E × E → E, (X1, X2) 7→ X1 ∧ X2, X1 ∨X2

are uniformly continuous.
(ii) The positive and negative orthants E+ and E− are closed.

Proof. (i) By the translation invariance of ∨ (i.e. X1∨X2 = ((X1−X2)∨0)−X2) we
may set X2 = 0. Now

∣∣X+
1 −X+

2

∣∣ ≤ |X1 −X2| implies q
∣∣X+

1 −X+
2

∣∣ ≤ q|X1 −X2|
for all q ∈ Q which shows the uniform continuity.

(ii) Since E+ =
[
X → X−

]−1
{0} and by assumption 2.3 the singleton {0} is closed

in the Hausdorff space E, the set E+ is closed. �

A scalar version of the following result can be found in [1], sections 8.13-15:

Theorem 5.5. Let (E,E+,Q) be a locally convex lattice λ-module. Then

(i) the positive orthant E+ is proper and generating, i.e.

E+ ∩ E− = {0} and E+ − E+ = E. (5.3)

(ii) For a lattice λ-seminorm q ∈ Q, the conjugate λ-seminorm q′ is also a
lattice λ-seminorm.

(iii) The (topological) dual space E′ is a lattice λ-module wherein the lattice
operation Z+ = Z ∨ 0 is given on E+ by the definition
〈
X,Z+

〉
:= ess. sup

{
〈Y, Z〉

∣∣ 0 ≤ Y ≤ X
}

forX ∈ E+. (5.4)

Since Z ≤ Z+, we have

E′ = E′
±. (5.5)

(iv) The dual E′ is topologically complete and Dedekind-complete.

Proof. (i) holds for any lattice space, since for X ∈ E+ ∩ E− we find X = X+ =
X− = X+ ∧X− = 0 and X = X+ +X− ∈ E+ + E− = E+ − E+.
(ii) For Z,Z ′ ∈ E′ we assume that |Z| ≤ |Z ′|. Then

q′| |Z| | = ess. sup
{
|〈X, |Z|〉|

∣∣ q|X | ≤ 1I
}
≤ ess. sup

{
〈|X | , |Z|〉

∣∣ q|X | ≤ 1I
}

≤ ess. sup
{
〈|X | , |Z ′|〉

∣∣ q|X | ≤ 1I
}
= ess. sup

{
|〈X, |Z ′|〉|

∣∣ q|X | ≤ 1I
}

= q′| |Z ′| | .

This shows that q′ is a lattice λ-seminorm.
(iii) Let Z ∈ E′ be a continuous λ-linear function. With the help of proposition
2.6 we find η ∈ λ♯ and q ∈ Q such as |〈X,Z〉| ≤ η · q|X | for all X ∈ E. The lattice
λ-seminorm character of q implies that given X ∈ E+, we have

|〈Y, Z〉| ≤ η · q|X | (5.6)
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uniformly for all Y ∈ E+ with 0 ≤ Y ≤ X .
For X ∈ E+ we define Z+ by (5.4). It follows immediately from (5.6) that

∣∣〈X,Z+
〉∣∣ ≤ η · q|X | . (5.7)

for all X ∈ E+. Of course, Z+ is non-negative on E+. For ζ ∈ λ+ it is evi-
dent that 〈ζ ·X,Z+〉 = ζ · 〈X,Z+〉. Next for 0 ≤ Yi ≤ Xi, i = 1, 2 we have
〈Y1, Z〉+ 〈Y2, Z〉 = 〈Y1 + Y2, Z〉 ≤ 〈X1 +X2, Z

+〉 so that 〈X1, Z
+〉+ 〈X2, Z

+〉 ≤
〈X1 +X2, Z

+〉. Conversely, for 0 ≤ Y ≤ X1 + X2 the decomposition property
in proposition 5.2 yields elements 0 ≤ Yi ≤ Xi, i = 1, 2 with Y1 + Y2 = Y .
Therefore 〈Y, Z〉 = 〈Y1, Z〉 + 〈Y2, Z〉 ≤ 〈X1, Z

+〉 + 〈X2, Z
+〉 and the inverse in-

equality 〈X1 +X2, Z
+〉 ≤ 〈X1, Z

+〉 + 〈X2, Z
+〉 follows. Therefore Z+ is additive

and non-negative λ-homogeneous on E+. The λ-linearity extends Z+ uniquely
to E = E+ + E−. Since |〈X,Z+〉| ≤ 〈|X | , Z+〉 ≤ η · q||X || = η · q|X | the con-
tinuity condition (5.7) now holds for all X ∈ E: Z+ is a positive continuous
λ-linear function dominating Z. To show that Z+ = Z ∨ 0, let Z be a positive
continuous λ-linear function dominating Z. But the positivity of Z shows that for
0 ≤ Y ≤ X one has 〈Y, Z〉 ≤

〈
Y, Z

〉
≤
〈
X,Z

〉
, and therefore 〈X,Z+〉 ≤

〈
X,Z

〉
,

hence Z+ ≤ Z. This shows that Z+ = Z ∨ 0.
(iv) The first assertion has already been shown in proposition 2.7. For the second
we may regard a downward directed net (Zι)ι∈I bounded below by 0 ∈ E′ without
loss of generality. We pick one ι0 ∈ I and restrict thereafter the net to the index
set {ι ∈ I| ι ≥ ι0}, again denoted by I. We also find η ∈ λ♯ and q ∈ Q such as

0 ≤ 〈X,Zι0〉 ≤ η · q|X |

for all X ∈ E+. Moreover, since 0 ≤ 〈X,Zι〉 ≤ 〈X,Zι0〉 for all ι ≥ ι0 and X ∈ E+

we even have

0 ≤ 〈X,Zι〉 ≤ η · q|X | (5.8)

for all ι ∈ I and X ∈ E+.
Next, we define inf Zι on E+ by

〈X, inf Zι〉 := ess. inf
ι∈I

〈X,Zι〉 (5.9)

with X ∈ E+. Obviously, 〈X, inf Zι〉 ∈ λ+ and inf Zι is non-negative homoge-
neous: 〈ζ ·X, inf Zι〉 = ζ · 〈X, inf Zι〉 for X ∈ E+ and ζ ∈ λ+. It is also clear to
see that 〈X1 +X2, inf Zι〉 ≥ 〈X1, inf Zι〉+ 〈X2, inf Zι〉.

To show the inverse inequality, let’s assume that

{〈X1 +X2, inf Zι〉 > 〈X1, inf Zι〉+ 〈X2, inf Zι〉} ∈ G+.

This means that for some γ, δ ∈ R+ we have also

A := {〈X1 +X2, inf Zι〉 > γ > δ > 〈X1, inf Zα〉+ 〈X2, inf Zα〉} ∈ G+.

Then there exist ι1, ι2 ∈ I with

A′ := A ∩ { 1/2 (γ + δ) ≥ 〈X1, Zι1〉+ 〈X2, Zι2〉} ∈ G+.

Consider ι3 ≥ ιi, i = 1, 2 such as on A′ we have

1/2 (γ + δ) ≥ 〈X1, Zι1〉+ 〈X2, Zι2〉 ≥ 〈X1, Zι3〉+ 〈X2, Zι3〉 = 〈X1 +X2, Zι3〉

≥ ess. inf
ι
〈X1 +X2, Zι〉 ≥ γ,
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which is a contradiction. Therefore the inverse inequality 〈X1 +X2, inf Zι〉 ≤
〈X1, inf Zι〉+ 〈X2, inf Zι〉 holds too.

Hence we have shown that inf Zι is a positive, additive, and non-negative λ-
homogeneous function on E+ which has a unique extension to E = E+ + E−.
Since (5.8) holds uniformly in ι ∈ I we have also

|〈X, inf Zι〉| ≤ 〈|X | , inf Zι〉 ≤ η · q|X | (5.10)

for all X ∈ E. Therefore inf Zι ∈ E′
+. As a result of definition in (5.9) it is easy

to see that inf Zι ≥ Z on E+ for all Z satisfying Z ≤ Zι, ι ∈ I. This completes
the proof. �

6. λ-convex Functions on Locally Convex Lattice λ-modules

We will start with the following definitions:

Definitions 6.1.

(i) A λ-valued function f : E → L
0
(G) is λ-convex if for all X,X ′ ∈ E and

ζ ∈ λ, 0 ≤ ζ ≤ 1I we have f(ζ ·X+(1I−ζ) ·X ′) ≤ ζ ·f(X)+(1I−ζ) ·f(X ′).

(ii) The function f : E → L
0
(G) is λ-proper if for all X ∈ E there exists

γX ∈ R such as f(X) ≥ γX · 1I and

domf := {X ∈ E|f(X) ∈ λ} 6= ∅. (6.1)

First we note that a λ-convex function f has the following locality property:

Lemma 6.2. For all X ∈ E and A ∈ G+ we have

1IA · f(X) = 1IA · f(1IA ·X). (6.2)

Proof. Indeed, for A ∈ G and X ∈ E we find 1IA ·f(X) = 1IA ·f(1IA ·X+1IAc ·X) ≤
1IA · f(1IA · X) = 1IA · f(1IA · X + 1IAc · 0) = 1IA · f(X) which implies equalities
everywhere and therefore (6.2). �

With these definitions we can formulate the following result whose proof follows
essentially the one of the scalar version (see [1], 9.6):

Theorem 6.3. Let (E,E+, ‖·‖) be a Banach lattice λ-module. Then any monotone

λ-proper λ-convex function f : E → L
0
(G) is continuous on the interior of its

domain
◦

domf .

Proof. Consider X ∈
◦

domf such as f(X) ∈ λ. After the transformation f(·+X)−

f(X), we may assume that X = 0 ∈
◦

domf and f(0) = 0. Since λ has a countable
neighborhood base of 0, it is enough to show that we get f(Xν) → 0 ∈ λ for any

sequence (Xν)ν∈N ⊆
◦

domf with Xν → 0.

With the remark following definition 2.1 we take r > 0 with B‖·‖,r ⊆
◦

domf . For

n ≥ 1, we set Vn :=
{
X ∈ E

∣∣ ‖X‖ ≤ r2−n
}
so that Vn+1 + Vn+1 ⊆ Vn. For each

µ ∈ N we find Xνµ ∈ 1/µ·Vµ. Setting Yn :=
∑n

µ=1 µ·
∣∣Xνµ

∣∣ we get Yn ≤ Yn+1 ∈ E+

and 0 ≤ Yn+m − Yn =
∑m

µ=1(n+ µ) ·
∣∣Xνn+µ

∣∣ ∈ (Vn+1 + . . .+ Vn+m) ⊆ Vn for all
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n,m ≥ 1. Thus Yn is a Cauchy-sequence in E+ and because of the completeness
of E it converges to some Y ∈ E.

Since E+ is closed by proposition 5.4 (ii), the fact that E+ ∋ Yn+m − Y →
Y −Yn gives Y −Yn ∈ E+, or Yn ≤ Y for all n. By the monotonicity and convexity
of f we get the following inequalities for all n ≥ 1:

|f(Xn)| ≤ |f(|Xn|)| ≤

∣∣∣∣f(
1

n
(n · |Xn|) + (1−

1

n
) · 0)

∣∣∣∣ ≤
1

n
|f(n · |Xn|)|

≤
1

n
|f(Yn)| ≤

1

n
|f(Y )| .

This shows that f(Xn) → 0 which is in contradiction to the assumption. �

We are going to combine the theorem 5.5 and theorem 6.3 in the following
generalization of the Namioka-Klee theorem:

Corollary 6.4. Let (E,E+, ‖·‖) be a Banach lattice λ-module. If E∗
+ denotes the

set of all (not necessarily continuous) positive λ-linear functions on E then

E∗
+ = E′

+ and E∗
+ − E∗

+ = E′
±. (6.3)

Moreover, with the conjugate lattice λ-norm ‖·‖′ the dual space (E′, E′
+, ‖·‖

′
) is an

order-complete Banach lattice λ-module whose lattice operation Z → Z+ is given
in (5.4).

Remark 6.5. It is interesting to note that the statement of corollary 6.4 is not
correct for general ordered Banach spaces or Banach λ-modules (see example 6.10
in [19]). Some properties linking the order structure with the topology are needed,
for example the condition that E+ is closed and generating (see [18], appendix A).

7. Subdifferentials on Banach Lattice Modules

Now we will focus on the existence of subdifferentials of a λ-convex function f
on a locally convex lattice λ-module. We carry over the basic results in [21] and
[17] to the case of λ-modules.

Definition 7.1. A function f : E → L
0
(G) on a locally convex λ-module (E,Q) is

subdifferentiable at X0 ∈ E if there exists a continuous λ-linear function Z ∈ E′,
called a subdifferential of f at X0, such as

〈Y −X0, Z〉 ≤ f(Y )− f(X0) (7.1)

for all Y ∈ E.

A first step towards the existence of a subdifferential is the analysis of the
directional derivative ∂f of a λ-proper and λ-convex function f on the domain of

f . For X0 ∈
◦

domf and Y ∈ E we define

∂f(X0)(Y ) := ess. inf
ζ∈λ♯

f(X0 + ζ · Y )− f(X0)

ζ
. (7.2)

Proposition 7.2. Let (E,Q) be a locally convex λ-module, f : E → L
0
(G) a

λ-proper and -convex function and X0 ∈
◦

domf . For Y ∈ E and ζ0, ζ1, ζ2 ∈ λ♯ with
ζ0 ≤ 1I, ζ1 ≤ ζ2, we get the following results:
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(i) f(X0 + ζ1 · Y )− f(X0)

ζ1
≤

f(X0 + ζ2 · Y )− f(X0)

ζ2
. (7.3)

(ii) −∂f(X0)(−Y ) ≤ ∂f(X0)(Y ).

(iii)
∣∣∣∣
f(X0 + ζ0Y )−f(X0)

ζ0

∣∣∣∣ ≤ max [f(X0+Y )− f(X0), f(X0−Y )−f(X0)] . (7.4)

(iv) ∂f(X0)(Y ) ∈ λ.
(v) The derivative ∂f(X0) : E ∋ Y 7→ ∂f(X0)(Y ) ∈ λ is λ-convex and has

the locality property (6.2).
(vi) The function ∂f(X0) : E ∋ Y 7→ ∂f(X0)(Y ) is positive λ-homogeneous

and therefore λ-sublinear.
(vii) The subdifferential inequality holds:

∂f(X0)(Y −X0) ≤ f(Y )− f(X0). (7.5)

Proof. (i) The λ-convex representation X0+ ζ1 ·Y = ζ1
ζ2
(X0+ ζ2 ·Y )+(1− ζ1

ζ2
) ·X0

implies f(X0 + ζ1 · Y ) ≤ ζ1
ζ2

· f(X0 + ζ2 · Y ) + (1− ζ1
ζ2
) · f(X0) which is equivalent

to (7.3).
(ii) For ζ ∈ λ♯, the convex combination X0 = 1/2 (X0 + ·Y ) + 1/2 (X0 − ζ · Y )
yields 2f(X0) ≤ f(X0 + ζ · Y ) + f(X0 − ζ · Y ) or

− [f(X0 − ζ · Y )− f(X0)] ≤ f(X0 + ζ · Y )− f(X0) (7.6)

from which (ii) follows immediately.

(iii) We have X0 + ζ0 · Y = (1− ζ0) ·X0 + ζ0 · (X0 + Y ) such as f(X0 + ζ0 · Y ) ≤
(1− ζ0) · f(X0) + ζ0 · f(X0 + Y ) or equivalently

f(X0 + ζ0 · Y )− f(X0) ≤ ζ0 · [f(X0 + Y )− f(X0)]. (7.7)

If we multiply (7.6) by −1 and replace Y by −Y in (7.7) we get

− [f(X0 + ζ0 · Y )− f(X0)] ≤ ζ0 · [f(X0 − Y )− f(X0)]. (7.8)

Both (7.7) and (7.8) yield (7.4).

(iv) For X0 ∈
◦

domf and Y ∈ E, we find ξ ∈ λ♯ so that X0+ ξ ·Y and X0− ξ ·Y lie

in
◦

domf and therefore max [f(X0 + ξ · Y )− f(X0), f(X0 − ξ · Y )− f(X0)] ∈ λ.
By (7.4), we get

|∂f(X0)(Y )| =
1

ξ

∣∣∣∣ess. infζ∈λ♯

f(X0 + ζ · ξ · Y )− f(X0)

ζ

∣∣∣∣

≤
1

ξ
max [f(X0 + ξ · Y )− f(X0), f(X0 − ξ · Y )− f(X0)] ∈ λ.

(v) For ξ ∈ λ, 0 ≤ ξ ≤ 1, ζ ∈ λ♯, and Y, Y ′ ∈ E, we have

f(X0 + ζ · (ξ · Y + (1− ξ) · Y ′)

ζ
≤ ξ

f(X0 + ζ · Y )

ζ
+ (1− ξ)

f(X0 + ζ · Y ′)

ζ

which implies the λ-convexity of ∂f(X0) : E ∋ Y 7→ f(X0)(Y ) ∈ λ.
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(vi) Let 0 ≤ ξ ∈ λ. We use the locality of f : On the set A0 := {ξ = 0} the

expression f(X0+ζ·ξ·Y )−f(X0)
ζ is 0 for all ζ ∈ λ♯ such as 0 = ∂f(X0)(ξ · Y ) =

ξ · ∂f(X0)(Y ) on A0. On the other hand, we have for ε > 0 on Aε := {ξ ≥ ε}

that f(X0+ζ·ξ·Y )−f(X0)
ζ = ξ · f(X0+ζ·ξ·Y )−f(X0)

ζ·ξ which implies ∂f(X0)(ξ · Y ) =

ξ · ∂f(X0)(Y ) on Aε and therefore on {ξ ≥ 0}.

(vii) For ζ ∈ λ♯, ζ ≤ 1, the convex representationX0+ζ·(Y −X0) = ζ·Y +(1−ζ)·X0

shows that ∂f(X0)(Y −X0) ≤
f(X0+ζ(Y−X0))−f(X0)

ζ ≤ f(Y )− f(X0). �

Theorem 7.3. Let (E,E+, ‖·‖) be a Banach lattice λ-module. Then any monotone

λ-proper, λ-convex function f : E → L
0
(G) is continuous and subdifferentiable at

all X ∈
◦

domf .

Proof. Let X0 ∈
◦

domf and 0 6= Y ∈ E. For all ζ ∈ λ, we set

〈ζ · Y, Z〉 := ζ · ∂f(X0)(Y ).

Z is well-defined on λ·{Y } since ζ ·Y = ζ′ ·Y implies ζ = ζ′ on A = {‖Y ‖ > 0} and
with 1IAc ·Y = 0 we get by the locality of ∂f(X0) and the fact that ∂f(X0)(0) = 0:

ζ · ∂f(X0)(Y ) = 1IA · ζ · ∂f(X0)(Y ) + 1IAc · ζ · ∂f(X0)(Y )

= 1IA · ζ′ · ∂f(X0)(Y ) = ζ′ · ∂f(X0)(Y ).

Next, we will show that Z is dominated on λ · {Y } by the λ-sublinear function
∂f(X0): For ζ ∈ λ and A := {ζ ≥ 0} the locality and the positive λ-homogeneity
of ∂f(X0) together with (ii) of proposition 7.2 show

〈ζ · Y, Z〉 = ζ · ∂f(X0)(Y ) = ∂f(X0)(1IA · ζ · Y )− ∂f(X0)(−1IAc · ζ · Y )

≤ ∂f(X0)(1IA · ζ · Y ) + ∂f(X0)(1IAc · ζ · Y ) = ∂f(X0)(ζ · Y ).

By the Hahn-Banach theorem 3.1, we can extend Z to a λ-linear function on E
satisfying

〈Y, Z〉 ≤ ∂f(X0)(Y ) ≤ f(X0 + Y )− f(X0) (7.9)

for all Y ∈ E where the last inequality comes from (7.5).
Moreover, Z is monotone. Indeed let Y ∈ E+ and assume that A := {〈Y, Z〉 <

0} ∈ G+. Then (7.9) implies f(X0 − Y ) ≥ f(X0) − 〈Y, Z〉 so that {f(X0 − Y ) >
f(X0)} ⊇ A ∈ G+, which is a contradiction to the assumption that f is monotone.

But, since the λ-linear function Z is in particular λ-convex and as shown mono-
tone, theorem 6.3 proves that Z is continuous and consequently a subdifferential
to f at X0. �

8. The Lp
λ- and L

(p2,p1)
λ -modules

For X ∈ L0(F), we recall the definition of the conditional norm ‖X‖p,G from

(2.2). It is easy to check that ‖X‖p,G are λ-norms in the sense of definition 2.1

(iv.c).

Definition 8.1. For p ∈ [1,∞] we set

Lp
λ(F) :=

{
X ∈ L0(F)

∣∣ ‖X‖p,λ :=
∥∥∥‖X‖p,G

∥∥∥
λ
< ∞

}
. (8.1)
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In the first part of this section we keep the σ-algebra F fixed, so that we
can simply write Lp

λ instead of Lp
λ(F). The space Lp

λ with the λ-norm ‖·‖p,G is
obviously a locally convex normed λ-module.

Theorem 8.2. For p ∈ [1,∞], the normed λ-modules Lp
λ are complete.

Proof. Let (Xn)n≥0 be a Cauchy sequence in Lp
λ, i.e.

sup
n1,n2≥nε

‖Xn1
−Xn2

‖p,λ < ε. (8.2)

By passing to a subsequence — again denoted by (Xn) — we may assume that
for ν ≥ 1

‖Xν −Xν−1‖p,λ < 2−n.

With Yν := Xν −Xν−1 we find
∑

ν≥n ‖Yν‖p,λ ≤ 2−n+1.
We define

Y n :=

n∑

ν=1

|Yν | ∈ Lp
λ, Y :=

∑

ν≥1

|Yν | ≥ 0.

Now ∥∥∥
∥∥Y
∥∥
p,G

−
∥∥Y n

∥∥
p,G

∥∥∥
λ
≤
∥∥∥
∥∥Y − Y n

∥∥
p,G

∥∥∥
λ
≤

∑

ν≥n+1

‖Yν‖p,λ ≤ 2−n.

This shows that Y ∈ Lp
λ and consequently that ζ :=

∥∥Y
∥∥
p,G

∈ λ+. For r > 0 and

Ar := {ζ ≤ r} ∈ G we have according to Beppo Levi’s theorem

E

[
1IAr

· Y
p∣∣G
]
= lim

n→∞
E

[
1IAr

(
n∑

ν=1

|Yν |

)p ∣∣G
]
≤ 1IAr

rp.

But now 1IAr

∑∞
ν=1 Yν =: 1IAr

·Y∞ is also in Lp where Y∞ is defined independently
of r. Since for all r > 0

1IAr
E
[
|Y |p

∣∣G
]1/p

≤ 1IAr
· ζ

we find that Y∞ ∈ Lp
λ and ‖Y∞ −

∑n
ν=1 Yν‖p,λ ≤

∑
ν>n ‖Yν‖p,λ → 0 for n → ∞.

Finally, ‖Y∞ +X0 −Xn‖p,λ = ‖Y −
∑n

ν=1 Yν‖p,λ → 0 for n → ∞. This shows

that the subsequence (Xn) has a limit in Lp
λ. It is now easy to see that the original

sequence has the same limit. �

The following proposition is a consequence of the conditional version of Hölder’s
inequality.

Proposition 8.3. Consider p ∈ [1,∞) and q its conjugate exponent according to
(2.3). Then we have

‖X · Z‖1,λ ≤ ‖X‖p,λ · ‖Z‖q,λ (8.3)

for all X ∈ Lp
λ and Z ∈ Lq

λ.

Proof. For X ∈ Lp
λ, Z ∈ Lq

λ, and n ∈ N, Hölder’s inequality for conditional
expectations yields

‖(|X | ∧ n) · (|Z| ∧ n)‖1,λ =
∥∥E
[
((|X | ∧ n) · (|Z| ∧ n))

∣∣G
]∥∥

λ

≤
∥∥∥E
[
(|X | ∧ n)p

∣∣G
]1/p

· E
[
(|Z| ∧ n)q

∣∣G
]1/q∥∥∥

λ
≤ ‖X‖p,λ · ‖Z‖q,λ .
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Taking the limit n → ∞, we get (8.3) by the monotone convergence theorem. �

Theorem 8.4. Consider p ∈ [1,∞) and q its conjugate exponent as given in (2.3).

(i) For Z ∈ Lq
λ, the mapping 〈·, Z〉 : Lp

λ → λ given by

〈X,Z〉 := E
[
X · Z

∣∣G
]
, for X ∈ Lp

λ (8.4)

defines a continuous λ-linear function on Lq
λ.

(ii) Conversely, if 〈·, Z〉 : Lp
λ → λ is a continuous λ-linear function, then

there exists a unique Z ∈ Lq
λ such as (8.4) holds for all X ∈ Lp

λ.

Proof. (i) Obviously, (8.4) defines a λ-linear function which is continuous by (8.3)
and proposition 2.6.
(ii) Let 〈·, Z〉 be a continuous λ-linear function on Lp

λ. Because of proposition 2.6,
there exists η ∈ λ♯ with |〈X,Z〉| ≤ η ‖X‖p,G .

We define the λ-linear function
〈
·, Z̃
〉
: Lp

λ → λ by
〈
X, Z̃

〉
:= 〈X,Z〉 /η such

as
∣∣∣
〈
X, Z̃

〉∣∣∣ ≤ ‖X‖p,G . We find that E
[ ∣∣∣
〈
X, Z̃

〉∣∣∣
p ]

≤ E
[
E[|X |p

∣∣G]
]
= E

[
|X |p

]
=

‖X‖pp on Lp
λ and Jensen’s inequality implies that for all X ∈ Lp

λ, we have

E
[ 〈

X, Z̃
〉 ]

≤ E
[ ∣∣∣
〈
X, Z̃

〉∣∣∣
]
≤ E

[ ∣∣∣
〈
X, Z̃

〉∣∣∣
p ]1/p

≤ ‖X‖p .

Now,
〈
·, Ẑ
〉
: Lp

λ → R, defined by
〈
X, Ẑ

〉
:= E

[ 〈
X, Z̃

〉 ]
is a real linear function

on Lp
λ satisfying

〈
X, Ẑ

〉
≤ ‖X‖p. With the help of the classical Hahn-Banach

theorem, it can be extended to a linear function, again denoted by Ẑ on Lp with〈
X, Ẑ

〉
≤ ‖X‖p for all X ∈ Lp. The topological dual of Lp being Lq, we find

a unique Z ′ ∈ Lq such as
〈
X, Ẑ

〉
= E

[
X · Z ′

]
for all X ∈ Lp. In particular,

〈
1IA ·X, Ẑ

〉
= E

[
1IA ·X · Z ′

]
for all A ∈ G+ and X ∈ Lp

λ, whence we have

E
[
X · Z ′

∣∣G
]
=
〈
X, Z̃

〉
≤ ‖X‖p,G (8.5)

for all X ∈ Lp
λ. Since ‖Z ′‖q,G = ess. sup

{
E
[
X · Z ′

∣∣G
]∣∣ ‖X‖p,G ≤ 1

}
, we get

‖Z ′‖q,G ≤ 1 and a fortiori ‖Z ′‖q,λ ≤ 1. Finally, setting Z ′′ = Z ′ · η ∈ Lq
λ we see

that

〈X,Z〉 = η ·
〈
X, Z̃

〉
= η · E

[
X · Z ′

∣∣G
]
= E

[
X · Z ′′

∣∣G
]
.

The uniqueness of Z ′ implies that of Z ′′. This shows part (ii) of the theorem. �

Now, we will fix the nested σ-algebras G ⊆ G1 ⊆ F and set λ1 := L∞(G1).
Thereby we will define the following spaces.

Definition 8.5. For G = (G,G1) and p = (p1, p2) ∈ [1,∞]2, we define

(i) for X ∈ L0(F) the λ-norm ‖·‖p,G by

‖X‖p,G :=
∥∥∥‖X‖p2,G1

∥∥∥
p1,G

, (8.6)
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(ii) the space Lp
λ by

Lp
λ := Lp

λ(G) :=
{
X ∈ L0(F)

∣∣ ‖X‖p,λ :=
∥∥∥‖X‖p,G

∥∥∥
λ
< ∞

}
. (8.7)

Similar to theorems 8.2 and 8.4 we get the following results.

Theorem 8.6.

(i) For G = (G,G1) and p = (p1, p2) ∈ [1,∞]2, the normed λ-module Lp
λ is

complete.
(ii) For p = (p1, p2) ∈ [1,∞)2 we set q = (q1, q2) ∈ (1,∞]2 where qi is the

conjugate exponent to pi, i = 1, 2.

Then Lq
λ = Lq2

λ1
× Lq1

λ is the dual space of Lp
λ. The duality and the

norm inequality are given by

〈X,Z〉 := E
[
X · Z

∣∣G
]
, (8.8)

|〈X,Z〉| ≤ ‖X‖p,G ‖Z‖q,G , (8.9)

for X ∈ Lp
λ and Z ∈ Lq

λ.

The proof of these statements follows the same lines as those for theorem 8.2
and 8.4.

Remark 8.7. Of course, the last theorem can be generalized to any finite number
of nested σ-algebras G ⊆ G1 ⊆ . . . ⊆ GT . This will be important when dealing
with multi-period time-consistent risk assessments.

9. Orlicz and Morse λ-modules

Let θ : [0,∞) → [0,∞) be a convex, increasing function with θ(0) = 0 and
limr→∞ θ(r)/r = ∞. This last condition restricts the kind of Orlicz λ-modules we
are regarding, but leaves enough interesting examples. Notice that above r∗θ :=
inf{r > 0

∣∣ θ(r) > 0} ∈ R+, i.e. in the interval [r∗θ ,∞) the function θ is strictly

increasing such that its inverse θ−1 is well-defined there. From θ(r) ≤ 1/2 θ(2r) >
r∗θ for r large, one derives that r ≤ θ−1( 1/2 θ(2r)) such as θ−1(r) → ∞ for r → ∞.

As θ is a convex increasing function on [0,∞), the set of its subdifferentials at
r ∈ [0,∞) is not empty: By ∂θ(r) := limεց0(θ(r + ε) − θ(r))/ε, ∂θ(0) := 0, we
denote right-subdifferential such as r 7→ ∂θ(r) is an increasing right-continuous
function on [0,∞) with θ(r) =

∫ r

0 ∂θ(u)du for all r ∈ [0,∞).
We still need the following inequality as a consequence of the convexity of θ:

θ

(
r1 + r2
c1 + c2

)
≤

c1
c1 + c2

θ

(
r1
c1

)
+

c2
c1 + c2

θ

(
r2
c2

)
(9.1)

for all r1, r2 ∈ R+ and c1, c2 > 0.
We define the Orlicz λ-module Lθ

λ by

Lθ
λ := Lθ

λ(F) =
{
X ∈ L0(F)

∣∣ ∥∥E
[
θ(|X/ζ|)|G

]∥∥
λ
< ∞ for some ζ ∈ λ♯

}
.

(9.2)
With the help of (9.1), one checks that Lθ

λ is indeed a λ-module. On Lθ
λ one

introduces the Luxemburg λ-norm ‖·‖θ,G : Lθ
λ → λ+:

‖X‖θ,G := ess. inf
{
ζ ∈ λ♯

∣∣ E
[
θ(|X/ζ|)|G

]
≤ 1
}
. (9.3)
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We justify calling ‖·‖θ,G a λ-norm because of the following result:

Proposition 9.1. (Lθ
λ, L

θ
λ,+ :=

{
X ∈ Lθ

λ

∣∣ X ≥ 0
}
, ‖·‖θ,G) is a normed lattice λ-

module with lattice λ-norm ‖·‖θ,G.

Proof. First we will show that ‖·‖θ,G is a λ-norm. ForX ∈ Lθ
λ and A := {‖X‖θ,G =

0} we get 1IA ·E
[
θ(|X/ε|)

∣∣G
]
≤ 1 for all ε > 0. Since θ(r) → ∞ for r → ∞, we must

have {X = 0} ⊇ A. The λ-homogeneity is trivial and the subadditivity follows
again from (9.1). Since θ is increasing, |X1| ≤ |X2| implies that ‖X1‖θ,G ≤ ‖X2‖θ,G
such as ‖·‖θ,G is indeed a lattice λ-norm. �

The following inequalities are simple generalizations from the classical theory
of Orlicz spaces (We recall the convention 0/0 = 0.):

Proposition 9.2. If X ∈ Lθ
λ, then

E

[
θ
(∣∣∣X

/
‖X‖θ,G

∣∣∣
) ∣∣G

]
≤ 1 (9.4)

and {
‖X‖θ,G ≤ 1

}
=
{
E
[
θ (|X |)

∣∣G
]
≤ 1
}
. (9.5)

Proof. The preceding proof showed that {‖X‖θ,G = 0} ⊆ {X = 0}, hence we get

E[θ(|X |)|G] = 0 on {‖X‖θ,G = 0}. By definition the inclusion
{
ζ > ‖X‖θ,G ∈ λ

}
⊆

{
E
[
θ
(∣∣X

/
ζ
∣∣) ∣∣G

]
≤ 1
}
holds for all ζ ∈ λ♯. Therefore E

[
θ
(∣∣∣X

/
‖X‖θ,G

∣∣∣
) ∣∣G

]
≤ 1

by a conditional version of Beppo Levi’s theorem. This implies the relation ⊆ in
(9.5). The inverse relation ⊇ is obvious. �

Theorem 9.3. (Lθ
λ, L

θ
λ,+, ‖·‖θ,G) is complete, i.e. it is a Banach lattice λ-module.

Proof. For a ‖·‖θ,G-Cauchy sequence (Xn)n≥0 in Lθ
λ, let us assume that we have

supn1,n2≥nε
‖Xn1

−Xn2
‖θ,λ < ε. Then by Jensen’s inequality we get

1 ≥ E
[
θ(|Xn1

−Xn2
| /ε)|G

]
≥ θ(E

[
|Xn1

−Xn2
| /ε|G

]
or

ε · θ−1(1) ≥ E
[
|Xn1

−Xn2
| |G
]
.

This shows that (Xn) is a Cauchy-sequence in L1 which has a limit, say X . We
conclude that 1 ≥ E

[
θ(|Xn1

−Xn2
| /ε)|G

]
→n2→∞ E

[
θ(|Xn1

−X | /ε)|G
]
a.s. such

as ‖X‖θ,G ≤ ‖Xn1
‖θ,G + ε. This proves that X ∈ Lθ

λ and Xn → X in Lθ
λ. �

For s ≥ 0, consider
θ∗(s) := sup

r≥0
(r · s− θ(r)), (9.6)

the Legendre-Fenchel transform of θ. It is again convex and increasing with
θ∗(0) = 0. Since the sup in (9.6) can be restricted to the finite interval [0, r̃(s) :=
sup{r|θ(r)/r ≤ s}] the transform θ∗ is finite on [0,∞). Moreover, it satisfies again
the condition

lim
s→∞

θ∗(s)/s = ∞ (9.7)

since for s > 0 we get θ∗(s)/s ≥
(
θ−1(s) · s− θ(θ−1(s))

)
/s = θ−1(s)− 1 → ∞ for

s → ∞.
Now Young’s inequality (see [8] theorem 2.1.4) tells us that
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(i) the right-subdifferentials ∂θ and ∂θ∗ on (0,∞) are reciprocally right-
continuous inverses:

∂θ∗(s) = sup{r|∂θ(r) ≤ s} and ∂θ(r) = sup{s|∂θ∗(s) ≤ r}, (9.8)

(ii) for all r, s ∈ [0,∞)

r · s ≤ θ(r) + θ∗(s), (9.9)

(iii) and

r · s = θ(r) + θ∗(s) ⇐⇒ r = ∂θ∗(s) or s = ∂θ(r). (9.10)

Now, we will prove the natural generalization of Hölder’s inequality on Orlicz
spaces for λ-modules:

Proposition 9.4. For X ∈ Lθ
λ and Z ∈ Lθ∗

λ the “Hölder’s inequality” holds:

E[ZX | G] ≤ 2 · ‖X‖θ,G ‖Z‖θ∗,G . (9.11)

Because of (9.11) any Z ∈ Lθ∗

λ defines a continuous λ-linear function on Lθ
λ .

Proof. For X ∈ Lθ
λ and Z ∈ Lθ∗

λ set Aε := {‖X‖θ,G ≥ ε and ‖Z‖θ∗,G ≥ ε}. Then

1IAε
·

X

‖X‖θ,G
·

Z

‖Z‖θ∗,G

≤ 1IAε
· θ(

X

‖X‖θ,G
) · θ∗(

Z

‖Z‖θ∗,G

) ≤ 2 · 1IAε
.

It follows that 1IAε
· E
[
X · Z

∣∣G
]
≤ 2 · 1IAε

· ‖X‖θ,G · ‖Z‖θ∗,G which implies (9.11)
for ε → 0. �

For further investigations on the dual λ-module of an Orlicz λ-module, we will
first introduce the operator λ-norm ‖·‖∗θ,G , also called Orlicz λ-norm,

‖Z‖∗θ,G := ess. sup
{
|〈X,Z〉|

∣∣ ‖X‖θ,G ≤ 1
}
. (9.12)

where 〈·, Z〉 is a λ-linear function on Lθ
λ or a subspace of it.

The following proposition shows that ‖·‖∗θ,G is indeed a λ-norm on Lθ∗

λ . More-

over, the two λ-norms ‖·‖θ∗,G and ‖·‖∗θ,G on Lθ∗

λ are equivalent.

Proposition 9.5.

(i) The functional ‖·‖∗θ,G is a λ-norm on Lθ∗

λ .

(ii) For Z ∈ Lθ∗

λ one has

‖Z‖θ∗,G ≤ ‖Z‖∗θ,G ≤ 2 ‖Z‖θ∗,G . (9.13)

(iii) For σ-subalgebras G1 ⊆ G2 ⊆ F and Z ∈ Lθ∗

λ(G2)
one has

E

[
‖Z‖∗θ,G2

∣∣G1

]
≤ ‖Z‖∗θ,G1

. (9.14)

Proof. (i) Since the properties (iv, a - b) of definition 2.1 are evident for ‖·‖∗θ,G, it

remains to be shown that (iv, c) holds or more precisely that ‖Z‖∗θ,G = 0 implies
Z = 0, the converse being obvious.
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Assume w.l.g. that A := {Z > 0} ∈ F+ and take r > 0 with θ(r) ≤ 1/P[A].
Then ‖r · 1IA‖θ,G ≤ 1 and {E[r · 1IA · Z|G] > 0} ∈ G+, hence ‖Z‖∗θ,G 6= 0.

(ii) We claim that for all X ∈ Lθ∗

λ , we have

E

[
θ∗
( ∣∣∣Z

/
‖Z‖∗θ,G

∣∣∣
)∣∣∣G

]
≤ 1. (9.15)

Now the first inequality of (9.13) follows from (9.15), while the second is an im-
mediate consequence of proposition 9.4.

To show (9.15) for Z = |Z| ≥ 0 in Lθ∗

λ , we setBγ := {θ
(
∂θ∗

(
Z
/
‖Z‖∗θ,G

))
≤ γ}

and X := 1IBγ
· ∂θ∗

(
Z
/
‖Z‖∗θ,G

)
for some B ∈ F+. From (9.9), we conclude that

E

[
1IBγ

· θ∗
(
Z
/
‖Z‖∗θ,G

)∣∣∣G
]
+ E

[
θ(X)

∣∣∣G
]
= E

[
X · Z

/
‖Z‖∗θ,G

∣∣∣G
]
. (9.16)

From (9.5), we know that A1 := {E[θ(X)|G] ≤ 1} = {‖X‖θ,G ≤ 1} and by

definition of ‖·‖∗θ,G that 1IA1
· E [X · Z|G] ≤ 1IA1

· ‖Z‖∗θ,G. Therefore one gets

1IA1
· E[1IBγ

· θ∗(Z/ ‖Z‖∗θ,G)|G] ≤ 1IA1
· E[X · Z/ ‖Z‖∗θ,G |G] ≤ 1IA1

.

On A2 := {1 < E[θ(X)|G] ≤ γ} = Ac
1 we use the convexity inequality θ(r/α) ≤

θ(r)/α for all 1 ≤ α and r ∈ [0,∞) to get 1IA2
· E [θ(X/E[θ(X)|G])|G] ≤ 1IA2

·
E[θ(X)|G]/E[θ(X)|G] ≤ 1IA2

. Again the definition of ‖·‖∗θ,G implies that

1IA2
· E [X · Z/E[θ(X)|G]|G] ≤ 1IA2

· ‖Z‖∗θ,G

or equivalently 1IA2
·E
[
X · Z/ ‖Z‖∗θ,G |G

]
≤ 1IA2

·E[θ(X)|G]. With regard to (9.16),

this means that 1IA2
· E
[
1IBγ

· θ∗
(
Z
/
‖Z‖∗θ,G

)∣∣∣G
]
= 0.

We have shown that E
[
1IBγ

· θ∗
(
Z
/
‖Z‖∗θ,G

)∣∣∣G
]
≤ 1 for all γ > 0 such as we get

the desired inequality (9.15) by the conditional version of Beppo Levi’s theorem
since

⋃
γ>0 Bγ = Ω.

(iii) Consider Z ∈ Lθ∗

λ(G2)
⊇ Lθ∗

λ(G1)
. For X ∈ Lθ

λ(G2)
with ‖X‖θ,G2

≤ 1, we apply

(9.5) twice to conclude E
[
θ (|X |)

∣∣G2

]
≤ 1, hence E

[
θ (|X |)

∣∣G1

]
≤ 1 and therefore

‖X‖θ,G1
≤ 1. This yields

E
[
E
[
X · Z

∣∣G2

]∣∣G1

]
= E

[
X · Z

∣∣G1

]
≤ ‖Z‖∗θ,G1

.

The set of G2-measurable random variables
{
E
[
X · Z

∣∣G2

]∣∣ ‖X‖θ,G2
≤ 1
}
is upward

directed so that Beppo Levi’s theorem, again in its conditional form, implies (9.14)
because of

E

[
‖Z‖∗θ,G2

∣∣G1

]
= E

[
ess. sup

{
E
[
X · Z

∣∣G2

]∣∣ ‖X‖θ,G2
≤ 1
} ∣∣G1

]
≤ ‖Z‖∗θ,G1

.

�

It is well-known that generally the dual space of an Orlicz space with growth
function θ is bigger than Lθ∗

(see e.g. [20]). On the other hand, the latter space
is dual to the Morse space (also called Orlicz heart) with growth function θ. We
therefore introduce the Morse λ-module:

Mθ
λ := Mθ

λ(F) :=
{
X ∈ L0(F)

∣∣ ∥∥E
[
θ(|X/ξ|)|G

]∥∥
λ
< ∞ for all ξ ∈ λ♯

}
. (9.17)
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Since we assumed that θ is bounded on bounded sets of [0,∞) we get imme-
diately that L∞ ⊆ Mθ

λ. Moreover, a close inspection of the proof of (9.13) shows
that only bounded test random variables X are needed there. This allows for the
following generalization:

‖Z‖θ∗,G ≤ ess. sup
{
|〈X,Z〉|

∣∣X ∈ Mθ
λ and ‖X‖θ,G ≤ 1

}
≤ ‖Z‖∗θ,G ≤ 2 ‖Z‖θ∗,G .

(9.18)
The Morse λ-module Mθ

λ has the following properties:

Theorem 9.6.

(i) Mθ
λ is a closed subspace of Lθ

λ.

(ii) The λ-module Lθ∗

λ is the dual λ-module of Mθ
λ: (Mθ

λ)
′ = Lθ∗

λ .

Proof. (i) Let ζ ∈ λ♯ and (Xι)ι∈I be a net in Mθ
λ such as Xι converge to X in Lθ

λ,
i.e. ‖Xι −X‖θ,G → 0. By proposition 9.1 we also have ‖ζ ·X − ζ ·Xι‖θ,G → 0

so that ‖ζ ·X‖θ,G ≤ ‖ζ ·X − ζ ·Xι‖θ,G + ‖ζ ·Xι‖θ,G ∈ λ since by assumption

Xι ∈ Mθ
λ.

(ii) By proposition 9.4 we already know that Lθ∗

λ ⊆ (Mθ
λ)

′.
Conversely, let 〈·, Z〉 be a continuous λ-linear function on Mθ

λ. This means
that there exists η ∈ λ♯ with |〈X,Z〉| ≤ η · ‖X‖θ,G for all X ∈ Mθ

λ. We define〈
·, Ẑ
〉

: Mθ
λ → R by

〈
X, Ẑ

〉
:= E

[
〈X,Z〉 /η

]
such as

∣∣∣
〈
X, Ẑ

〉∣∣∣ ≤ E
[
‖X‖θ,G

]

for all X ∈ Mθ
λ. Applying (9.13) and (9.14) (with G2 = G, G1 = {∅,Ω}, and θ∗

replaced by θ) we get

∣∣∣
〈
X, Ẑ

〉∣∣∣ ≤ E
[
‖X‖∗θ∗,G

]
≤ ‖X‖∗θ∗ ≤ 2 · ‖X‖θ .

where ‖·‖θ = ‖X‖θ,{∅,Ω} and similar for ‖·‖∗θ∗ . Because of the Hahn-Banach

theorem, the linear function
〈
·, Ẑ
〉
can be extended to a linear function on Mθ :=

Mθ
λ({∅,Ω}), again denoted by

〈
·, Ẑ
〉
and still satisfying

∣∣∣
〈
X, Ẑ

〉∣∣∣ ≤ 2 · ‖X‖θ. This

means that
〈
·, Ẑ
〉

is continuous on Mθ. By theorem 2.2.11 in [8], we get an

element Z ′ ∈ Lθ∗

such as
〈
X, Ẑ

〉
= E

[
X · Z ′

]
for all X ∈ Mθ. In particular for

X ∈ Mθ
λ and A ∈ G+ it follows from E

[
1IA ·X · Z ′

]
= E

[
1IA · 〈X,Z〉 /η

]
that with

Z ′′ = η · z′

〈X,Z〉 = E
[
X · Z ′′

∣∣G
]
≤ η · ‖X‖θ,G

for all X ∈ Mθ
λ . Therefore by (9.18) we find ‖Z ′′‖θ∗,G ≤ η. This completes the

proof. �
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Sonia Taieb: Université El-Manar, Faculté des Sciences, Campus Universitaire, 2092

El Manar, Tunis

E-mail address: ettaeib@yahoo.fr

33




