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DYNAMICAL PROBLEM OF GENERALIZED
MAGNETO MICROPOLAR THERMOELASTIC
MEDIUM IN HALF SPACE

Ranjit Singh* and Varun Kumar™

Abstract: A two dimensional plain strain problem in magneto micropolar thermoelastic medium has been
studied with the help of integral transformations. The fundamental equations with two relaxation times for
generalized magneto micropolar thermoelastic media have been considered by taking heat sources in half
space in the absence of body forces. Integral transforms have been used to obtain the solution in
transformed domain. A numerical approach has been implemented to invert the obtained solution in the
physical domain. Results are presented graphically for a particular model.

Key Words: Magneto elasticity, thermoelasticity, micropolar elasticity; thermal source; two temperature
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1. INTRODUCTION

Term Micropolar coined by Eringen (1966) is used to describe all materials having an internal
structure, contrary to the assumption of classical theory where material is regarded as a continuous
medium. So far Classical theory, which is based on Hooke’s law was being used to analyze the
behaviour of commonly used materials in civil, mechanical and aeronautical etc. engineering fields.
This theory is based upon the principal that each point on the continuum possesses three degrees of
freedom due to presence of three displacement components in three mutually orthogonal directions.
But discrepancies arise in this theory when certain special materials lacking symmetry in their
microstructure are modelled using the classic theory. This discrepancy arises due to presence of
additional mechanisms which resists deformation. Micropolar theory of elasticity which is part of
Solid Mechanics came into existence aftermath of failure of classical theory to explain the
behaviour of material possessing internal structure and all such materials with fibrous,
polycrystalline materials, coarse grain, polymeric materials, microcracks and microfractures. Also
such materials are capable of producing couple stress in addition to usual force stress.
Transmission of load across a differential element of the surface of a micropolar elastic solid is
described by a couple stress vector along with force vector. As small-scale effects become
paramount in the prediction of the overall mechanical behavior of modern day advanced
construction materials, importance of Micropolar theory can be greatly felt in the manufacturing
and design of these materials.

The theory of thermoelasticity deals with the effect of mechanical and thermal disturbances on
an elastic body. This theory was suffering from two drawbacks; Foremost is the fact that the
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temperature had no impact on the mechanical state of the elastic body. Second drawback was due
to the parabolic nature of the heat equation resulting in to letting infinite speed of thermal wave
propagation defying the physical experiments. In 1967 the theory of generalized thermoelasticity
[1] with one relaxation time for the special case of an isotropic body was introduced. In this theory,
a modified law of heat conduction, including both the heat flux and its time derivative, replaces the
conventional Fourier law. The second shortcoming was addressed by introduction of temperature-
rate-dependent thermoelastic theories of two relaxation times [2]. It does not violate Fourier’s law
of heat conduction when the body under consideration has a center of symmetry, and it is valid for
both isotropic and anisotropic bodies. The theory of micropolar thermoelasticity has been a subject
of intensive study. A comprehensive review of works on the subject is available in texts [3] and

[4].

The theories of magneto-elasticity and magneto-thermo-elasticity have been developed to
study the interacting effects of an externally applied magnetic field on the elastic and thermo-
elastic deformations. These theories are being rapidly developed in recent years because of the
possibilities of their extensive practical applications in diverse fields such as geophysics, optics,
acoustics, damping of acoustic waves in the magnetic field and so on. This theory can find
applications in analysis of propagation of seismic waves from the earth’s mantle to its core, It also
[5] suggests that the existence of the earth’s magnetic field may be taken into consideration for
explaining certain phenomena concerning these waves. Basic equations of magneto micro
thermoelasticity were derived by Kaliski [6]. Later on, Knopoff [7] attempted to determine the
effects of the magnetic field on the propagation of elastic waves on a geophysical scale. In recent
years number of authors [8], [9] have contributed to the development of this field. A comparative
study between one-temperature theory and two temperature theory in generalized magneto
thermoelastic medium in perfectly conducting medium was made by Ezzat and Bary [10] by using
state space approach and found that two-temperature generalized theory describes the behavior of
the particles of an elastic body more accurately than the one-temperature theory. Ezzat and Awad
[11] introduced the theories of modified Ohm’s law which also took the temperature gradient and
charge density effects in to account with generalized Fourier’s law taking current density effect in
to considerations by using the linearized equations of micropolar generalized magneto
thermoelasticity. Normal mode analysis is used to obtain the solution. He and Cao [12] in the
context of L-S theory investigated the problem involving thin slim strip placed in the magneto
thermoelastic medium which is subjected to a moving heat source and proved that magnetic field
significantly influences the variations of non-dimensional displacement and stress but has no effect
on the non-dimensional temperature. Singh and Kumar [13] studied the interaction of
electromagnetic field with elastic field in the presence of temperature by applying Mechanical
force and thermal source by using modified Fourier and Ohm’s law.

In the present study a two dimensional model has been used to analyze the magneto micropolar
thermoelastic model with two temperature parameter subjected to concentrated force. Solution has
been obtained in frequency domain by employing Laplace and Fourier transform and inversion has
been done numerically.

2. FORMULATION OF THE PROBLEM

Considering the region x; > 0 to be occupied with linear homogenous isotropic micropolar
thermoelastic medium with two temperatures which is perfectly conducting. We use Cartesian
coordinate system (x,,x,, x3) with xs-axis pointing vertically into the medium. A magnetic field
with intensity H= (0,Hy, 0) is acting parallel to the boundary plane. Following Nowacki [14] and
Lotfy [15], we take linearized equations of electro-dynamics of slowly moving medium as
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curlh =J + D, curlE = -B, 1)
E = —po(ii x Hy), )
divH =0, B = uH, (3)
h = —Hy(0,e,0), 4)

where D = ¢,E, H = H, + h.

The equations of balance of linear as well as angular momentum taking Lorentz force without
body couples and taking into account with the electromagnetic couples can be written as follows

. 5
ji,j +€ijk JjBr = pily, ©)
i Op + Ui+ +E:0 x: (€ B.) = pjd: (6)

ijk O}k ujl,] ijk x]( klm ]l m) p]qbu
. d 92 . .
KV = (2 + 192 (pCT + VToY. 1), (7)

Following Youssef [16] relation between the heat conduction and the dynamical heat with
a > 0 as two-temperature can be written as
o —T = aV?g, (8)

Constitutive relations are

O-ij = Auk'k&-j + u(ui_j + uj_i) + K(Uj,i - 6ijr¢r) -V (1 + T %) T(Sij, (9)

Uij = @by ibij + Bdij +vPji- (10)

3. SOLUTION OF THE PROBLEM
As we are considering a two dimensional plain strain problem, we take
@ = (uy,0,u3), ¢ = (0,4,0), h = (0,1, 0) (11)

Introducing the displacement potential functions 1y (x;, x5, t) and 5 (x4, x3,t) and taking

U=V +Vx{,V.{=07=(0¢0) (12
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For convenience following dimensionless quantities have been used
(x1, x5, ug, u3) = con(xq, X3, uq, Us) (t' 1), t1) = cin(t, Ty, T1) a-’-=L
1, X3, Ug, U3 oT\Xq1, X3, Uy, U3), T, T1 oML, To, T1), I
o K I __ ‘r’ I K
M= conur 1o Ji ogligcoHo]“ ¢ U+ K ¢ (13)
( ) T) - T
W=D n (¢0)=22"0 g-_1 __f
ooMoHo To GolgCoHo
Where
pCg , At+2u+tk
—_— —, C p—
K* 0 p

After some simplification and using (11)-(13) in equations in equations (1)-(10), we obtain

(dropping dashes for convenience)

.. d ..
alvzl/) - azl/) —ds (1 + T &) 9 - a4l/) = 0,
asV?{ — asp — a{ — as{ = 0,

V2 — agV?{ — a;¢ — agd = 0,

2 a2 d a2
V2 = ao (5 + To355) 0 — a0 (5 + To3) ¥ = O,

p—0= a11V2§0:

_ 6u1+6u3 a3<1+ )9
%3 = M25, T o, a o)

_6u1+ Jus a3(1+ 6)9
u= 0x, P12 0x; a 19¢)

Jus 4 Jduy aged
031 = Q13 75— T Q1a 75— T A149P,
dxq x5

¢
Mgy = VE»

Where

(14)

(15)

(16)

17)

(18)

(19)

(20)

(21)

(22)
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02 02
Vi=——+—, a;=A+2p+K a, =cieuoHj, az=vT, a,=pcj, as=p+K
ox] 0x3
2 2 =2 C
Ag = ZZK—, a7 = %, ag = plcon’ A9 = p_*E' A0 = %' ayy = acgn?,
yn#cg(p + 1) cony Y K™ K™
a :—)L a - * :—H+K A = N A6 = 1
73 +2p+k BT A+2p+x T A+2p+€ P T oome’ ' oomoeco
cien’
ty = 02—077 (23)
O-OIUO
We define the Laplace and Fourier transforms as
L{f (1,3, )} = [ €75t f (xq, x3, )dt = f(x1,x3,5), (23)
F{f(x1,%3,5)} = f_‘le—té’h f(x1,x3,5)dx, = f(&,x3,5), (25)
Equations (14)- (24) after application of transformations defined in Error! Reference source not
found.-(23) give
(D? —a))P — a0 =0, (25)
(D?—a3){-¢ =0, (26)
(D% = a))P —as(D? —§9){ =0, (27)
(D? =) — asb — ag(D* = )P =0, (28)
all(Dz - 0.’7)@ + g = 0, (29)
. 0uy 0Ouz az ( 6) ~ (30)
033 = Q13 3%, + ax,  a 1+14 T o,
(31)

5 _6ﬂ1+ Jiig a3<1+ 6>§
o1 = 0x, M1z 0x; a o)
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Ay 9, i 39
031 = Q13 7— a + a4 5— a + a14¢, ( )

_ L) (33)
Mmsz; =Y axg’
Equations (25)-(29) can be re-written as
(D* — 0(13D2 + “14)(5: QE) =0, (34)
(D* — ay5D% + a16) (P, 8, §) = (35)
Where
d do + dy ds do + dy
D=—, o =8+—"—"75% oa=—(1+1s), a=8§8+"——s?%
e e e
_ ¥2 2 _ 2 _ 2 2, =
oy = & + ay + ags”, s = aq(s + Tps~), g = a19(s + TpS?), oa; =& +a
1
ag = 1+agas, ay = & +a 50y, Q10 = 2110206 + A3,
_ 2 _ 2
a1 = 21102068 + a7) + aga; + ag, Q12 = A11 006078 + 0g0ly1,
11 aq2
a3 = a3z + ay + ag, ayq = 30y + agé?, a5 =—, Qg = —
10 10

Solutions of equation (34)-(35) satisfying the radiation condition Re(m;) = 0 are of the form,

f(fl x3l S) = Al(fl S)e_m1X3 + AZ(S' S)e—mZX3r (36)
1/;({' X3,S) = A3(f: S)e—m3XS +A4(f! S)e_m4x3; (37)
Where

me = 5=

/ 2 ’ 2
a5 + a5 — 4 , a5 — [ais —4age
= 2 = 2 ’

2 [2
, iz tyayz—4a, a3 —agg—4ag,
1 2 )m 2 )
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Using (36)-(37) in equations (25)-(33), we obtain
B(&,x3,5) = (M} — az)Ae ™% + (md — az)Ae” ™23, (38)
6(¢,x3,5) = a%[(m% — a;)Aze ™3 + (] — ay)Ase T, (39)
B, x5,5) = = [T e mmens 4 Lzl g oo (40)
Uy = (mA 67 ™% + myA,e™™2%3) +1E(Aze M3 %3 + A e N3), (41)
Ty = 16 (Aje™™*3 + A,e7™2*3) — (mgAze "3%3 + myA,e™M4*3), (42)
G33 = —1§(1 — ayp)(myA1e ™% + myA,e™2%3) + (ay — §2ay,) (Aze 7% + Aye ™M), (43)
611 = €(1 — ayp)(myA e ™% + myA,e2*3) + (o) — §% —mj + ay,m5)Aze ™33 ”

+ (@ — &2 —mj + a;ymg)Aze s,

031 = —(§%a13 + agaa3)(Are™™%s + Ay ™M2%3) — 1€ (a3 + aqa) (M3 Aze ™33 + myd e ™NE), (45)
fiizp = —y[my(mf — az)A;e ™% + my(m5 — az)A e 23], (46)

4. APPLICATION

When the plane boundary is stress free and subjected to an instantaneous thermal point source,

the boundary conditions at the plane x; = 0 are:

0(x1,0,t) = 0p6(x1)5(t),

0'33()61, 0, t) = 0,

U31(.X1, 0, t) = 0,

m32(x1, 0, t) = 0.

where 6, is the maximum constant temperature applied on the boundary.

(47)

(48)

(49)

(50)

After making use of transformations as defined in Error! Reference source not found.-(23)

on equations (47)-(50), and using equations (39), (43), (45) and (46), we obtain
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L0 = )y + (= @A) = B (52)
—1E(1 — ayp)[my Ay + myAy] + (ay — £2a1,)[As + A4] = 0, (52)
—(82ay3 + aza1,)[A; + Az] — € (ary + ag3)[msAs + myd,] = 0, (53)
my(m? — a3)A; + my(m2 — az)A, = 0. (54)

Equations (51)-(54), after simplification give,

A = wry (e — &2a1) (M3 — a3) (4, + 4,) ~ (55)
P Emi(1 - agp)(md —mB)[(md — a)d,y + (mE — a)Ay]
Ay = — tay(aq ; Ezalzz)(mi —az)(4; + 4‘22) 3, (56)
Emy(1 — agp)(mf —m3)[(ms — ay)A; + (mf — aq)A,]

- @242 5 57

A [(m% —a)d; + (mzzx —a;)4,] G ( )
a4 ~

= 0,. 58
As [(m§ —a)4l, + (mz —a1)44] 0 ( )
Where

A = [a17(m§ —asz) — alelmB(m% - m%)],

Ay = [ay;(mf — a3) + a;gmymy(mi — m3)],

B l(fzam + a3a14)(a1 - fzau)

§(1—aqp)

5. INVERSION OF THE TRANSFORMS

The transformed components of displacement, microrotation, tangential and normal stress, couple
stress, induced electric field and magnetic field are dependent on &, x; and s. To obtain them in the
physical domain in the form of f(r, x5, t), we invert integral transforms by using the inversion
technique as used by Singh et al [13].

ag; = ) aig = 1§(ay + agz).

6. NUMERICAL DISCUSSION AND ANALYSIS
The analysis is conducted for a magnesium crystal. Using the physical parameters as given in
reference [17] are taken as
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A=94x10"Nm?, u=4.0x10"Nm?, x=1.0x10"Nm™?, p=1.74x10° Kg/m®,

J =0.2x10"m?, & =10"°/367x col? | Nm?, £ =0.98x107 NIm?,

o, =2.2356 x10"/col? 1 J m Sec, 14, =47 x107 Nsec?/ col?,

H,=10"col Im sec, n=0.0168,K =386Wm 'K, C, =383.LJKg 'K, T, =293K, 6, =1.
Graphical analysis of variation in temperature distribution, displacement, normal stress and
tangential couple stress has been done. Results have been compared in the absence and presence of
magnetic field for two different t values. In the following figures 1-4, the solid line represents the
magneto micropolar thermoelastic medium (MMT1) at t=0.1; small dashed line magneto
micropolar thermoelastic medium (MMT2) at t=0.5; solid line with circles micropolar
thermoelastic medium (MT1) at t=0.1 and small dashed line with circles represents micropolar
thermoelastic medium (MT2) at t=0.5 under the application of thermal source.

Fig.1 shows the variation in normal displacement component (u3)with changes in value of x;.It
is observed that the presence of magnetic field leads to higher values of u; as compared to its
values in the absence of magnetic field. Also its nature is oscillatory for MT1 and MT2 and
amplitude keeps on decreasing with increase in x; .

1 T
08 +
06 T
04 +
02t

]

021

04 1

Mormal displacement distnibution

06 —

Figure 1. Variation of normal displacement

Fig.2 shows vartions in temperature distribution (8) with x,. Initially starting with same
values for both mediums MMT and MT, value of 8 has higher amplitude in the the absence of
magnetic effect. For large values of x; (4 < x; < 5), its values start coinciding for both theories
and tend to zero.

18 1

05 +

Teamperature distribution

05 1

Figure 2. Variation of temperature distribution
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Variation in Normal force stress (ag33) is being shown in fig.3. Here it is observed that g35

behaves in opposite manner under both theories for range 0 < x; <9 but this difference
tends to cease in the range x; = 9.

Normal stress distribution

Figure 3. Variation of Normal stress distribution

Finally in the fig.4 behaviour of tangential couple stress (o3,) is depicted. Values have been
plotted after multiplying it with 10. g5, again shows oscillatory nature in the absence of magnetic
field (MT1 and MT2) but for large values of x;, this behaviour tends to diminish and shows

linear nature.

ot
N oW

Tangential stress distribution (x10)
n g o g o

i
8]

il — MMT1
T~ oo MMT2
—6— MT1
' @ MT2

Figure 4. Variation of tangential stress distribution

6. CONCLUSION
This study highlights a simplified technique of obtaining the stress and strain components in the
case of micropolar isotropic solid subjected to thermal field in the presence of magnetic field.
The trend of variations of the considered components are different in the presence and absence of
magnetic field which confirms that magnetic field has significant impact on the normal
displacement component us, temperature distribution 6, normal force stress g3; and tangential
couple stress o3, along with application of thermal source. This study can be useful in analysing
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stress-strain behaviour of earth like model which is subjected to both thermal and magnetic
fields.

NOMENCLATURE
h induced magnetic field,
E induced electric field,
] current density vector,
Uo magnetic permeability,
€0 electric permeability,
D electric displacement vector,
e cubical dilatation,
A u Lame’s constants,
u; components of displacement vector,
t time,
0ij components of stress tensor,
é rotation vector,
j micro inertia,
a,B,7, K micropolar constants,
8i; Kronecker delta,
€ijk alternating tensor,
p mass density,
Cg specific heat at constant strain,
K* thermal conductivity,
T, T1 relaxation times,
0 T—T,,
T temperature,
T, |TT—0T°
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