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INCREASING C-ADDITIVE PROCESSES

NADJIB BOUZAR*

ABSTRACT. It is shown that any infinitely divisible distribution p on R gives
rise to a class of increasing additive processes we call C-additive processes,
where C is a continuous semigroup of cumulant generating functions. The
marginal and increment distributions of these pocesses are characterized in
terms of their Lévy measure and their drift coefficient. Integral represen-
tations of C-additive processes in terms of a Poisson random measure are
obtained. The limiting behavior (as t — o0) of two subclasses of C-additive
processes leads to new characterizations of C-selfdecomposable and C-stable
distributions on Ry .

1. Introduction

A real (vector)-valued stochastic process {X;} (with Xy = 0) is said to be
additive if it has independent increments and it is stochastically continuous with
cadlag paths. The most important subclasses of additive processes are Lévy pro-
cesses (see, for e.g., Sato [10]), self-similar processes (Sato [9]), semi-selfsimilar
processes (Maejima and Sato [6]) and semi-Lévy processes (Sato [11]). Another
noteworthy subclass consists of the additive processes that arise as stochastic in-
tegrals with a Lévy process integrator and a determinsitic integrand (see Maejima
and Ueda [7], Rocha-Arteaga and Sato [8], and references therein). Among the
many important properties of an additive process, we cite the infinite divisibilty
of its increment and marginal distributions and its Lévy-Itdo decomposition.

The purpose of this article is to introduce a class of increasing additive pro-
cesses taking values on R;. More specifically, we will show that any infinitely
divisible distribution g on Ry generates a class of increasing additive processes
we call C-additive processes, where C is a continuous semigroup of cumulant gen-
erating functions (see definitions below). These processes will be indexed by a
Lebesgue measurable function on Ry taking values in (0,1]. Their increment
and marginal distributions are characterized in terms of their Lévy measures and
their drift coefficients. Integral representations of C-additive processes in terms
of a Poisson random measure are obtained. Finally, the limiting behavior (as
t — 00) of two subclasses of C-additive processes leads to new characterizations
of C-selfdecomposability and C-stability of distributions on R (introduced by van
Harn and Steutel [4]).
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The paper is organized as follows. In Section 2, we parallel the treatment
for the real-valued case in [8] (see their Section 2.1) to introduce the class of
increasing C-additive processes. We first establish the existence of a collection of
infinitely divisible distributions on R (Theorem 2.2). We proceed to show that
these distributions arise as the marignals of increasing C-additive processes, whose
existence is proven in Theorem 2.4. We obtain formulas for the drift coefficient and
the Lévy measure of the said marginal distributions (Theorem 2.8) and we describe
a subclass of increasing C additive processes generated by a C-stable distribution
(Theorem 2.13). We end the section with several several examples. In Section 3,
we give an integral representation of an increasing C-additive process in terms of a
Poisson random measure under the assumption that the generating measure p has
a bounded Lévy measure v and no drift coefficient (Theorem 3.2). The case when
v is unbounded is studied in Section 4, where it is shown that an increasing C
additive process arises as a weak limit of increasing C-additive processes generated
by driftless measures with finite Lévy measures (Theorem 4.1). Section 5 is devoted
to limit theorems. We show that for a subclass of increasing C-additive processes,
a weak limit (as ¢ — o0) exists if and only if the generating measure pu, or its
Lévy measure, has a finite log-moment (Theorem 5.2). This result leads to new
characterizations of C-selfdecompoable and C-stable distributions (Theorems 5.4
and 5.5 and Corollary 5.6).

We devote the remainder of the section to recalling a few basic facts needed in
the sequel.

The collection of infinitely divisible distributions on R} will be denoted by
Z(R4). For a > 0, &, will designate the point mass probability measure at a.
We denote the probability law of a random variable X by £(X) and we use the
notation X <Y to mean L(X)=L(Y).

We recall that a distribution g on R is characterized by its Laplace-Stieltjes
transform (LST, hereafter) ¢(7) defined by

o= [ e uldo)
0
Moreover, p € Z(R,.) if and only if ¢(7) admits the representation

o(r) = =7,

where C(7) has a completely monotone derivative on (0, 00) (with C(0) = 0). The
function C(7) is referred to as the cumulant generating function (cgf, hereafter)
of .

Let C = (Cy; t > 0) be a continuous composition semigroup of cgf’s with the
following properties:

Co(r) =7; Cs0Cut) = Csys(1), (5,6t >0); limCy(7)=rT; tlim Ci(r) =0.

10
(1.1)
for every 7 > 0. We have for every t > 0, C¢(7) = —Inn(7), where 7, is the
LST of a distribution in Z(R, ). Following Steutel and van Harn [12], Chapter 5,
Section 8, we will assume without loss of generality that C}(0) = e~! (up to a
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linear change of the time scale). Several examples of such subgroups are given in
Section 2.
The infinitesimal generator U of the semigroup C is defined by

U(r) = 13&')1(6}(7) —7)/t (1>0), (1.2a)
and satisfies U(0) = 0 and U(7) < 0 for 7 > 0. U admits the representation
U(t) = a7+ br? — / (€™ =1+ 1x/(1+ 22)) dm(z), (1.20)
0
where a; is a real number, b > 0, and m(dz) is a Lévy spectral function such that
Oy 22 dm(z) < oo for every y > 0. The assumption C}(0) = e~ forces a; = —1.
Moreover, the following non-explosion condition holds:
y
U(x)~ ! dz| = oo for sufficiently small y > 0.
0+

We note that U admits representations that are different from (1.2b), but equiva-
lent to it (see for example Li [5], Chapter 3).
A function related to U, called the A-function, is defined by
1

Alr) = exp{/ @)~ dr}, (72 0: A@0) = 0). (1.3)

T

The functions U(7) and A(7) satisfy the following identities for ¢,7 > 0:

%Ct(r) =U(Cy(1)) =U(1)Ci(1) and A(Cy(r)) = e tA(T)). (1.4)

We deduce from the first equation in (1.4) and the continuity of the semigroup
C (see (1.1)) that

Ci(r) =71 +/0 U(Cs(7)) ds. (1.5)

We note the addtional properties

. U(7)
Ci(r) <7 (t,7 > 0) and 171% .

Let Z2 = ({Z.(t)},x > 0) be a collection of independent copies of an R -valued

subcritical continuous-time branching process driven by the semigroup C with ini-

tial condition Z,(0) = . The subcriticality of { Z, ()} follows from the assumption

C1(0) = e~t. We will refer to {Z,(t)} as a C-CB process. Let {Q:(z,dy)} be the

infinitely divisible transition semigroup of probability measures associated with
{Z.(t)}. The LST of Z,(t) is

/°° e TVQy(x, dy) = e ") = py(7)". (1.7)
0

=-1 (1.6)

Moreover,
BZ) = [ yQulo.dy) = e 18)

We refer the reader to [5], Chapter 3, for more on C-CB processes.



246 NADJIB BOUZAR

The operator a@¢ that acts on R;-valued random variables introduced in [4]
(see also [12], Chapter V, Section 8) is defined as follows:

Oz@cXZZX(t) (t:—lna), (1.9)

where 0 < a < 1 and X is an R;-valued random variable independent of the
collection Z of C-CB processes described above. We note that the process {Zx(¢)}
of (1.9) is itself a C-CB process starting with X individuals, i.e., Zx(0) = X.

In [4], the operator ®¢ was used in lieu of the standard multiplication to study
stability equations for R,-valued processes with stationary independent incre-
ments. Bouzar [1] used ®¢ in similar fashion to introduce a family of discrete
time, R -valued first order autoregressive processes.

Let ¢x(7) be the LST of an Ry-valued random variable X. Then the LST
Pacex(T) of a ®c X is easily shown to be

Pacex(T) = dx(Ci(1)) (t=—Ina;T >0). (1.10)
The following lemma gathers some basic properties of the operator G¢.

Lemma 1.1. Let a, 8 € (0,1] and X and Y be Ry -valued random variables.
Then

(i) 1oc X £ X.
(i) aGc (8 @c X) £ () @c X.
(iii) If X and Y are independent, then o ©¢ (X +Y) LaoeX+aceY.
(iv) If X and Y are independent, then so are « ©¢ X and B Oc Y.
(v) If {X,} is a sequence of Ry -valued random variables such that X, 4 X,
then a ®¢ X, —d>a®cX,

(vi) a®e X 30 ifalo.

Proof. The proof of ((i)-(iii), (v) and (vi) follows starightforwardly from the as-
sumptions on the semigroup C and equation (1.10). For (iv), we note a ©¢ X =
Zv(=lna) and S ©c Y = Z¢(—Inp), where 2’ = ({Z.(¢)},x > 0) and Z" =
({Z,(t)},y > 0) are independent collections of C-CB processes. It follows that if
X and Y are independent, then so are Z% (—Ina) and Z{ (- In ). O

2. A Class of Increasing Additive Processes

We start out by introducing a stochastic integral for step functions (see (2.2)
below) taking values in the interval (0, 1].

We recall that a subordinator is an increasing Lévy process that starts at 0.

Let p € Z(Ry) with LST K,(7). We assume the existence of the following
processes on some probability space (2, F, P):

- An R, -valued subordinator {¥,*} such that £(Y;") = pu;

- A collection of independent copies of a C-CB process (see Section 1)
({2 e20,1<j<n)

- The collections ({Zg(gj)(t)},:r > 0,1 <j<n)and {Yt(”)}) are mutually
independent.



ADDITIVE PROCESSES 247

Let f(s) be a step function defined on an interval [tg, t1] C [0, 00), i.e.,
HOED IR ) (2.1)
j=1

for some subdivision tg = s, < §1 < -+ < s, = t1 of the interval [tg, ¢1], and some
a; € (0,1],j=1,---,n.

Let D; = Ys(j” ) _ Ys(_fb_)l, 1 < j < n and define the R -valued random variable Y’
by

Z3)(~naj) =" a; e (Y —YW). (2.2)

1 =1

Y =

J

n

Importantly, we note that if f(s) of (2.1) admits a representation along a different
subdivision of [to, 1], say, f(s) = >7"1 bilfu, , u;)(s), then

n m
d
> a; 0 (VW -y ) £ b o (V) — V).
j=1 i=1

This can be seen by noting that Y can be decomposed along the refined subintervals
{[ui,l Vosj_1, U A sj)} (over which a; = b;). The conclusion follows by using the

fact that {Yi(” )} has independent stationary increments and Lemma 1.1-(iv).

Proposition 2.1. The random variable Y of (2.2) has an infintely divisible dis-
tribution on Ry with LST

Gro., (T) = exp{/tt1 In K, (C_1n (5)(7)) ds}. (2.3)

Proof. Since {Y,")} is a Lévy process, [K,(r)]' is the LST of Ys(_ffz A
s,t > 0. Let Aj = 55 —sj_1, 1 < j < n. By assumption (and also Lemma
1.1-(iv)), the summands in (2.2) are independent. In compatibiltiy with (1.1), we
adopt the convention Co(7) = 0. Tt follows by (1.10) that the LST of YV is

n

oy (1) = H[Kﬂ (C-ina, (T))]Aj = exp{z A;In K, (C-ina, (T))} (2.4)

j=1 =1

n th
> A K, (Coa (1) = / In K, (Con () (7)) ds,
j=1 to
we have shown that ¢y, 4, (7) of (2.3) satisfies ¢y, 4, (7) = ¢y (7), which implies
that ¢, ¢, (1) is an LST. Tt is clear that the latter is independent of the choice of
the subdivision {sg,s1,---,sn} of [to,t1]. Let now k be a positive integer and py,
be a probability measure on R such that = pi*. The LST of py is [K,(1)]*/*.

It is easily verified that {Y;(/‘;C)} is a subordinator with E(Yl(fk)) = py,. Letting

Y=Y a;oc (V9 -y ).
j=1
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we see (using the argument above) that the LST of Y}, is

t1

ovilr) = exp{ [ K (Con g ()] ¥ s,
to

Since @y, (1) = [br,.1, (T)]/*, we conclude that ¢y, 4, i(7) is the LST of a distribu-

tion in Z(Ry). 0

We next extend Proposition 2.1 to (0, 1]-valued Lebesgue measurable function
on [to,t1], The result is to be seen as the analogue of Proposition 29 established
by Rocha-Arteaga and Sato (2003) for real valued bounded measurable functions.

Theorem 2.2. Let p € Z(Ry) with LST K, (1) and let f(s) be a Lebesgue mea-
surable function defined on the interval [to, t1] C [0,00) and taking values in (0, 1].
Then the function ¢y, 1, (T) of (2.3) is the LST of an infinitely divisible distribution
Hto,ty OT R+.

Proof. Let f be as assumed above and let f,(s) be a sequence of step functions
on [tg,t1] such that 0 < f,,(s) < 1 and f(s) = lim,— o fn(s) almost everywhere
(a.e.) with respect to the Lebesgue measure. Let

bn(T) = exp{/t1 In K, (C, 1nfn(s)(7')) ds}. (n>1).

to

The continuity of Cy(7) as a function of ¢ implies

lim In K (C, In fn(s) (T )) =K, (C, 1nf(s)(7)) (a.e. [s] ;7 € [0,00)),

n— oo

Since K, (7) is infinitely divisible there exists a completely monotone function
p(u) on (0,00) such that In K,( — Jy p(u)du (Theorem 4.2. p.90, in [12]).
We have by (1. 6) that C_ fﬂ s)( ) <T for every n > 1, which implies that
|In K, (C_in g, (s)(7))] < fo u) du. It follows by the Lebesgue dominated conver-
gence theorem applied to the sequence {In K, (C_1,, (5(7))} that

ty
ILm Ing,(r) = / In K, (C_ 1 (5)(7)) ds (r>0).
n oo tO
Therefore, lim,,_, o0 ¢ (7) = G1y,1, (7), Where ¢y, 4, (1) is the function in (2.3). Next,
we note that lim,o1n K, (C’_ In f(s) (T)) =0 (as lim; o C_1, y(s)(7) = 0). Apply-
ing again the Lebesgue dominated convergence theorem as we did above (with
the difference that now the index is 7, which we restrict to [0, 1] without loss of
generality), we have lim; o ¢y, ¢, (T) = 1. We conclude by the continuity theorem
(Theorem 3.1, Appendix A, in [12]) that ¢, ¢, (7) is an LST (that is independent
of the choice of the limiting sequence of the step functions {f,} ). As the limit of
infinitely divisible LST’s, ¢4, +, (1) is itself infinitely divisible (Proposition 2.2, p.
79, in [12]). O

In view of the proof of Proposition 2.1, one could adopt the notation

ty
Y:/'ﬂ®@%wﬂ
to
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where Y and f are as in (2.1)-(2.2). This notation could be extended to (0, 1]-
valued lebesgue measurable functions through a weak limit argument (as seen
in the proof of Theorem 2.2). Rather, we propose in Sections 3 and 4 some
representations in terms of random variables via Poisson random measures.

We denote by £(R.; (0,1]) the collection of Lebesgue measurable functions f(s)
on R, taking values in (0, 1].

Let € Z(Ry) and let f € E(R4;(0,1]). Applying Theorem 2.2 to the restric-
tion of f to the interval [s,t], 0 < s < ¢ < oo, we can assume the existence of a
probability measure p; € on Ry that is infinitely divisible and with LST

G5 (T) = /OOO e sy (dy) = exp{/lt In K, (C, In f(y) (7')) dy}. (2.5)

Proposition 2.3. The family of probability measures pis;,0 < s <t < 0o of (2.5)
satisfies the following properties:
(1) pos,e * pe = prsu for 0 <s <t <u < oo.
(ii) Hs,s = 0.
(ii) fos 4 0o as s T t.
(iv) ps 4 do as s | t.
Proof. (i) follows from the fact that ¢s,(7) = ¢si(T)Pru(7), 0 < s < t <
u < oo; (ii) from the fact that ¢ (7) = 1; (i) (resp., (iv)) from the fact that
litho ¢3_h7s(T) =1 (resp., hmhw ¢s,s+h(7-) = 1) ([
A stochastic process {X;} is said to be additive in law (we refer to [10]) if
(1) it has independent increments;
(2) Xo=0;
(3) it is stochastically continuous, i.e., for any € > 0, lim,_; P(| X5 — X;| >
€) =0.
{X:} is an additive process if it is additive in law and is
(4) cadlag, i.e., is almost surely right-continuous with left limits.
Two stochastic processes {X;} and {Y;} are said to be modifications of each

other if P(X; =Y;) = 1 for every t > 0. They are said to be identical in law if
they have the same finite dimensional distributions.

Theorem 2.4. There is an increasing additive process {X;} on some probability
space (Q, F, P) such that for any 0 < s <t < oo, Xy — X5 admits pst of (2.5)
as its distribution. This process is unique in the sense that if {X]} is an additive
process such that X| 2 X, for every t > 0, then {X:} and {X[} are identical in
law.

Proof. By Proposition 2.3 above and Theorem 9.7- (ii), page 51, in [10], there exits
an additive process in law {Y;} such that for any 0 < s <t < 00, Y; — Y, has us
of (2.5) as its distribution. Since us, has support on Ry, {Y;} is increasing. By
Theorem 11.5, p. 63, in [10], {Y;} admits a modification {X;} that is an additive
process. It is easily seen that s remains the distribution of X; — X, and thus
{X:} is also increasing. The second statement of the theorem follows from part
(iii) of Theorem 9.7-(iii), p. 51, in [10]. O
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Definition 2.5. We will refer to the process {X;} of Theorem 2.4 as the in-
creasing C-additive process generated by the pair (u, f) with p € Z(Ry) and
f € g(R+; (Oa 1])

We recall that if 4 € Z(R,), then its LST ¢(7) admits the canonical represen-
tation (Chapter 10 in [10])

o(1) = exp{—aT — /(0

for some a > 0 and a measure v on the Borel sets in (0, 00) satisfying

/ (1A z)v(de) < oco. (2.7)
(0,00)

(1- e_m)u(d:v)} (r>0), (2.6)

,00)

The measure v is called the Lévy measure of p and a its drift coefficient. We
will refer to the pair (a,v) in (2.6) as the characteristic couple of u € Z(R).

Next, we characterize the marginal distributions of a C-additive process in terms
of their Lévy measures and their drift coefficients.

First, we need to establsih two preliminary results.

Recalling that 7; (1) = e~ (") is the LST of the probability measure of Q;(1, dy)
in Z(R4) (see (1.7)) , we will denote the characteristic couple of the latter by
(bt7 l/t), i.e.,

Co(r) = bor + / (1= e )uy(da). (2.8)
(0,00)

We will also denote by {QY(z,)}+>0 the semigroup obtained by restricting the

semigroup {Q:(z, ) }+>0 to (0,00) (see the paragraph preceding equation (1.7)) .

Lemma 2.6. Let X be an R, -valued random variable with distribution p € T(R4),
generated by the pair (a,v). Let p, be the distribution of « ©¢ X for o € (0,1).

Then po € Z(Ry) and has characteristic couple (aby, Vt(“a)) with t = —Ina and

v#)(B) = any(B) + . )Q?(%B)V(dw)» (BeB(0,%).  (29)

Proof. The infinite divisibility of the distribution of a@ ®¢ X follows from (1.10)
and Proposition 3.5, Chapter III, in [12]. We have by (1.10) and (2.6)

— I Gamex(T) = —Ing(Ci(1)) = aC’t(T)—F/ (1= y(dz) (t=—Ina),
(0,00)
or, by (1.7) and (2.8),

—Inpapex () = abt + a/ (1 —e ™) (dx)
(0,00)

" /(0,00) (/(O)oo)(l — e Q) (w,dy) ) (da).

Therefore,

—In@apex(7) = abr + / (1- e_m)yt(”“)(dx),
(O7m)
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with ") (dz) of (2.9). It remains to show that f(o OO)(l/\x)z/t(“")(dx) < oo. Since
v is a Lévy measure, it is enough to prove that f(o OO)(l Ay)mi(dy) < oo, where
m1(dy) = [ 00) QY (x, dy)v(dr). Indeed,

= O(x v(dx).
[, @rwman=[ ([ arnQie )
By (1.8), f(O,oo)(]' AY)QY(z,dy) = E(Z,(t) A1) <z A1, which implies

/ (LAy)my(dy) < / (ILAz)v(dr) < oo
(0,00)

(0,00)

since v is a Lévy measure. (I

We recall the notion of factoring for an addtive process (we refer to [11]).
Let {X;} be an Ry-valued additive process in law. A pair ({ps}s>0,0) is called
a factoring of {X,} if

(1) o is a measure on R such that o([0,t]) < co (local boundedness).
(2) o is diffuse (atomless)

(3) ps € Z(R,) for all s >0

(4) In¢,, (1) is measurable in s for each ¢ >0 (¢,, being the LST of p,).
(5) |f0t In ¢y, (7)o (ds)| < oo for all ¢, 7> 0.

(6) The LST ¢, of X; admits the following representation for all £ > 0

0.4 (T) = exp{/ot In ¢, (T)a(ds)} (t>0). (2.10)

Proposition 2.7. Let {X;} be an increasing C-additive process generated by the
pair (u, f) for some p € Z(R4) and some f € E(Ry;(0,1]). Let ps be the prob-
ability distribution with LST K,,(C_1, y(5)(7)), s > 0, and let o(dx) = dx be the
Lebesgue measure on Ry. Then ({ps},0) is a factoring of {X;}.

Proof. The proof follows easily from (2.5). We omit the details. O

We denote by By(R) the class of Borel sets B in R such that inf,cp > 0.

Theorem 2.8. Let {X;} be an increasing C-additive process generated by the pair
(1, f) for some p € Z(Ry) and some f € E(R4;(0,1]). Let ({ps},o) be the fac-
toring of {X:}, as described in Proposition 2.7, and let (a,v) be the characteristic

couple of p. Then, po = L(X¢) has characteristic couple (ch), z/t(X)):
t t
=g /O bowmsuydy and vV (B) = /O VO b (B) dy, (2.11)
for any B € By(R,.), where
v{?)(B) = avy(B) + Q% (x, B)v(dx) (2.12)

(0,00)

and (be, vt) is as in (2.8).
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Proof. First, we note that K, (C_1, f(4)(7)) can be seen as the LST of f(y) ©¢ Y,
where Y is a random variable with p as its distribution (and K,(7) as its LST).

By Lemma 2.6 and (2.9), p, has characteristic couple (ab_ 1, f(y), VEpl)nf(y)) with

V) as in (2.12). By Lemma 2.7 (item (7)) in [11], the functions ab_, ¢, and

u(j’l)nf(y)(B) (B € By(Ry)) are measurable in y. Equation (2.11) then follows from

Lemma 2.7 (item (9)) in [11]. O

We note that if p in Theorem 2.8 has no drift coefficient ( @ = 0), then the
increasing C-addtive process generated by (u, f) is driftless. On the other hand, if
the Lévy measure v of u is 0, i.e., p = 64, a > 0, then we have the following result.

Corollary 2.9. Let a > 0 and let {Xt(a)} be the increasing C-additive process
generated by (04, f) for some f € E(Ry;(0,1]). Then the probability distribution

pgat) of Xt(a) has characteristic couple (cga), I/t(a)).'

¢ t
o = a/o bowmfdy and vi”(B)= a/o Vot f(y)(B) dy, (2.13)
for any B € By(Ry).

Formulas for the drift coefficients and the Lévy measures of the distributions of
the increments of an increasing C-additive process are easily deduced from (2.11).
We omit the details.

C-additive processes satisfy a sort of stability property by scalar multiplication.

Proposition 2.10. Let {X;} be an increasing C-additive process generated by the
pair (p, ) for some p € Z(Ry) and some f € E(R4;(0,1]). Let ¢ € (0,1). Then
the increasing C-additive process {Xi(c)} generated by the pair (p,cf) satisfies
X¢(c) 4 c@c Xy for everyt > 0. The drift coefficient of X¢(c) is ctX(c) =b_1n chx)
and its Lévy measure is

v (B) = v o(B) + /( Qele. By (de) (B € By(Ry.)).
0,00)

Proof. Let 0 < s < t. We have by Lemma 1.1, ¢ ©¢ X; = ¢ O¢ (X5 + Xt — Xs) 4

¢ ®c Xs + ¢ Oc (X — Xs). Independence and a simple LST argument based on

Theorem 2.4 and (1.10) establishes that X;(c) 2 ¢ ®¢ X;. The formulas for the
drift and the Lévy measure of X;(c) follow from Lemma 2.6 and Theorem 2.8. [

The Lévy-Itdo decomposition (Chapter 4, Section 19, in [10]) applies to C-
additive processes as follows.

Theorem 2.11. Let p € Z(Ry) with characteristic couple (a,v) and
f € EMR4;(0,1]). Let {Xi} be an increasing C-additive process generated by the
pair (u, f) and with characteristic couple (ch), l/t(X)) given by (2.11). Then there

exists a Poisson random measure M T on (0,00) x (0,00) with mean measure
v((0,t] x B) = ut(X)(B), B € B(R4), such that

X, =™+ / / e MWF) (ds, dz). (2.14)
(O,t]XR+
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Proof. Since X; is infinitely divisible, its Lévy measure ut(X) satisfies the property
f(O.oo)(x A D) (dz) < oo (see 2.7), which implies f(0,1] av™X)(dz) < co. Then

both the existence M /) and equation (4.3) follow from Theorem 19.3, p. 121,
in [10]. (]

The Poisson random measure M) in (2.14) regulates the number of jumps
and their sizes of the process {X;} (see [10], Theorem 19.2, p. 120). We note that
for ¢ € (0,1) and f € £(R,;(0,1]), the Poisson random measure M ¢f) has mean
measure

PUO By = e vmeB)+ | Qlielw B)w(dx) (B € BR4)).
Remarks 2.12. (i) The probability measure pi, 1, of Theorem 2.2 and its LST of
(2.3), with f(s) = e~*, arose in the context of C-CB processes with immigration
(or C-CBI processes). In this case, the function —InK,(T) is the immigration
mechanism of the C-CBI process and the infinitesimal generator U(T) (see (1.2a-
b) is the branching mechanism of the process. The immigration process is the
incresing C-additive process generated by the pair (u, f). We refer the reader to
[5], Chapter 3, Section 3.3 for more details.

(ii) The following condition on the infinitesimal generator U of the semigroup
C = (Cy : t > 0) was introduced in [5] (Condition 3.6, p. 60):

U(r) <0 forT >0 and / |U(y)|~* dy < oo, (2.15)
0

for some constant 0 > 0. We note that in our case the first part of (2.15) is true
(see Section 1). By Theorem 3.10, p. 61, in [5], the condition (2.15) holds if and
only if the drift coefficient by in (2.8) statisfies by = 0 for every t > 0. Therefore,
if one assumes (2.15), then by Theorem 2.8, any C-additive process is a pure jump
process as in this case ch) =0 (by 2.11).

The next result identifies a class of increasing C-additive processes with C-stable
marginal distributions. We recall a few basic facts about these distributions (see
4]).

An R, -valued random variable X (or its distribution), with LST ¢(7), is said
to have a C-stable distribution if for every t > 0, there exists b > 0 such that

¢(1) = ¢(Ce())" (1 20). (2.16)

If p is a C-stable distribution on Ry, then 4 € Z(R4) and its LST ¢(7) admits
the canonical representation

o(1) = exp{=AA(7)"} (1 =20), (2.17)

where v € (0,1] and A > 0 (with A(7) of (1.3)). The constant ~ is called the
exponent of the C-stable distribution.

Theorem 2.13. Assume that p is a C-stable distribution with exponent v € (0, 1]
and LST (2.17) for some A\ > 0. Let {X;} be the increasing C-additive process
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generated by the pair (u, f) for some f € E(R4;(0,1]). Then the distributions of
Xt t>0) and X; — X5 (0<s<t<o0) are C-stable with LST

t
6ur) =exp{-A( [ @y a)aer} =0, (2.18)
Proof. By assumption, Theorem 2.4, (2.17) and (1.4), we have
I Ku(Ca 50 () = ~AA(C 1 5o ()]” = “Af A (72 0),
which, along with (2.5), implies (2.18). O
We conclude the section by applying the main results above to a family of
semigroups of cgf’s which we denote by C(%4) = {(Ct(ﬁ’d) (1),t>0):8€(0,1],d >

0}. It is a modified version of an example in [5] (Chapter 3 , page 62).
For § € (0,1] and d > 0, let

PV (r) = etr[1+d(1 -7 (17 > 0). (2.19)

If d = 0, then C\*Y(7) = e~t7 which implies C(®-0) = (19 for any 8 € (0, 1].
In this case, we have a®¢a,0 X L aX (see (1.9)) and thus a ®¢a,0 X corresponds

to the ordinary multiplication (see also [4]).
Assuming d > 0 and letting A\; = [d(1 — e~ #")]~! (t > 0), we have

Bud)\ _ —t Ae VP O By A NP
Cm P (r)=e T()\tJrTﬁ) and 87'Ct (r)=e </\t+75) .
(2.20)

1+1
Noting that the function ¢, (T)Z(#) e is the LST of a compound-gamma
distribution, where the primary distribution is gamma with parameters \; and
14 1/p and the secondary distribution is the standard stable distribution with
exponent 5 and LST e*Tﬁ, it follows that Ct(’B ’d)(T) has a completely monotone
derivative and hence is a cgf. It is easily verified that C(*9) forms a continuous
semigroup of cgf’s.

We denote by {Qgﬁ’d) (z,dy)} the transition semigroup associated with C(8:d)
(see (1.7)). Straightforward calculations show that for any 5 € (0,1] and d > 0,

a—aTCt(B’d)(T) = et and

UBD(r) = —7(1 4 drP), ABD(r)=

[(1 + d)Tﬁ}l/B (2.21)

1+drf

The characteristic couple of the probability measure le’o)(l,dy) is (e7%,0).
The transition semigroup associated with C(1%) is Q" (z, dy) = 6pe-+(dy). If p €
Z(R4) has characteristic couple (a,v) and f € £(R4;(0,1]), then the increasing
C19)_additive process {X;} generated by (i, f) has characeristics (see (2.11))

¥ =a / fly)dy and vM(B) = / v([f(y)] 7' B) dy, (2:22)
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for any B € By(R.). Moreover, if u is C(1:%-stable (or stable in the standard
sense, since A0 (1) = 7) with LST ¢(7) = e, A > 0 (see (2.17)), then {X;}
has a stable marginal distribution with LST ¢ +(7) = exp{—)\(fo )7 dy) T’Y}

For d > 0, the compound-gamma distribution with LST ¢ (7) above has prob-
ability density function (pdf)

)\1+1/ﬁ %)
Ty | e ay, (2.23)

where g, () is the pdf of the stable distribution on R} with LST e=v™ 1t follows
that the characteristic couple (bgﬁ’d), Vt(ﬁ’d)) of Qgﬁ’d)(l,dy) is given by

h
b :exp{—et/( de} and %9 (B) :et/B(x)dx. (2.24)
0

,00) x X

h(z) =

When f = 1 and d > 0, additional formulas can be stated more explicitly.
In this case, Ay = d(1 — e~ )71, h(z) is the pdf of a gamma distribution with
parameters (A, 2) and

bgl’d) =e ™" and ut(l’d)(B) = )\fe_t/ e~ MY dy. (2.25)
B

The transition semigroup Q(l 4) (x,dy) is the Poisson (A\;ze~*) compounding of the
exponential distribution with parameter A;. Let p € Z(R;) with characteristic
couple (a,v) f € E(Ry;(0,1]) (f(y) < 1), and {X;} the CD-additive process
{X:} generated by (p, f). Define k(y) = % The characeristics of {X;} (see
(2.11)) are shown to be

t t
o —a [ty and Oy = ([ Huds)dy (220
0 0

where

H(y,2) = k(2)(1 + k(2))e ”’“”( i 2d2n/ m"e’k(dz)wy(dx)).

(0,00)
(2.27)
By (2.21), we can write A9 (1) = —Ing:(r), where ¢1(7) = exp{—1E4(1 —
G(7)} and G(7) is the LST of an exponential distribution with parameter 1/d.
Therefore, any C#-stable distribution with exponent v € (0,1] is a compound
distribution, where the primary distribution is a C(*:%)-stable (or standard stable)
distribution with exponent ~ and the secondary distribution is the compound
Poisson distribution with LST ¢ (7).
Assume p is CPD-stable and f € £(R;(0,1]). Then the increasing CM4)-
additive process {X,} generated by the pair (u, f) has a C(»?-stable marginal

distribution with LST ¢g (1) = exp{—)\(fo )Y dy) (—Ingy (T))V}, A>0.
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3. C-additive Processes and Poisson Random Measures
(v Finite)

We assume first that p € Z(R4) has characteristic couple (0,7) with a finite
Lévy measure v and no drift coefficient (a = 0). Letting ¢ = v((0, 00)), we rewrite
v = co, where o a probability distribution on Ry such that o({0}) = 0. We note
that the LST of p is K, (1) = exp{—c(1 — ¢5(7))}, where ¢, is the LST of o.

We assume the existence of the following processes on some probability space
(Q,F,P):

- An R, -valued subordinator {Yt(#)} such that E(Yl(”)) = L. {Yt(“)} is nec-
essarily a compound Poisson process with intensity ¢, jump times {7} };>1,
and (iid) jump sizes {D;} with common distribution o (see Cinlar [2],
Chapter VII, Section 7).

- A collection of independent copies of a C-CB process ({Zg(f)(t)}, x>0,i>
1).

- The collections ({Zg(f) ()}, > 0,i > 1) and {Yt(“)}) are mutually inde-
pendent.

For i > 1 and t > 0, we define Y;(t)
and the above assumptions, ({Y;(t},4
processes (see Section 1).

= ng(t)v with Y;(0) = D;. By definition
> 1) constitutes a sequence of iid C-CB

Since the processes {Za(ci) (t)}, @ > 1, are Markovian, their common transition
semigroup of probabilities {Q:(x, dy)} (see (1.7)) extends uniquely to a probability
measure Q(z,B) on (REE’OO),B(RJr)[O’“)) for every x > 0. Moreover, for every
B € B(R,)[>®) Q(x,B) is measurable as a function of z on R (see for example
[10], Chapter 2, Section 10).

If B is a rectangle in B(R)[>) of the form B = {y € RE’OO) 1y(t;) € Biyi=
0,1,---,n}, where the B;’s are Borel sets in Ry and 0 =ty < t; < -+ < tp, then

Q(z,B) 2/ Qtn—tn,l(xn—hdxn)/ Qt, 1 —t, o (Tp—2,dxy_1)- -
Bn Bt (3.1)

o Qtl*to(andxl) 5m(dl'0)
B Bo

The processes {Y;(t)}, i > 1, have a random initial position (namely D;). Their
common probability law on B(R, )% denoted by 7, is given by (cf. Remark
10.8, p. 58, in [10])

7(B) = h Q(z,B)o(dr) (B e B(Ry)0). (3.2)

The sequence {T;} forms a Poisson random measure on R} with mean measure
cLeb. Since the sequences {Y;(-)} and {7;} are independent, it follows by Corollary

3.5, p. 265, in Cinlar (2011) that the sequence {(7},Y;(:))} is a Poisson random

) with mean measure c¢Leb ® (Leb is for Lebesgue

measure), with 7 of (3.2). For a measurable function i on R4 x ]REE’DO), the random

0
measure M on R, x R[Jr’oo
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variable Mh = fRMR[U,w) h(s,y) M(ds,dy) on Q, F, P) takes the form
+

Mh = ih(TkaYk('))‘ (3.3)
k=1

Theorem 3.1. Let f(s) be a Lebesgue measurable function defined on the interval
[to, t1] C [0,00) and taking values in (0,1]. Define the function g on Ry x R[J?’Oo)
by g(s,y) = y(—=1In f(5))I[y,¢,)(s). Then the random variable Mg is given by

Mg - ZYk(_1nf(Tk))I[t0,t1](Tk)a (34)
k=1
and has LST .
o(r) = exp{—c/t (1= ¢ (Cin (s (7)) ds}‘ (3.5)
[0,00)

Proof. First we note that g is measurable on R, xR} "™ as the projection operator

pr,(y) =y(t), t > 0, from R[E’Oo) to Ry is B(R,)[>>)-measurable. Equation (3.4)
follows straightforwardly from the definitions of the random measure M and (3.3),
with h(s,y) = g(s,y). The LST ¢(7) of Mg satisfies

o(1) = E(e™MT9)) = exp{—c/ (1- 6779(5’5’)) Leb @ 7(ds, dy)}
Ry xR

menoe [ ([ (- )}

We have fR[o,oo)(l — e*TY(*lnf(S))) m(dy) = E(l - eiTYl(*lnf(S))), as 7 is the
+

probability law of {Y3(¢)} (cf. Proposition 10.6, p. 57, in [10]). Since the latter

is a C-CB process with Y7(0) = Dy, it follows (see (1.9)) that Yi(—In f(s))) 4

f(S) ®C D1 and thus, by (110)7 E(l — @_"'Y1(—lnf(8))) =1 — ¢a(cflnf(s)(7—))

(recall o is the common distribution of the D;’s). Equation (3.5) ensues. O

Noting that by definition Y;(t) = d -t ®c¢ D; for every ¢ > 1 and t > 0, we have
the following representation of Mg of (3.4):

o0

Mg =3 (F(T0) @c Di) g 1) (Th), (3.6)
k=1

where the operation A ®¢ X is extended to a random element A taking values in
[0,1] (and cumulative distribution function F4(a)) via its LST:

bacex(r / buvex (T)Fa(da). (3.7)

Theorem 3.2. Let p € Z(Ry) with characteristic couple (0,co), where ¢ and o
are as defined above. Let the sequences {D;}, {T;}, and {Y;(-)}, are as defined
above. Let f € E(Ry;(0,1]) and g:(s,y) = y(—1In f(s))1j0,4(s). Then

Xi=Mg, = ZYk —Inf Tk)) [0,t] (Tk) (3~8)
k=1
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is an increasing C-additive process generated by (u, f). Moreover, the characteristic
couple of L(Xy) is (O,Z/t(X)), with

t
W (B) = c/ /( Q" jo) (5 Blo(dn)ds, B € Bo(Ry).
0 0,00)

Proof. Clearly, Xo = 0. Since Mg; = fR+xR[°’°°) y(—In f(s)) 10,4 (s) M(ds,dy),
+

the cadlag property of {X;} follows. By (2.5), the LST of us; = L(X; — Xy),
0<s<t<oo,is

bou(r) = 0] —e [ (1 60(C ) ).

Therefore, s, satisfies the properties (i)-(iv) in Proposition 2.3. It follows by (i)
and an induction argument that for 0 < ty < t; < --- < t,, the probability law
My o t, = L( X4y, -+, Xy, ) satisfies

n

Mty s, (Bo X By % By) = / / 100 (490 T30 (50t 12 (A ) 5, (0 + 1)
0 0
X e pie, o (dyn)IB, (Yo + - -+ Yn),
(3.9)

where By, -, B, are Borel sets in Ry. A standard argument (see, for e.g., the
proof of (ii) = (i) of Theorem 9.7, p. 51, in [10]) implies

E( [exp{* iri(Xti — XtH)H
= /OOO . /000 exp{— gTiyi}uthtl(dyl) iy (dyn) (3.10)

n 00
= H/ e Vi, o (dyi),
i=170

which implies that the increments X;, — Xy, -, X, — X¢, , are independent.
Stochastic continuity of {X;} is insured by (iii) and (iv) of Proposition 2.3. The
formula for ut(X) follows from (2.11)-(2.12). O

The following corollary is a direct consequence of Theorem 3.2 and (3.6).

Corollary 3.3. Under the assumptions of Theorem 3.2, the increasing C-additive
process { X} of (3.8) admits the representation

o0

Xy = Mg £ (£(Ti)) ©c Di) o (Te), (3.11)
k=1

Next, we give a decomposition theorem for increasing C-addiive processes. We
state first a useful result whose proof is straightforward.

Lemma 3.4. Let Wy, Wq,--- W, (n > 1) be a sequence of independent R -
valued random variables and S;, 0 < j < n, be the sequence of its partial sums
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(with Sog = Wy ). Then the joint LST, h(1o, 71, ,Tn), of (S0, 51, -+ ,Sp) is given
by

h(to, 71, ,Tn):th(Tl), (3.12)
1=0

where hy is the LST of W;, 71 >0, and r; = ZZ:[ 7, 0 <1 <n.

Theorem 3.5. Let i € Z(R) with characteristic couple (a,v), where a > 0, and
v is bounded (thus v = co, ¢ > 0, where o is a probability measure on Ry ). Let
f e ERL;(0,1]) and let {X:} be an increasing C-additive process generated by
(1, f) on some probability space (2, F, P). There exists an increasing C-additive
process {X;} on some probability space (Q, Fo, Po) that is identical in law to {X;}
and such that

X, = X" + Mg, (3.13)
where

(i) {Mg:} is an increasing C-additive process generated by (1, f), where uy €
Z(Ry) has characteristic couple (0,co), M is the Poisson random measure
of (3.3) on (Qo, Fo, Po) with mean measure ¢ Leb@ w, with  of (8.2), and
9:(8,y) = y(—=In f(s))I10,q(s) (cf. Theorem 3.2);

(ii) {Xt(a)} is an increasing C-additve process (S, Fo, Po), generated by the
pair (8a, f) (cf. Corollary 2.9);

(iii) {X“} and {Mg,} are independent.
Moreover, the characteristic couple (c,gX), I/t(X)) of L(Xy) is ng) =
afot b_1n f(s) ds and

t t
l/t(X)(B) = a/o V_nf(s)(B) ds + c/0 /(0 )Q(l ln‘f(s)(m,B)a(da:) ds.

Proof. Let uy € Z(R) with characteristic couple (0, co) and consider a probability
space (€1, F1, P1), where the following random elements are defined:

- {Y;(H 1)} is a Ry -valued compound Poisson process with intensity ¢, jump
times {T;};>1, and (iid) jump sizes {D;} with common distribution o;

- ({ngi)(t)},a: > 0,i > 1) is a collection of independent copies of a C-CB
process;

- {Yt(”l)}7 ({Zg) ()}, z>0,i>1) and {X't(a)} are mutually independent.

Let M be the Poisson random measure defined by (3.3) with mean measure
cLeb ® m and with 7 of (3.2). By Theorem 3.2, {Mg:} of (3.8) is an increasing
C-additive process generated by the pair (u1, f). Moreover, extending (Q4, F1, P1)

to (Qo, Fo, Po), we construct an increasing C-additve process {X't(a)}, generated by

the pair (d,, f) that is independent of {Mg,}. The process {X;} defined by (3.13)
is clearly an increasing C-additive process. For 0 <ty < t; < --- < t,, < 00, let

W, = Mg, — Mgy, , and W] = )?t(la) X g <1 < n (with Wy = Mg, and

ti—1°

W§ = )Z'(a)). By (2.5) and Lemma 3.4, the joint LST of Mg,, Mg, -+, Mg,

to

n
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(as partial sums of the W’s) is

n t
WO (1, 71, -+ 1 7n) = Hexp{/ In K,y (C_ 1 50y (m1)) ds} (t_y =0), (3.14)
=0

ti—1

and the joint LST of )N(t(;l), )?t(f), - ,)N(t(:) (as partial sums of the W)’s) is

ty

h® (g, 71, - - ,Tn):Hexp{—a c_lnf(s)(mds} (t_y=0), (3.15)
1=0 t

-1

where r; = >}, 7 and 7; > 0 (0 < i < n). It follows by independence of (x(n
and {Mg:}, (3.14) and (3.15), that the joint LST of X, X4, , -+, Xy, is

h(T()?Tl? e 7TTL) :h(l)(TOa T1y" aTn) h(2) (7-077-17 o 77'”)
n t
= Hexp{/ (—aC’, In f(s) (7”1) + In Km (C, In f(s) (7“1)) dS}
1=0 ti—1

(3.16)
The joint LST of Xy, X¢,, -+, Xy, is easily seen that the right-hand side of (3.16),
leading to the conclusion that {X;} is an increasing C-additive process that is
identical in law to {X,}. O

We conclude the section by briefly discussing a different representation for an
increasing C-additve process without drift in terms of a Poisson random measure.
Let p € Z(Ry) with characteristic couple (0,v), with v bounded. Consider the

measure Leb @ vQ on (Ry. x RY™, B(R) @ B(R)0>), where
vQ(B) = / Q(z,B)v(dx) B € B(R,)0>),
(0,00)

It is clear that vQ is finite, which implies that Leb ® vQ is o-finite, since the
Lebesgue measure Leb is o-finite on R;. By Proposition 19.4, p. 122, in [10],
there exists a Poisson random measure M on Ry X REE’OO) with mean measure

Leb @ vQ. Letting f € E(Ry;(0,1]) and g:(s,y) = y(—In f(s))Ijp,¢(s), we have

—InEB(e ™) = /Ot (/R /R[o,om(l - e_Tgt(s’y))Q(m,dy)u(dx)) ds).

Now,

/[0 )(1 — e*Tgt(Sx)'))Q(xvdy) —1— E(e*TZw(*ln f(S))) — 1 — e 2C- 1nf(-<)("')’
RIO:%°

(the second equation above following from (1.7)), which implies that the marginal
LST ¢o,(7) of the process {Mg;} takes the form (2.5). Using the same argument
as in the proof of Theorem 3.2, we conclude that { Mg} is an increasing C-additive
process. We also note that the representation (3.13) obtained for an increasing
C-additive process with drift and bounded v remains valid in this context.
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4. C-additive Processes and Poisson Random Measures
(v Unbounded)

In this section, we discuss the case where p € Z(R) has an unbounded Lévy
measure v. As in the preceding section, we assume first that p has no drift
coefficient (a = 0).

We assume the existence of the following processes on some probability space
(Q,F,P):

- An R, -valued subordinator {Y;*} such that £(V;")) = u. {V,"} is
necessarily a pure-jump Lévy process (see [2], Chapter 7, Sectlon 7).

- A collection of independent copies of a C-CB process ({Z ( Vx> 0,4 >
1).

- The collections ({Zy(f) (t)},z > 0,4 > 1) and {Yt(”)}) are mutually inde-
pendent.

For every € > 0, let {Yt(” )’6} be the pure-jump process where the jumps are

those of {Y;"} with sizes greater than e. Let v be the trace of v in (e, 00), i.c.,
for any Borel set Bin R, v (B) = v(BN(e,00)). Condition (2.7) implies that ¢, =
ve((€,00)) < co. We define the probability law o.(A) = ¢, 'v(A). The process
{Y(” ), “} is compound Poisson whose jump times {7} form a Poisson process
with rate ¢. and whose jump sizes {DS} (independent of {7%}) have common
distribution o, (see, for e.g, Cinlar (2011), p. 365). Moreover, independence of
({Zg(gi) (t)},z > 0,i > 1) and {Yt(”)}) implies that for any € > 0, ({Zg(f)(t)},x >
0,i > 1) and {v,*)“1) are independent. For i > 1 and t > 0, we define Y(t) =
Zg; (t), with Y;*(0) = D§. By definition and the above assumptions, ({Y;(t},7 > 1)
constitutes a sequence of iid C-CB processes. Therefore (see Section 3 and (3.3)),
M = {(Tf,Y£(- ))} is a Poisson random measure on R, X ]R[ ) with mean

7 K3
measure ¢, Leb ® 7€, where

Ce

/Q Yo (dz) = 1/( QA B(ae) (B € B(R,)0)),

We will make use repeatedly of the following easily established fact without
further reference. For any nonneagitve measurable function k(z) over Ry

/0  b(@)o(ds) = 1 /( M),

Theorem 4.1. Let u € Z(Ry) with characteristic couple (0,v), v unbounded. Let
[ € ER;(0,1]) and gi(s,y) = y(—In f(5))Ij0,41(s). Then the finite dimensional
distributions of any increasing C-additve process {X:} generated by the pair (i, f)
(on some probability space) arise as the limit of the finite dimensional distributions
of {M¢g;} as €] 0, where (c¢f. Theorem 3.2)

ZYk —In f(T) Lj0,0(T)- (4.1)
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Proof. We proceed as in the proof of Theorem 3.5. For 0 <ty <t < --- < t, < o0,
let W) = Mgy, — Mgy, , and W) = Xy, — Xy, ,, 1 <1 < n (with Wy = Mg,

and W) = Xy,). By Theorem 3.1 (equation (3.5)), Lemma 3.3, and (2.5), the joint
LST of M€gs,, Mgs,, -+, MCg;, (as partial sums of the W;’s) is

(exp{ ZT[M gtl}) = lﬁlexp{fcE /ttl (1 — b0, (C_ 1nf(s)(7’l))) dS}a
1=0 -1

where r; = Zk:l Tg, t—1 =0, and 7, > 0 (0 <1 < n). Since

1= gy (7) = 1 /( (e wla),

it follows that

(exp{ ZT[M gtl}) = llﬁ)exp{/till /(6’00)(1 _ 0o 1nf(-€)(7”1))l,(dm) ds}.

Therefore,

leiﬁ)lE(exp{ ZTZM gtl})
/751 / _emzC- lnf(s)(rl))y(dx) ds}
ti—1 /(0 OO)

{/ In K (C 1 45 (1)) dS}-

ti—1

{1

It is clear (again by (2.5) and Lemma 3.4) that the right-hand side of the second
equation above is the joint LST of Xy , X4, , -+, Xy, . O

The following result is a direct consequence of Theorem 4.1 and (3.6), where
the notation w-lim is taken to mean weak limit.

Corollary 4.2. Under the assumptions of Theorem 4.1, the C-additive process
{X:} admits the representation

X, L w- lim Z )) ©c D§) Ii0.4(T5), (4.2)

We conclude with an extension of Theorem 3.5. The proof is omitted.

Corollary 4.3. Let p € Z(Ry) with characteristic couple (a,v), where a > 0
and v is unbounded. Denote by uy the component of u generated by (0,v). Let
f e ERL;(0,1]) and let {X:} be an increasing C-additive process generated by
(1, f) on some probability space (2, F, P). There exists an increasing C-additive
process {X;} on some probability space (Q, Fo, Po) that is identical in law to {X;}
and such that

X, =X+ w—liﬁ)lMegt, (4.3)

where
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(i) ({Mcg:},e > 0) (as defiend by (4.1)) is the family of increasing C-additive
processes on (Qo, Fo, Po), generated by (p1, f);
(i) {)Z't(a)} is an increasing C-additve process on (Qo, Fo, Py), generated by the
pair (0a, f);
(iii) {)?t(a)} and the familiy ({M¢€g:}, e > 0) are independent.

5. Convergence Results

In this section, we present some weak convergence results for increasing C-
additive processes generated by the pair (u, f), when f is restricted to a subclass
of E(R 5 (0, 1)).

We denote by & (Ry;(0,1]) the subclass of £(R4; (0, 1]) that consist of all the
functions f(s) = exp{— [; k(y) dy}, where k(y) is positive and continuous over
[0, 00), with lim,_, k(y) = Iy for some I € (0, 00).

(

Lemma 5.1. Let p € Z(Ry) and f € E1(Ry;(0,1]). The following assertions are
equivalent for any T > 0:

(i) limy oo f0t|ln K (1)(C_in (5)(7)) | ds < oo;

.. T (1/U(v)) In K, (v) .
(i) Jo zorramyamy v < o

where A(v) is the A-function in (1.3) and f~' is the inverse function of f.

Proof. We have by assumption fooo k(y) dy = oo, which implies that the function f
is stricltly decreasing, which implies that —In f(s) = fos k(y) dy is strictly increas-
ing with lim,_,o+ —In f(s) = 0 and lim, ;o —In f(s) = co. Let v = C_y, () (7)
for 0 < s < 7. By the first equation of (1.4), v is a strictly decreasing function of
s. The second part of (1.4) implies A(v) = f(s)A(7) or s = f~1(A(v)/A(7)) (as f

is invertible). Since % = —ﬁ, it follows that

- 1/U(v)
ko f~1(A(v)/A(r))

If s =0, then v = Cy(7) = 7 and if s = ¢, then v = C_y, §+)(7). Therefore, the
change of variable v = C_y, #(5)(7), along with the first part of (1.6), implies

ds = dv.

t T
(1/U(v)) In K, (v)
In K, (7)(C_ 1 r(s)(T) d5:/ dv. (5.1)
R R I M = = v 7 o)
This concludes the proof, since by (1.1) lim; o C_ 1, ¢4y (7) = 0. O

Define In™ 2 = max(0, In ). We denote by Ilog (R4) the subset of distributions
€ Z(Ry) that satisfy the condition [;* In" zp(dr) < oo.
Theorem 5.2. Let u € ZI(Ry), with characteristic couple (a,v) and

f €& (R4;(0,1]). Let {X:} be an increasing C-additive process generated by the
pair (w, f). The following assertions are equivalent.

(i) The probability distribution po: of X¢ converges to a probability measure
to,00 € Z(R4).
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(ii) /OooanrxV(dx) < 0o0.

(i) p € Ilog(RJr).
Moreover, the LST ¢0.00(T) of po,0o admits the representations

[ U WK s
ln(bO’OO(T)_/O ko f~1(A(v)/A(r ))d _/0 1 KH(Cflnf(s)( ))d (5.2)

Proof. Since lim,_,o f~(A(v)/A(T)) = +00, we have by (1.6) that
(1/U(v)) In K, (v) 1 In K, (v)
ko [ (A)/A(m) ~ 1y Uw)

Therefore, by Lemma 5.1 and the continuity theorem (Theorem 3.1, Appendix A,
n [12]), X; converges in distribution as t — oo if and only if

T InK,(v) < oo
/0 Ty dv < 0. (5.4)

Using the exact same proof as that of Corollary 3.21, p. 67, in [5], one can
show that (5.4) is equivalent to (ii), thus proving (i) < (ii). By Proposition 3.2,
Appendix A, in [12], (5.4) holds if and only if (iii) is true. This shows (i) < (iii).
Since o, € Z(Ry) for every ¢ > 0, its limit o oo must be infinitely divisible. The
representation (5.2) follows from (5.1) and the continuity theorem (cited above)

as the function exp{ fo %m dv} is clearly right-continuous at 0. O

as v — 0T, (5.3)

Corollary 5.3. Let u be a C-stable distribution with exponent v € (0,1] and let
f €& (R4;(0,1]). Let {X:} be an increasing C-additive process generated by the
pair (i, f). Then p € Ilog(R+) and the limiting probability distribution po o of
{X:} is C-stable with exponent vy and its LST admits the representation

In o e (7 :—A/ Fw) dy) A (A>0) (5.5)

Proof. By (2.17), K,,(17) = —AA(7)" for some A > 0. A simple integration exercise
shows that (5.4). and thus (5.2), hold, which implies that p € Ilog(R+). Equation
(5.5) follows from (2.18) and the contnuity theorem. The representation (5.5) also
implies that 119, is C-stable with exponent v (again by (2.17)). O

Next, we discuss the case where f is in the subest of & (R.; (0,1]) consisting of
the functions f.(s) = a®, a € (0,1). In this case, ko(z) =1y, = —Ina.

We first recall a notion of self-decomposability for distributions on R intro-
duced in [4] (see also Hansen [3]).

A probability distribution x on Ry, with LST ¢(7), is said to be C-self-
decomposable if for every t > 0, there exists a probability distribution k;, with
LST ¢¢(7), such that

¢(1) = (Cu(7))de(7) (7= 0). (5.6)

Both k and k; are necessarily infinitely divisible.
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A distribution on Ry is C-selfdecomposable if and only if its LST ¢(7) admits
the representation

mor) = [ IHUQS(O?S’) = [ maCa 0. 6D
where ¢o(7) is the LST of a distribution in Z(R;) such that
' Ingg(v)
/0 ") dv < . (5.8)

Theorem 5.2 restricted to the f, functions states as follows.

Theorem 5.4. Let p € Z(Ry), with characteristic couple (a,v) and o € (0,1).

Let {Xt[a]} be an increasing C-additive process generated by the pair (i, fo). The
following assertions are equivalent.

(i) The probability distribution ugcfg of Xt[a] converges to a probability measure
Mgoflo € I(Ry).

ii - n" xv(de 0.
i) [ m*andn) <
(iii) ,ueIlOg(RJr).

Moreover, the limiting distribution u&yc])o is C-selfdecomposable with an LST of the
form (5.6) with ¢o(7) = K;, /™ (r).

Proof. Only the last statement requires a proof. But then (5.2) can be rewritten as
(5.7) with ¢o(1) = K,:l/ 1no‘(T). Since p € Z(Ry), ¢o is the LST of a distribution
in Z(R,) that satisfies (5.8). O

The converse holds.

Theorem 5.5. Any C-selfdecomposable distribution arises as a the limiting dis-
trubution of an increasing C-additive process defined over some probability space.

Proof. Let i be a C-selfdecomposable distribution and f(s) = e *. By The-
orem 2.3, there exists an increasing C-additive process {X;} defined on some
probability space (2, F,P) and generated by the pair (u, f). Since In¢, (1) =
fst In K,,(Cy(7))dy, (0 < s <t < 00), it easily follows by Theorem 5.2 that equa-
tions (5.2) and (5.7) are identical, which in turn implies ¢g o (7) is the LST of
L (I

We conclude with a new characterization of C-stable distributions.

Corollary 5.6. Let u € Z(Ry) and o € (0,1). The following statements are
equivalent.

(i) (i)p is C-stable with exponent v € (0, 1].

(i) (i) p € Ilog(R+) and the increasing C-additive process {Xt[a]} generated

by the pair (i, fo) has a limiting distribution u[a] with an LST satisfying

0,00

gl (r) = clnK,(r)  (c=—1/(yIna)). (5.9)
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Proof. (i) = (ii) is a straightforward application of Corolary 5.3 with f = f,.
Assuming (ii), ,u[a] is C-selfdecomposable by Theorem 5.4. By (5.6), with ¢o(7) =

0,00
K;l/lna(r), we have,
ol (1) = =L [ KL () dt = /T InKu(v) (5.10)
n =—— n = | /7 .
0,00\ = 10 o uieT ne Jo Uv v

where the second equation follows the change of variable v = C¢(7), (1.1) and
(1.4). Combining (5.9) and (5.10) leads to the differential equation

d 1 mK,(v -1 A(v)

LK) = — e K

“av " w(v) Ina U(v) Ina A(v) B KL (),

whose solution is In K,,(7) = —AA(7)” with A = —InK,(1) and v = —1/(clna).
It is easily seen that the LST K, (7) satisfies (2.16), which implies that x is C-stable
with exponent 7 (with the latter being forcibly in (0, 1]). O
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