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Abstract. It is shown that any infinitely divisible distribution µ on R+ gives

rise to a class of increasing additive processes we call C-additive processes,
where C is a continuous semigroup of cumulant generating functions. The
marginal and increment distributions of these pocesses are characterized in
terms of their Lévy measure and their drift coefficient. Integral represen-

tations of C-additive processes in terms of a Poisson random measure are
obtained. The limiting behavior (as t → ∞) of two subclasses of C-additive
processes leads to new characterizations of C-selfdecomposable and C-stable
distributions on R+.

1. Introduction

A real (vector)-valued stochastic process {Xt} (with X0 = 0) is said to be
additive if it has independent increments and it is stochastically continuous with
càdlàg paths. The most important subclasses of additive processes are Lévy pro-
cesses (see, for e.g., Sato [10]), self-similar processes (Sato [9]), semi-selfsimilar
processes (Maejima and Sato [6]) and semi-Lévy processes (Sato [11]). Another
noteworthy subclass consists of the additive processes that arise as stochastic in-
tegrals with a Lévy process integrator and a determinsitic integrand (see Maejima
and Ueda [7], Rocha-Arteaga and Sato [8], and references therein). Among the
many important properties of an additive process, we cite the infinite divisibilty
of its increment and marginal distributions and its Lévy-Itô decomposition.

The purpose of this article is to introduce a class of increasing additive pro-
cesses taking values on R+. More specifically, we will show that any infinitely
divisible distribution µ on R+ generates a class of increasing additive processes
we call C-additive processes, where C is a continuous semigroup of cumulant gen-
erating functions (see definitions below). These processes will be indexed by a
Lebesgue measurable function on R+ taking values in (0, 1]. Their increment
and marginal distributions are characterized in terms of their Lévy measures and
their drift coefficients. Integral representations of C-additive processes in terms
of a Poisson random measure are obtained. Finally, the limiting behavior (as
t → ∞) of two subclasses of C-additive processes leads to new characterizations
of C-selfdecomposability and C-stability of distributions on R+ (introduced by van
Harn and Steutel [4]).
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2 NADJIB BOUZAR

The paper is organized as follows. In Section 2, we parallel the treatment
for the real-valued case in [8] (see their Section 2.1) to introduce the class of
increasing C-additive processes. We first establish the existence of a collection of
infinitely divisible distributions on R+ (Theorem 2.2). We proceed to show that
these distributions arise as the marignals of increasing C-additive processes, whose
existence is proven in Theorem 2.4. We obtain formulas for the drift coefficient and
the Lévy measure of the said marginal distributions (Theorem 2.8) and we describe
a subclass of increasing C additive processes generated by a C-stable distribution
(Theorem 2.13). We end the section with several several examples. In Section 3,
we give an integral representation of an increasing C-additive process in terms of a
Poisson random measure under the assumption that the generating measure µ has
a bounded Lévy measure ν and no drift coefficient (Theorem 3.2). The case when
ν is unbounded is studied in Section 4, where it is shown that an increasing C
additive process arises as a weak limit of increasing C-additive processes generated
by driftless measures with finite Lévy measures (Theorem 4.1). Section 5 is devoted
to limit theorems. We show that for a subclass of increasing C-additive processes,
a weak limit (as t → ∞) exists if and only if the generating measure µ, or its
Lévy measure, has a finite log-moment (Theorem 5.2). This result leads to new
characterizations of C-selfdecompoable and C-stable distributions (Theorems 5.4
and 5.5 and Corollary 5.6).

We devote the remainder of the section to recalling a few basic facts needed in
the sequel.

The collection of infinitely divisible distributions on R+ will be denoted by
I(R+). For a ≥ 0, δa will designate the point mass probability measure at a.
We denote the probability law of a random variable X by L(X) and we use the

notation X
d
= Y to mean L(X) = L(Y ).

We recall that a distribution µ on R+ is characterized by its Laplace-Stieltjes
transform (LST, hereafter) ϕ(τ) defined by

ϕ(τ) =

∫ ∞

0

e−τxµ(dx).

Moreover, µ ∈ I(R+) if and only if ϕ(τ) admits the representation

ϕ(τ) = e−C(τ),

where C(τ) has a completely monotone derivative on (0,∞) (with C(0) = 0). The
function C(τ) is referred to as the cumulant generating function (cgf, hereafter)
of µ.

Let C = (Ct; t ≥ 0) be a continuous composition semigroup of cgf’s with the
following properties:

C0(τ) = τ ; Cs ◦ Ct(τ) = Cs+t(τ), (s, t ≥ 0); lim
t↓0

Ct(τ) = τ ; lim
t→∞

Ct(τ) = 0.

(1.1)
for every τ ≥ 0. We have for every t ≥ 0, Ct(τ) = − ln ηt(τ), where ηt is the
LST of a distribution in I(R+). Following Steutel and van Harn [12], Chapter 5,
Section 8, we will assume without loss of generality that C ′

1(0) = e−1 (up to a
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ADDITIVE PROCESSES 3

linear change of the time scale). Several examples of such subgroups are given in
Section 2.

The infinitesimal generator U of the semigroup C is defined by

U(τ) = lim
t↓0

(Ct(τ)− τ)/t (τ ≥ 0), (1.2a)

and satisfies U(0) = 0 and U(τ) < 0 for τ > 0. U admits the representation

U(τ) = a1τ + bτ2 −
∫ ∞

0

(e−τx − 1 + τx/(1 + x2)) dm(x), (1.2b)

where a1 is a real number, b ≥ 0, and m(dx) is a Lévy spectral function such that∫ y

0
x2 dm(x) < ∞ for every y > 0. The assumption C ′

t(0) = e−1 forces a1 = −1.
Moreover, the following non-explosion condition holds:�����

∫ y

0+
U(x)−1 dx

����� = ∞ for sufficiently small y > 0.

We note that U admits representations that are different from (1.2b), but equiva-
lent to it (see for example Li [5], Chapter 3).

A function related to U , called the A-function, is defined by

A(τ) = exp
{∫ 1

τ

(U(x))−1 dx
}
, (τ ≥ 0; A(0) = 0). (1.3)

The functions U(τ) and A(τ) satisfy the following identities for t, τ ≥ 0:

∂

∂t
Ct(τ) = U(Ct(τ)) = U(τ)C ′

t(τ) and A(Ct(τ)) = e−tA(τ)). (1.4)

We deduce from the first equation in (1.4) and the continuity of the semigroup
C (see (1.1)) that

Ct(τ) = τ +

∫ t

0

U(Cs(τ)) ds. (1.5)

We note the addtional properties

Ct(τ) < τ (t, τ > 0) and lim
τ↓0

U(τ)

τ
= −1 (1.6)

Let Z = ({Zx(t)}, x ≥ 0) be a collection of independent copies of an R+-valued
subcritical continuous-time branching process driven by the semigroup C with ini-
tial condition Zx(0) = x. The subcriticality of {Zx(t)} follows from the assumption
C ′

1(0) = e−1. We will refer to {Zx(t)} as a C-CB process. Let {Qt(x, dy)} be the
infinitely divisible transition semigroup of probability measures associated with
{Zx(t)}. The LST of Zx(t) is∫ ∞

0

e−τyQt(x, dy) = e−xCt(τ) = ηt(τ)
x. (1.7)

Moreover,

E(Zx(t)) =

∫ ∞

0

yQt(x, dy) = xe−t (1.8)

We refer the reader to [5], Chapter 3, for more on C-CB processes.
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4 NADJIB BOUZAR

The operator α⊙C that acts on R+-valued random variables introduced in [4]
(see also [12], Chapter V, Section 8) is defined as follows:

α⊙C X = ZX(t) (t = − lnα), (1.9)

where 0 < α ≤ 1 and X is an R+-valued random variable independent of the
collection Z of C-CB processes described above. We note that the process {ZX(t)}
of (1.9) is itself a C-CB process starting with X individuals, i.e., ZX(0) = X.

In [4], the operator ⊙C was used in lieu of the standard multiplication to study
stability equations for R+-valued processes with stationary independent incre-
ments. Bouzar [1] used ⊙C in similar fashion to introduce a family of discrete
time, R+-valued first order autoregressive processes.

Let ϕX(τ) be the LST of an R+-valued random variable X. Then the LST
ϕα⊙CX(τ) of α⊙C X is easily shown to be

ϕα⊙CX(τ) = ϕX(Ct(τ)) (t = − lnα; τ ≥ 0). (1.10)

The following lemma gathers some basic properties of the operator ⊙C .

Lemma 1.1. Let α, β ∈ (0, 1] and X and Y be R+-valued random variables.
Then

(i) 1⊙C X
d
= X.

(ii) α⊙C (β ⊙C X)
d
= (αβ)⊙C X.

(iii) If X and Y are independent, then α⊙C (X + Y )
d
= α⊙C X + α⊙C Y .

(iv) If X and Y are independent, then so are α⊙C X and β ⊙C Y .

(v) If {Xn} is a sequence of R+-valued random variables such that Xn
d→ X,

then α⊙C Xn
d→ α⊙C X.

(vi) α⊙C X
d→ 0 if α ↓ 0.

Proof. The proof of ((i)-(iii), (v) and (vi) follows starightforwardly from the as-
sumptions on the semigroup C and equation (1.10). For (iv), we note α ⊙C X =
Z ′
X(− lnα) and β ⊙C Y = Z ′′

Y (− lnβ), where Z ′ = ({Z ′
x(t)}, x ≥ 0) and Z ′′ =

({Z ′′
y (t)}, y ≥ 0) are independent collections of C-CB processes. It follows that if

X and Y are independent, then so are Z ′
X(− lnα) and Z ′′

Y (− lnβ). □

2. A Class of Increasing Additive Processes

We start out by introducing a stochastic integral for step functions (see (2.2)
below) taking values in the interval (0, 1].

We recall that a subordinator is an increasing Lévy process that starts at 0.
Let µ ∈ I(R+) with LST Kµ(τ). We assume the existence of the following

processes on some probability space (Ω,F , P ):

- An R+-valued subordinator {Y (µ)
t } such that L(Y (µ)

1 ) = µ;
- A collection of independent copies of a C-CB process (see Section 1)(

{Z(j)
x (t)}, x ≥ 0, 1 ≤ j ≤ n

)

- The collections
(
{Z(j)

x (t)}, x ≥ 0, 1 ≤ j ≤ n
)
and {Y (µ)

t }) are mutually
independent.
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ADDITIVE PROCESSES 5

Let f(s) be a step function defined on an interval [t0, t1] ⊂ [0,∞), i.e.,

f(s) =
n∑

j=1

ajI[sj−1,sj)(s) (2.1)

for some subdivision t0 = so < s1 < · · · < sn = t1 of the interval [t0, t1], and some
aj ∈ (0, 1], j = 1, · · · , n.

Let Dj = Y
(µ)
sj − Y

(µ)
sj−1 , 1 ≤ j ≤ n and define the R+-valued random variable Y

by

Y =
n∑

j=1

Z
(j)
Dj

(− ln aj) =
n∑

j=1

aj ⊙C (Y (µ)
sj − Y (µ)

sj−1
). (2.2)

Importantly, we note that if f(s) of (2.1) admits a representation along a different
subdivision of [t0, t1], say, f(s) =

∑m
i=1 biI[ui−1,ui)(s), then

n∑
j=1

aj ⊙C (Y (µ)
sj − Y (µ)

sj−1
)

d
=

m∑
i=1

bi ⊙C (Y (µ)
ui

− Y (µ)
ui−1

).

This can be seen by noting that Y can be decomposed along the refined subintervals{
[ui−1 ∨ sj−1, ui ∧ sj)

}
(over which aj = bi). The conclusion follows by using the

fact that {Y (µ)
t } has independent stationary increments and Lemma 1.1-(iv).

Proposition 2.1. The random variable Y of (2.2) has an infintely divisible dis-
tribution on R+ with LST

ϕt0,t1(τ) = exp
{∫ t1

t0

lnKµ

(
C− ln f(s)(τ)

)
ds
}
. (2.3)

Proof. Since {Y (µ)
t } is a Lévy process, [Kµ(τ)]

t is the LST of Y
(µ)
s+t − Y

(µ)
s , for

s, t ≥ 0. Let ∆j = sj − sj−1, 1 ≤ j ≤ n. By assumption (and also Lemma
1.1-(iv)), the summands in (2.2) are independent. In compatibiltiy with (1.1), we
adopt the convention C∞(τ) = 0. It follows by (1.10) that the LST of Y is

ϕY (τ) =
n∏

j=1

[Kµ

(
C− ln aj (τ)

)
]∆j = exp

{ n∑
j=1

∆j lnKµ

(
C− ln aj (τ)

)}
. (2.4)

Since
n∑

j=1

∆j lnKµ

(
C− ln aj (τ) =

∫ t1

t0

lnKµ

(
C− ln f(s)(τ)

)
ds,

we have shown that ϕt0,t1(τ) of (2.3) satisfies ϕt0,t1(τ) = ϕY (τ), which implies
that ϕt0,t1(τ) is an LST. It is clear that the latter is independent of the choice of
the subdivision {s0, s1, · · · , sn} of [t0, t1]. Let now k be a positive integer and µk

be a probability measure on R+ such that µ = µ∗k
k . The LST of µk is [Kµ(τ)]

1/k.

It is easily verified that {Y (µ)
t/k } is a subordinator with L(Y (µ)

1/k ) = µk. Letting

Yk =
n∑

j=1

aj ⊙C (Y
(µ)
sj/k

− Y
(µ)
sj−1/k

).
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6 NADJIB BOUZAR

we see (using the argument above) that the LST of Yk is

ϕYk
(τ) = exp

{∫ t1

t0

ln[Kµ

(
C− ln f(s)(τ)

)
]1/k ds

}
.

Since ϕYk
(τ) = [ϕt0,t1(τ)]

1/k, we conclude that ϕt0,t1i(τ) is the LST of a distribu-
tion in I(R+). □

We next extend Proposition 2.1 to (0, 1]-valued Lebesgue measurable function
on [t0, t1], The result is to be seen as the analogue of Proposition 29 established
by Rocha-Arteaga and Sato (2003) for real valued bounded measurable functions.

Theorem 2.2. Let µ ∈ I(R+) with LST Kµ(τ) and let f(s) be a Lebesgue mea-
surable function defined on the interval [t0, t1] ⊂ [0,∞) and taking values in (0, 1].
Then the function ϕt0,t1(τ) of (2.3) is the LST of an infinitely divisible distribution
µt0,t1 on R+.

Proof. Let f be as assumed above and let fn(s) be a sequence of step functions
on [t0, t1] such that 0 < fn(s) ≤ 1 and f(s) = limn→∞ fn(s) almost everywhere
(a.e.) with respect to the Lebesgue measure. Let

ϕn(τ) = exp
{∫ t1

t0

lnKµ

(
C− ln fn(s)(τ)

)
ds
}
. (n ≥ 1).

The continuity of Ct(τ) as a function of t implies

lim
n→∞

lnKµ

(
C− ln fn(s)(τ)

)
= lnKµ

(
C− ln f(s)(τ)

)
(a.e. [s] ; τ ∈ [0,∞)),

Since Kµ(τ) is infinitely divisible, there exists a completely monotone function
ρ(u) on (0,∞) such that lnKµ(τ) = −

∫ τ

0
ρ(u) du (Theorem 4.2. p.90, in [12]).

We have by (1.6) that C− ln fn(s)(τ) < τ for every n ≥ 1, which implies that

| lnKµ(C− ln fn(s)(τ))| ≤
∫ τ

0
ρ(u) du. It follows by the Lebesgue dominated conver-

gence theorem applied to the sequence {lnKµ

(
C− ln fn(s)(τ)

)
} that

lim
n→∞

lnϕn(τ) =

∫ t1

t0

lnKµ

(
C− ln f(s)(τ)

)
ds (τ ≥ 0).

Therefore, limn→∞ ϕn(τ) = ϕt0,t1(τ), where ϕt0,t1(τ) is the function in (2.3). Next,
we note that limτ↓0 lnKµ

(
C− ln f(s)(τ)

)
= 0 (as limτ↓0 C− ln f(s)(τ) = 0). Apply-

ing again the Lebesgue dominated convergence theorem as we did above (with
the difference that now the index is τ , which we restrict to [0, 1] without loss of
generality), we have limτ↓0 ϕt0,t1(τ) = 1. We conclude by the continuity theorem
(Theorem 3.1, Appendix A, in [12]) that ϕt0,t1(τ) is an LST (that is independent
of the choice of the limiting sequence of the step functions {fn} ). As the limit of
infinitely divisible LST’s, ϕt0,t1(τ) is itself infinitely divisible (Proposition 2.2, p.
79, in [12]). □

In view of the proof of Proposition 2.1, one could adopt the notation

Y =

∫ t1

t0

f(s)⊙C dY (µ)
s ,
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ADDITIVE PROCESSES 7

where Y and f are as in (2.1)-(2.2). This notation could be extended to (0, 1]-
valued lebesgue measurable functions through a weak limit argument (as seen
in the proof of Theorem 2.2). Rather, we propose in Sections 3 and 4 some
representations in terms of random variables via Poisson random measures.

We denote by E(R+; (0, 1]) the collection of Lebesgue measurable functions f(s)
on R+ taking values in (0, 1].

Let µ ∈ I(R+) and let f ∈ E(R+; (0, 1]). Applying Theorem 2.2 to the restric-
tion of f to the interval [s, t], 0 ≤ s < t < ∞, we can assume the existence of a
probability measure µs,t ∈ on R+ that is infinitely divisible and with LST

ϕs,t(τ) =

∫ ∞

0

e−τy µs,t(dy) = exp
{∫ t

s

lnKµ

(
C− ln f(y)(τ)

)
dy

}
. (2.5)

Proposition 2.3. The family of probability measures µs,t, 0 ≤ s ≤ t < ∞ of (2.5)
satisfies the following properties:

(i) µs,t ∗ µt,u = µs,u for 0 ≤ s ≤ t ≤ u < ∞.
(ii) µs,s = δ0.

(iii) µs,t
d→ δ0 as s ↑ t.

(iv) µs,t
d→ δ0 as s ↓ t.

Proof. (i) follows from the fact that ϕs,u(τ) = ϕs,t(τ)ϕt,u(τ), 0 ≤ s ≤ t ≤
u < ∞; (ii) from the fact that ϕs,s(τ) = 1; (iii) (resp., (iv)) from the fact that
limh↑0 ϕs−h,s(τ) = 1 (resp., limh↓0 ϕs,s+h(τ) = 1). □

A stochastic process {Xt} is said to be additive in law (we refer to [10]) if

(1) it has independent increments;
(2) X0 = 0;
(3) it is stochastically continuous, i.e., for any ϵ > 0, lims→t P (|Xs − Xt| >

ϵ) = 0.

{Xt} is an additive process if it is additive in law and is

(4) càdlàg, i.e., is almost surely right-continuous with left limits.

Two stochastic processes {Xt} and {Yt} are said to be modifications of each
other if P (Xt = Yt) = 1 for every t ≥ 0. They are said to be identical in law if
they have the same finite dimensional distributions.

Theorem 2.4. There is an increasing additive process {Xt} on some probability
space (Ω,F , P ) such that for any 0 ≤ s < t < ∞, Xt − Xs admits µs,t of (2.5)
as its distribution. This process is unique in the sense that if {X ′

t} is an additive

process such that X ′
t

d
= Xt for every t ≥ 0, then {Xt} and {X ′

t} are identical in
law.

Proof. By Proposition 2.3 above and Theorem 9.7- (ii), page 51, in [10], there exits
an additive process in law {Yt} such that for any 0 ≤ s < t < ∞, Yt − Ys has µs,t

of (2.5) as its distribution. Since µs,t has support on R+, {Yt} is increasing. By
Theorem 11.5, p. 63, in [10], {Yt} admits a modification {Xt} that is an additive
process. It is easily seen that µs,t remains the distribution of Xt − Xs and thus
{Xt} is also increasing. The second statement of the theorem follows from part
(iii) of Theorem 9.7-(iii), p. 51, in [10]. □
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8 NADJIB BOUZAR

Definition 2.5. We will refer to the process {Xt} of Theorem 2.4 as the in-
creasing C-additive process generated by the pair (µ, f) with µ ∈ I(R+) and
f ∈ E(R+; (0, 1]).

We recall that if µ ∈ I(R+), then its LST ϕ(τ) admits the canonical represen-
tation (Chapter 10 in [10])

ϕ(τ) = exp
{
−aτ −

∫

(0,∞)

(1− e−τx)ν(dx)
}

(τ ≥ 0), (2.6)

for some a ≥ 0 and a measure ν on the Borel sets in (0,∞) satisfying
∫

(0,∞)

(1 ∧ x)ν(dx) < ∞. (2.7)

The measure ν is called the Lévy measure of µ and a its drift coefficient. We
will refer to the pair (a, ν) in (2.6) as the characteristic couple of µ ∈ I(R+).

Next, we characterize the marginal distributions of a C-additive process in terms
of their Lévy measures and their drift coefficients.

First, we need to establsih two preliminary results.
Recalling that ηt(τ) = e−Ct(τ) is the LST of the probability measure of Qt(1, dy)

in I(R+) (see (1.7)) , we will denote the characteristic couple of the latter by
(bt, νt), i.e.,

Ct(τ) = btτ +

∫

(0,∞)

(1− e−τx)νt(dx). (2.8)

We will also denote by {Q0
t (x, ·)}t≥0 the semigroup obtained by restricting the

semigroup {Qt(x, ·)}t≥0 to (0,∞) (see the paragraph preceding equation (1.7)) .

Lemma 2.6. Let X be an R+-valued random variable with distribution µ ∈ I(R+),
generated by the pair (a, ν). Let µα be the distribution of α ⊙C X for α ∈ (0, 1).

Then µα ∈ I(R+) and has characteristic couple (abt, ν
(µα)
t ) with t = − lnα and

ν
(µα)
t (B) = aνt(B) +

∫

(0,∞)

Q0
t (x,B)ν(dx), (B ∈ B(0,∞)). (2.9)

Proof. The infinite divisibility of the distribution of α ⊙C X follows from (1.10)
and Proposition 3.5, Chapter III, in [12]. We have by (1.10) and (2.6)

− lnϕα⊙CX(τ) = − lnϕ(Ct(τ)) = aCt(τ)+

∫

(0,∞)

(1−e−xCt(τ))ν(dx) (t = − lnα),

or, by (1.7) and (2.8),

− lnϕα⊙CX(τ) = abtτ + a

∫

(0,∞)

(1− e−τx)νt(dx)

+

∫

(0,∞)

(∫

(0,∞)

(1− e−τy))Q0
t (x, dy)

)
ν(dx).

Therefore,

− lnϕα⊙CX(τ) = abtτ +

∫

(0,∞)

(1− e−xτ )ν
(µα)
t (dx),
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ADDITIVE PROCESSES 9

with ν
(µα)
t (dx) of (2.9). It remains to show that

∫
(0,∞)

(1∧x)ν
(µα)
t (dx) < ∞. Since

νt is a Lévy measure, it is enough to prove that
∫
(0,∞)

(1 ∧ y)m1(dy) < ∞, where

m1(dy) =
∫
(0,∞)

Q0
t (x, dy)ν(dx). Indeed,

∫

(0,∞)

(1 ∧ y)m1(dy) =

∫

0,∞

(∫

(0,∞)

(1 ∧ y)Q0
t (x, dy)

)
ν(dx).

By (1.8),
∫
(0,∞)

(1 ∧ y)Q0
t (x, dy) = E(Zx(t) ∧ 1) ≤ x ∧ 1, which implies

∫

(0,∞)

(1 ∧ y)m1(dy) ≤
∫

(0,∞)

(1 ∧ x)ν(dx) < ∞

since ν is a Lévy measure. □

We recall the notion of factoring for an addtive process (we refer to [11]).
Let {Xt} be an R+-valued additive process in law. A pair ({ρs}s≥0, σ) is called

a factoring of {Xt} if

(1) σ is a measure on R+ such that σ([0, t]) < ∞ (local boundedness).
(2) σ is diffuse (atomless)
(3) ρs ∈ I(R+) for all s ≥ 0
(4) lnϕρs(τ) is measurable in s for each t ≥ 0 (ϕρs being the LST of ρs).

(5)
��∫ t

0
lnϕρs(τ)σ(ds)

�� < ∞ for all t, τ ≥ 0.
(6) The LST ϕ0,t of Xt admits the following representation for all t ≥ 0

ϕ0,t(τ) = exp
{∫ t

0

lnϕρs
(τ)σ(ds)

}
(t ≥ 0). (2.10)

Proposition 2.7. Let {Xt} be an increasing C-additive process generated by the
pair (µ, f) for some µ ∈ I(R+) and some f ∈ E(R+; (0, 1]). Let ρs be the prob-
ability distribution with LST Kµ(C− ln f(s)(τ)), s ≥ 0, and let σ(dx) = dx be the
Lebesgue measure on R+. Then ({ρs}, σ) is a factoring of {Xt}.

Proof. The proof follows easily from (2.5). We omit the details. □

We denote by B0(R+) the class of Borel sets B in R+ such that infx∈B > 0.

Theorem 2.8. Let {Xt} be an increasing C-additive process generated by the pair
(µ, f) for some µ ∈ I(R+) and some f ∈ E(R+; (0, 1]). Let ({ρs}, σ) be the fac-
toring of {Xt}, as described in Proposition 2.7, and let (a, ν) be the characteristic

couple of µ. Then, µ0,t = L(Xt) has characteristic couple (c
(X)
t , ν

(X)
t ):

c
(X)
t = a

∫ t

0

b− ln f(y) dy and ν
(X)
t (B) =

∫ t

0

ν
(ρ)
− ln f(y)(B) dy, (2.11)

for any B ∈ B0(R+), where

ν(ρ)u (B) = aνu(B) +

∫

(0,∞)

Q0
u(x,B)ν(dx) (2.12)

and (bt, νt) is as in (2.8).
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Proof. First, we note that Kµ(C− ln f(y)(τ)) can be seen as the LST of f(y)⊙C Y ,
where Y is a random variable with µ as its distribution (and Kµ(τ) as its LST).

By Lemma 2.6 and (2.9), ρy has characteristic couple (ab− ln f(y), ν
(ρ)
− ln f(y)) with

ν
(ρ)
u as in (2.12). By Lemma 2.7 (item (7)) in [11], the functions ab− ln f(y) and

ν
(ρ)
− ln f(y)(B) (B ∈ B0(R+)) are measurable in y. Equation (2.11) then follows from

Lemma 2.7 (item (9)) in [11]. □
We note that if µ in Theorem 2.8 has no drift coefficient ( a = 0), then the

increasing C-addtive process generated by (µ, f) is driftless. On the other hand, if
the Lévy measure ν of µ is 0, i.e., µ = δa, a > 0, then we have the following result.

Corollary 2.9. Let a > 0 and let {X(a)
t } be the increasing C-additive process

generated by (δa, f) for some f ∈ E(R+; (0, 1]). Then the probability distribution

µ
(a)
0,t of X

(a)
t has characteristic couple (c

(a)
t , ν

(a)
t ):

c
(a)
t = a

∫ t

0

b− ln f(y) dy and ν
(a)
t (B) = a

∫ t

0

ν− ln f(y)(B) dy, (2.13)

for any B ∈ B0(R+).

Formulas for the drift coefficients and the Lévy measures of the distributions of
the increments of an increasing C-additive process are easily deduced from (2.11).
We omit the details.

C-additive processes satisfy a sort of stability property by scalar multiplication.

Proposition 2.10. Let {Xt} be an increasing C-additive process generated by the
pair (µ, f) for some µ ∈ I(R+) and some f ∈ E(R+; (0, 1]). Let c ∈ (0, 1). Then
the increasing C-additive process {Xt(c)} generated by the pair (µ, cf) satisfies

Xt(c)
d
= c⊙CXt for every t > 0. The drift coefficient of Xt(c) is c

X(c)
t = b− ln cc

(X)
t

and its Lévy measure is

ν
X(c)
t (B) = c

(X)
t ν− ln c(B) +

∫

(0,∞)

Q0
− ln c(x,B)ν

(X)
t (dx) (B ∈ B0(R+)).

Proof. Let 0 < s < t. We have by Lemma 1.1, c⊙C Xt = c⊙C (Xs +Xt −Xs)
d
=

c ⊙C Xs + c ⊙C (Xt − Xs). Independence and a simple LST argument based on

Theorem 2.4 and (1.10) establishes that Xt(c)
d
= c ⊙C Xt. The formulas for the

drift and the Lévy measure of Xt(c) follow from Lemma 2.6 and Theorem 2.8. □
The Lévy-Itô decomposition (Chapter 4, Section 19, in [10]) applies to C-

additive processes as follows.

Theorem 2.11. Let µ ∈ I(R+) with characteristic couple (a, ν) and
f ∈ E(R+; (0, 1]). Let {Xt} be an increasing C-additive process generated by the

pair (µ, f) and with characteristic couple (c
(X)
t , ν

(X)
t ) given by (2.11). Then there

exists a Poisson random measure M (µ,f) on (0,∞) × (0,∞) with mean measure

�ν((0, t]×B) = ν
(X)
t (B), B ∈ B(R+), such that

Xt = c
(X)
t +

∫ ∫

(0,t]×R+

xM (µ,f)(ds, dx). (2.14)

250252



ADDITIVE PROCESSES 11

Proof. Since Xt is infinitely divisible, its Lévy measure ν
(X)
t satisfies the property∫

(0.∞)
(x ∧ 1)ν

(X)
t (dx) < ∞ (see 2.7), which implies

∫
(0,1]

xν
(X)
t (dx) < ∞. Then

both the existence M (µ,f) and equation (4.3) follow from Theorem 19.3, p. 121,
in [10]. □

The Poisson random measure M (µ,f) in (2.14) regulates the number of jumps
and their sizes of the process {Xt} (see [10], Theorem 19.2, p. 120). We note that
for c ∈ (0, 1) and f ∈ E(R+; (0, 1]), the Poisson random measure M (µ,cf) has mean
measure

�ν(c)((0, t]×B) = c
(X)
t ν− ln c(B) +

∫

(0,∞)

Q0
− ln c(x,B) ν

(X)
t (dx) (B ∈ B(R+)).

Remarks 2.12. (i) The probability measure µt0,t1 of Theorem 2.2 and its LST of
(2.3), with f(s) = e−s, arose in the context of C-CB processes with immigration
(or C-CBI processes). In this case, the function − lnKµ(τ) is the immigration
mechanism of the C-CBI process and the infinitesimal generator U(τ) (see (1.2a-
b) is the branching mechanism of the process. The immigration process is the
incresing C-additive process generated by the pair (µ, f). We refer the reader to
[5], Chapter 3, Section 3.3 for more details.

(ii) The following condition on the infinitesimal generator U of the semigroup
C = (Ct : t ≥ 0) was introduced in [5] (Condition 3.6, p. 60):

U(τ) < 0 for τ ≥ θ and

∫ ∞

θ

|U(y)|−1 dy < ∞, (2.15)

for some constant θ > 0. We note that in our case the first part of (2.15) is true
(see Section 1). By Theorem 3.10, p. 61, in [5], the condition (2.15) holds if and
only if the drift coefficient bt in (2.8) statisfies bt = 0 for every t > 0. Therefore,
if one assumes (2.15), then by Theorem 2.8, any C-additive process is a pure jump

process as in this case c
(X)
t = 0 (by 2.11).

The next result identifies a class of increasing C-additive processes with C-stable
marginal distributions. We recall a few basic facts about these distributions (see
[4]).

An R+-valued random variable X (or its distribution), with LST ϕ(τ), is said
to have a C-stable distribution if for every t > 0, there exists b > 0 such that

ϕ(τ) = ϕ(Ct(τ))
b (τ ≥ 0). (2.16)

If µ is a C-stable distribution on R+, then µ ∈ I(R+) and its LST ϕ(τ) admits
the canonical representation

ϕ(τ) = exp{−λA(τ)γ} (τ ≥ 0), (2.17)

where γ ∈ (0, 1] and λ > 0 (with A(τ) of (1.3)). The constant γ is called the
exponent of the C-stable distribution.

Theorem 2.13. Assume that µ is a C-stable distribution with exponent γ ∈ (0, 1]
and LST (2.17) for some λ > 0. Let {Xt} be the increasing C-additive process
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generated by the pair (µ, f) for some f ∈ E(R+; (0, 1]). Then the distributions of
Xt (t > 0) and Xt −Xs (0 ≤ s < t < ∞) are C-stable with LST

ϕs,t(τ) = exp
{
−λ

(∫ t

s

f(y)γ dy
)
A(τ)γ

}
(τ ≥ 0). (2.18)

Proof. By assumption, Theorem 2.4, (2.17) and (1.4), we have

lnKµ(C− ln f(s)(τ)) = −λ
[
A(C− ln f(s)(τ))

]γ
= −λf(s)γA(τ)γ (τ ≥ 0),

which, along with (2.5), implies (2.18). □

We conclude the section by applying the main results above to a family of

semigroups of cgf’s which we denote by C(β,d) =
{
(C

(β,d)
t (τ), t ≥ 0) : β ∈ (0, 1], d ≥

0
}
. It is a modified version of an example in [5] (Chapter 3 , page 62).
For β ∈ (0, 1] and d ≥ 0, let

C
(β,d)
t (τ) = e−tτ

[
1 + d(1− e−βt)τβ

]−1/β
(t, τ ≥ 0). (2.19)

If d = 0, then C
(β,0)
t (τ) = e−tτ which implies C(β,0) = C(1,0) for any β ∈ (0, 1].

In this case, we have α⊙C(1,0) X
d
= αX (see (1.9)) and thus α⊙C(1,0) X corresponds

to the ordinary multiplication (see also [4]).
Assuming d > 0 and letting λt = [d(1− e−βt)]−1 (t > 0), we have

C
(β,d)
t (τ) = e−tτ

( λt

λt + τβ

)1/β

and
∂

∂τ
C

(β,d)
t (τ) = e−t

( λt

λt + τβ

)1+1/β

.

(2.20)

Noting that the function ϕ1(τ)=
(

λt

λt+τβ

)1+1/β

is the LST of a compound-gamma

distribution, where the primary distribution is gamma with parameters λt and
1 + 1/β and the secondary distribution is the standard stable distribution with

exponent β and LST e−τβ

, it follows that C
(β,d)
t (τ) has a completely monotone

derivative and hence is a cgf. It is easily verified that C(β,d) forms a continuous
semigroup of cgf’s.

We denote by {Q(β,d)
t (x, dy)} the transition semigroup associated with C(β,d)

(see (1.7)). Straightforward calculations show that for any β ∈ (0, 1] and d ≥ 0,
∂
∂τC

(β,d)
t (τ)

���
τ=0

= e−t and

U (β,d)(τ) = −τ(1 + dτβ), A(β,d)(τ) =
[ (1 + d)τβ

1 + dτβ

]1/β
. (2.21)

The characteristic couple of the probability measure Q
(1,0)
t (1, dy) is (e−t, 0).

The transition semigroup associated with C(1,0) is Q
(1,0)
t (x, dy) = δxe−t(dy). If µ ∈

I(R+) has characteristic couple (a, ν) and f ∈ E(R+; (0, 1]), then the increasing
C(1,0)-additive process {Xt} generated by (µ, f) has characeristics (see (2.11))

c
(X)
t = a

∫ t

0

f(y) dy and ν
(X)
t (B) =

∫ t

0

ν
(
[f(y)]−1B

)
dy, (2.22)
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for any B ∈ B0(R+). Moreover, if µ is C(1,0)-stable (or stable in the standard
sense, since A(1,0)(τ) = τ) with LST ϕ(τ) = e−λτγ

, λ > 0 (see (2.17)), then {Xt}
has a stable marginal distribution with LST ϕ0,t(τ) = exp

{
−λ

(∫ t

0
f(y)γ dy

)
τγ

}
.

For d > 0, the compound-gamma distribution with LST ϕ1(τ) above has prob-
ability density function (pdf)

h(x) =
βλ

1+1/β
t

Γ(1/β)

∫ ∞

0

gy(x)y
1/βe−λty dy, (2.23)

where gy(x) is the pdf of the stable distribution on R+ with LST e−yτβ

. It follows

that the characteristic couple
(
b
(β,d)
t , ν

(β,d)
t

)
of Q

(β,d)
t (1, dy) is given by

b
(β,d)
t = exp

{
−e−t

∫

(0,∞)

h(x)

x
dx

}
and ν

(β,d)
t (B) = e−t

∫

B

h(x)

x
dx. (2.24)

When β = 1 and d > 0, additional formulas can be stated more explicitly.
In this case, λt = d(1 − e−t)−1, h(x) is the pdf of a gamma distribution with
parameters (λt, 2) and

b
(1,d)
t = e−λte

−t

and ν
(1,d)
t (B) = λ2

t e
−t

∫

B

e−λty dy. (2.25)

The transition semigroup Q
(1,d)
t (x, dy) is the Poisson (λtxe

−t) compounding of the
exponential distribution with parameter λt. Let µ ∈ I(R+) with characteristic
couple (a, ν) f ∈ E(R+; (0, 1]) (f(y) < 1), and {Xt} the C(1,d)-additive process

{Xt} generated by (µ, f). Define k(y) = f(y)
1−f(y) . The characeristics of {Xt} (see

(2.11)) are shown to be

c
(X)
t = a

∫ t

0

e−k(y)/d dy and ν
(X)
t (dy) =

(∫ t

0

H(y, z) dz
)
dy, (2.26)

where

H(y, z) = k(z)(1 + k(z))e−
1+k(z)

d y
( a

d2
+

∞∑
n=1

nyn−1

(n!)2d2n

∫

(0,∞)

xne−
k(z)
d x ν(dx)

)
.

(2.27)
By (2.21), we can write A(1,d)(τ) = − lnϕ1(τ), where ϕ1(τ) = exp{− 1+d

d (1 −
G(τ)} and G(τ) is the LST of an exponential distribution with parameter 1/d.
Therefore, any C(1,d)-stable distribution with exponent γ ∈ (0, 1] is a compound
distribution, where the primary distribution is a C(1,0)-stable (or standard stable)
distribution with exponent γ and the secondary distribution is the compound
Poisson distribution with LST ϕ1(τ).

Assume µ is C(1,d)-stable and f ∈ E(R+; (0, 1]). Then the increasing C(1,d)-
additive process {Xt} generated by the pair (µ, f) has a C(1,d)-stable marginal

distribution with LST ϕ0,t(τ) = exp
{
−λ

(∫ t

0
f(y)γ dy

)
(− lnϕ1(τ))

γ
}
, λ > 0.

253255



14 NADJIB BOUZAR

3. C-additive Processes and Poisson Random Measures
(ν Finite)

We assume first that µ ∈ I(R+) has characteristic couple (0, ν) with a finite
Lévy measure ν and no drift coefficient (a = 0). Letting c = ν((0,∞)), we rewrite
ν = cσ, where σ a probability distribution on R+ such that σ({0}) = 0. We note
that the LST of µ is Kµ(τ) = exp{−c(1− ϕσ(τ))}, where ϕσ is the LST of σ.

We assume the existence of the following processes on some probability space
(Ω,F , P ):

- An R+-valued subordinator {Y (µ)
t } such that L(Y (µ)

1 ) = µ. {Y (µ)
t } is nec-

essarily a compound Poisson process with intensity c, jump times {Ti}i≥1,
and (iid) jump sizes {Di} with common distribution σ (see Çinlar [2],
Chapter VII, Section 7).

- A collection of independent copies of a C-CB process
(
{Z(i)

x (t)}, x ≥ 0, i ≥
1
)
.

- The collections
(
{Z(i)

x (t)}, x ≥ 0, i ≥ 1
)
and {Y (µ)

t }) are mutually inde-
pendent.

For i ≥ 1 and t ≥ 0, we define Yi(t) = Z
(i)
Di

(t), with Yi(0) = Di. By definition
and the above assumptions, ({Yi(t}, i ≥ 1) constitutes a sequence of iid C-CB
processes (see Section 1).

Since the processes {Z(i)
x (t)}, i ≥ 1, are Markovian, their common transition

semigroup of probabilities {Qt(x, dy)} (see (1.7)) extends uniquely to a probability

measure Q(x,B) on (R[0,∞)
+ ,B(R+)

[0,∞)) for every x ≥ 0. Moreover, for every

B ∈ B(R+)
[0,∞), Q(x,B) is measurable as a function of x on R+ (see for example

[10], Chapter 2, Section 10).

If B is a rectangle in B(R+)
[0,∞) of the form B = {y ∈ R[0,∞)

+ : y(ti) ∈ Bi, i =
0, 1, · · · , n}, where the Bi’s are Borel sets in R+ and 0 = t0 < t1 < · · · < tn, then

Q(x,B) =

∫

Bn

Qtn−tn−1(xn−1, dxn)

∫

Bn−1

Qtn−1−tn−2(xn−2, dxn−1) · · ·

· · ·
∫

B1

Qt1−t0(x0, dx1)

∫

B0

δx(dx0).

(3.1)

The processes {Yi(t)}, i ≥ 1, have a random initial position (namely Di). Their
common probability law on B(R+)

[0,∞), denoted by π, is given by (cf. Remark
10.8, p. 58, in [10])

π(B) =

∫ ∞

0

Q(x,B)σ(dx) (B ∈ B(R+)
[0,∞)). (3.2)

The sequence {Ti} forms a Poisson random measure on R+ with mean measure
cLeb. Since the sequences {Yi(·)} and {Ti} are independent, it follows by Corollary
3.5, p. 265, in Çinlar (2011) that the sequence {(Ti, Yi(·))} is a Poisson random

measure M on R+ × R[0,∞)
+ with mean measure cLeb ⊗ π (Leb is for Lebesgue

measure), with π of (3.2). For a measurable function h on R+×R[0,∞)
+ , the random
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variable Mh =
∫
R+×R[0,∞)

+

h(s,y)M(ds, dy) on Ω,F , P ) takes the form

Mh =
∞∑
k=1

h(Tk, Yk(·)). (3.3)

Theorem 3.1. Let f(s) be a Lebesgue measurable function defined on the interval

[t0, t1] ⊂ [0,∞) and taking values in (0, 1]. Define the function g on R+ × R[0,∞)
+

by g(s,y) = y(− ln f(s))I[t0,t1](s). Then the random variable Mg is given by

Mg =
∞∑
k=1

Yk(− ln f(Tk))I[t0,t1](Tk), (3.4)

and has LST

ϕ(τ) = exp
{
−c

∫ t1

t0

(1− ϕσ

(
C− ln f(s)(τ)

)
ds
}
. (3.5)

Proof. First we note that g is measurable on R+×R[0,∞)
+ as the projection operator

prt(y) = y(t), t ≥ 0, from R[0,∞)
+ to R+ is B(R+)

[0,∞)-measurable. Equation (3.4)
follows straightforwardly from the definitions of the random measure M and (3.3),
with h(s,y) = g(s,y). The LST ϕ(τ) of Mg satisfies

ϕ(τ) = E(e−M(τg)) = exp
{
−c

∫

R+×R[0,∞)
+

(
1− e−τg(s,y)

)
Leb⊗ π(ds, dy)

}

= exp
{
−c

∫ t1

t0

(∫

R[0,∞)
+

(
1− e−τy(− ln f(s))

)
π(dy)

)}
.

We have
∫
R[0,∞)

+

(
1 − e−τy(− ln f(s))

)
π(dy) = E

(
1 − e−τY1(− ln f(s))

)
, as π is the

probability law of {Y1(t)} (cf. Proposition 10.6, p. 57, in [10]). Since the latter

is a C-CB process with Y1(0) = D1, it follows (see (1.9)) that Y1(− ln f(s)))
d
=

f(s) ⊙C D1 and thus, by (1.10), E
(
1 − e−τY1(− ln f(s))

)
= 1 − ϕσ(C− ln f(s)(τ))

(recall σ is the common distribution of the Di’s). Equation (3.5) ensues. □

Noting that by definition Yi(t)
d
= e−t ⊙C Di for every i ≥ 1 and t ≥ 0, we have

the following representation of Mg of (3.4):

Mg
d
=

∞∑
k=1

(
f(Tk))⊙C Dk

)
I[t0,t1](Tk), (3.6)

where the operation A⊙C X is extended to a random element A taking values in
[0, 1] (and cumulative distribution function FA(a)) via its LST:

ϕA⊙CX(τ) =

∫ 1

0

ϕa⊙CX(τ)FA(da). (3.7)

Theorem 3.2. Let µ ∈ I(R+) with characteristic couple (0, cσ), where c and σ
are as defined above. Let the sequences {Di}, {Ti}, and {Yi(·)}, are as defined
above. Let f ∈ E(R+; (0, 1]) and gt(s,y) = y(− ln f(s))I[0,t](s). Then

Xt = Mgt =
∞∑
k=1

Yk(− ln f(Tk))I[0,t](Tk), (3.8)
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is an increasing C-additive process generated by (µ, f). Moreover, the characteristic

couple of L(Xt) is (0, ν
(X)
t ), with

ν
(X)
t (B) = c

∫ t

0

∫

(0,∞)

Q0
− ln f(s)(x,B)σ(dx) ds, B ∈ B0(R+).

Proof. Clearly, X0 = 0. Since Mgt =
∫
R+×R[0,∞)

+
y(− ln f(s))I[0,t](s)M(ds, dy),

the càdlàg property of {Xt} follows. By (2.5), the LST of µs,t = L(Xt − Xs),
0 ≤ s < t < ∞, is

ϕs,t(τ) = exp
{
−c

∫ t

s

(1− ϕσ

(
C− ln f(s)(τ)

)
ds
}
.

Therefore, µs,t satisfies the properties (i)-(iv) in Proposition 2.3. It follows by (i)
and an induction argument that for 0 ≤ t0 < t1 < · · · < tn, the probability law
mt0,··· ,tn = L(Xt0 , · · · , Xtn) satisfies

mt0,··· ,tn(B0 ×B1 ×Bn) =

∫ ∞

0

· · ·
∫ ∞

0

µ0,t0(dy0)IB0(y0)µt0,t1(dy1)IB1(y0 + y1)

× · · ·µtn−1,tn(dyn)IBn(y0 + · · ·+ yn),

(3.9)
where B0, · · · , Bn are Borel sets in R+. A standard argument (see, for e.g., the
proof of (ii) ⇒ (i) of Theorem 9.7, p. 51, in [10]) implies

E(
[
exp

{
−

n∑
i=1

τi(Xti −Xti−1)
}]

=

∫ ∞

0

· · ·
∫ ∞

0

exp
{
−

n∑
i=1

τiyi

}
µt0,t1(dy1) · · ·µtn−1,tn(dyn)

=
n∏

i=1

∫ ∞

0

e−τiyiµti−1,ti(dyi),

(3.10)

which implies that the increments Xt1 − Xt0 , · · · , Xtn − Xtn−1 are independent.
Stochastic continuity of {Xt} is insured by (iii) and (iv) of Proposition 2.3. The

formula for ν
(X)
t follows from (2.11)-(2.12). □

The following corollary is a direct consequence of Theorem 3.2 and (3.6).

Corollary 3.3. Under the assumptions of Theorem 3.2, the increasing C-additive
process {Xt} of (3.8) admits the representation

Xt = Mgt
d
=

∞∑
k=1

(
f(Tk))⊙C Dk

)
I[0,t](Tk), (3.11)

Next, we give a decomposition theorem for increasing C-addiive processes. We
state first a useful result whose proof is straightforward.

Lemma 3.4. Let W0,W1, · · · ,Wn (n ≥ 1) be a sequence of independent R+-
valued random variables and Sj, 0 ≤ j ≤ n, be the sequence of its partial sums
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(with S0 = W0). Then the joint LST, h(τ0, τ1, · · · , τn), of (S0, S1, · · · , Sn) is given
by

h(τ0, τ1, · · · , τn) =
n∏

l=0

hl(rl), (3.12)

where hl is the LST of Wl, τl ≥ 0, and rl =
∑n

k=l τk, 0 ≤ l ≤ n.

Theorem 3.5. Let µ ∈ I(R+) with characteristic couple (a, ν), where a ≥ 0, and
ν is bounded (thus ν = cσ, c ≥ 0, where σ is a probability measure on R+). Let
f ∈ E(R+; (0, 1]) and let {Xt} be an increasing C-additive process generated by
(µ, f) on some probability space (Ω,F , P ). There exists an increasing C-additive
process { �Xt} on some probability space (Ω0,F0, P0) that is identical in law to {Xt}
and such that

�Xt = �X(a)
t +Mgt, (3.13)

where

(i) {Mgt} is an increasing C-additive process generated by (µ1, f), where µ1 ∈
I(R+) has characteristic couple (0, cσ), M is the Poisson random measure
of (3.3) on (Ω0,F0, P0) with mean measure cLeb⊗π, with π of (3.2), and
gt(s,y) = y(− ln f(s))I[0,t](s) (cf. Theorem 3.2);

(ii) { �X(a)
t } is an increasing C-additve process (Ω0,F0, P0), generated by the

pair (δa, f) (cf. Corollary 2.9);

(iii) { �X(a)
t } and {Mgt} are independent.

Moreover, the characteristic couple (c
(X)
t , ν

(X)
t ) of L(Xt) is c

(X)
t =

a
∫ t

0
b− ln f(s) ds and

ν
(X)
t (B) = a

∫ t

0

ν− ln f(s)(B) ds+ c

∫ t

0

∫

(0,∞)

Q0
− ln f(s)(x,B)σ(dx) ds.

Proof. Let µ1 ∈ I(R+) with characteristic couple (0, cσ) and consider a probability
space (Ω1,F1, P1), where the following random elements are defined:

- {Y (µ1)
t } is a R+-valued compound Poisson process with intensity c, jump

times {Ti}i≥1, and (iid) jump sizes {Di} with common distribution σ;

-
(
{Z(i)

x (t)}, x ≥ 0, i ≥ 1
)
is a collection of independent copies of a C-CB

process;

- {Y (µ1)
t },

(
{Z(i)

x (t)}, x ≥ 0, i ≥ 1
)
and { �X(a)

t } are mutually independent.

Let M be the Poisson random measure defined by (3.3) with mean measure
cLeb ⊗ π and with π of (3.2). By Theorem 3.2, {Mgt} of (3.8) is an increasing
C-additive process generated by the pair (µ1, f). Moreover, extending (Ω1,F1, P1)

to (Ω0,F0, P0), we construct an increasing C-additve process { �X(a)
t }, generated by

the pair (δa, f) that is independent of {Mgt}. The process { �Xt} defined by (3.13)
is clearly an increasing C-additive process. For 0 ≤ t0 < t1 < · · · < tn < ∞, let

Wl = Mgtl − Mgtl−1
and W ′

l = �X(a)
tl

− �X(a)
tl−1

, 1 ≤ l ≤ n (with W0 = Mgt0 and

W ′
0 = �X(a)

t0 ). By (2.5) and Lemma 3.4, the joint LST of Mgt0 ,Mgt1 , · · · ,Mgtn
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(as partial sums of the Wl’s) is

h(1)(τ0, τ1, · · · , τn) =
n∏

l=0

exp
{∫ tl

tl−1

lnKµ1

(
C− ln f(s)(rl)

)
ds
}

(t−1 = 0), (3.14)

and the joint LST of �X(a)
t0 , �X(a)

t1 , · · · , �X(a)
tn (as partial sums of the W ′

l ’s) is

h(2)(τ0, τ1, · · · , τn) =
n∏

l=0

exp
{
−a

∫ tl

tl−1

C− ln f(s)(rl) ds
}

(t−1 = 0), (3.15)

where rl =
∑n

k=l τk and τi ≥ 0 (0 ≤ i ≤ n). It follows by independence of { �X(a)
t }

and {Mgt}, (3.14) and (3.15), that the joint LST of �Xt0 ,
�Xt1 , · · · , �Xtn is

h(τ0, τ1, · · · , τn) =h(1)(τ0, τ1, · · · , τn) h(2)(τ0, τ1, · · · , τn)

=

n∏
l=0

exp
{∫ tl

tl−1

(
−aC− ln f(s)(rl) + lnKµ1

(
C− ln f(s)(rl)

)
ds
}
.

(3.16)
The joint LST of Xt0 , Xt1 , · · · , Xtn is easily seen that the right-hand side of (3.16),

leading to the conclusion that { �Xt} is an increasing C-additive process that is
identical in law to {Xt}. □

We conclude the section by briefly discussing a different representation for an
increasing C-additve process without drift in terms of a Poisson random measure.
Let µ ∈ I(R+) with characteristic couple (0, ν), with ν bounded. Consider the

measure Leb⊗ νQ on
(
R+ × R[0,∞)

+ ,B(R+)⊗ B(R+)
[0,∞)

)
, where

νQ(B) =

∫

(0,∞)

Q(x,B)ν(dx) B ∈ B(R+)
[0,∞).

It is clear that νQ is finite, which implies that Leb ⊗ νQ is σ-finite, since the
Lebesgue measure Leb is σ-finite on R+. By Proposition 19.4, p. 122, in [10],

there exists a Poisson random measure M on R+ × R[0,∞)
+ with mean measure

Leb⊗ νQ. Letting f ∈ E(R+; (0, 1]) and gt(s,y) = y(− ln f(s))I[0,t](s), we have

− lnE
(
e−τMgt

)
=

∫ t

0

(∫

R+

∫

R[0,∞)
+

(1− e−τgt(s,y))Q(x, dy)ν(dx)
)
ds
)
.

Now,
∫

R[0,∞)
+

(1− e−τgt(s,y))Q(x, dy) = 1− E
(
e−τZx(− ln f(s))

)
= 1− e−xC− ln f(s)(τ),

(the second equation above following from (1.7)), which implies that the marginal
LST ϕ0,t(τ) of the process {Mgt} takes the form (2.5). Using the same argument
as in the proof of Theorem 3.2, we conclude that {Mgt} is an increasing C-additive
process. We also note that the representation (3.13) obtained for an increasing
C-additive process with drift and bounded ν remains valid in this context.
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4. C-additive Processes and Poisson Random Measures
(ν Unbounded)

In this section, we discuss the case where µ ∈ I(R+) has an unbounded Lévy
measure ν. As in the preceding section, we assume first that µ has no drift
coefficient (a = 0).

We assume the existence of the following processes on some probability space
(Ω,F , P ):

- An R+-valued subordinator {Y (µ)
t } such that L(Y (µ)

1 ) = µ. {Y (µ)
t } is

necessarily a pure-jump Lévy process (see [2], Chapter 7, Section 7).

- A collection of independent copies of a C-CB process
(
{Z(i)

x (t)}, x ≥ 0, i ≥
1
)
.

- The collections
(
{Z(i)

x (t)}, x ≥ 0, i ≥ 1
)
and {Y (µ)

t }) are mutually inde-
pendent.

For every ϵ > 0, let {Y (µ),ϵ
t } be the pure-jump process where the jumps are

those of {Y (µ)
t } with sizes greater than ϵ. Let νϵ be the trace of ν in (ϵ,∞), i.e.,

for any Borel set B in R+, νϵ(B) = ν(B∩(ϵ,∞)). Condition (2.7) implies that cϵ =
νϵ((ϵ,∞)) < ∞. We define the probability law σϵ(A) = c−1

ϵ νϵ(A). The process

{Y (µ),ϵ
t } is compound Poisson whose jump times {T ϵ

n} form a Poisson process
with rate cϵ and whose jump sizes {Dϵ

n} (independent of {T ϵ
n}) have common

distribution σϵ (see, for e.g, Çinlar (2011), p. 365). Moreover, independence of(
{Z(i)

x (t)}, x ≥ 0, i ≥ 1
)
and {Y (µ)

t }) implies that for any ϵ > 0,
(
{Z(i)

x (t)}, x ≥
0, i ≥ 1

)
and {Y (µ),ϵ

t }) are independent. For i ≥ 1 and t ≥ 0, we define Y ϵ
i (t) =

Z
(i)
Dϵ

i
(t), with Y ϵ

i (0) = Dϵ
i . By definition and the above assumptions, ({Y ϵ

i (t}, i ≥ 1)

constitutes a sequence of iid C-CB processes. Therefore (see Section 3 and (3.3)),

M ϵ = {(T ϵ
i , Y

ϵ
i (·))} is a Poisson random measure on R+ × R[0,∞)

+ with mean
measure cϵ Leb⊗ πϵ, where

πϵ(B) =

∫ ∞

0

Q(x,B)σϵ(dx) =
1

cϵ

∫

(ϵ,∞)

Q(x,B)ν(dx) (B ∈ B(R+)
[0,∞)).

We will make use repeatedly of the following easily established fact without
further reference. For any nonneagitve measurable function k(x) over R+

∫ ∞

0

k(x)σϵ(dx) = c−1
ϵ

∫

(ϵ,∞)

k(x)ν(dx).

Theorem 4.1. Let µ ∈ I(R+) with characteristic couple (0, ν), ν unbounded. Let
f ∈ E(R+; (0, 1]) and gt(s,y) = y(− ln f(s))I[0,t](s). Then the finite dimensional
distributions of any increasing C-additve process {Xt} generated by the pair (µ, f)
(on some probability space) arise as the limit of the finite dimensional distributions
of {M ϵgt} as ϵ ↓ 0, where (cf. Theorem 3.2)

M ϵgt =
∞∑
k=1

Y ϵ
k (− ln f(T ϵ

k))I[0,t](T
ϵ
k). (4.1)
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Proof. We proceed as in the proof of Theorem 3.5. For 0 ≤ t0 < t1 < · · · < tn < ∞,
let Wl = M ϵgtl − M ϵgtl−1

and W ′
l = Xtl − Xtl−1

, 1 ≤ l ≤ n (with W0 = M ϵgt0
and W ′

0 = Xt0). By Theorem 3.1 (equation (3.5)), Lemma 3.3, and (2.5), the joint
LST of M ϵgt0 ,M

ϵgt1 , · · · ,M ϵgtn (as partial sums of the Wl’s) is

E
(
exp

{
−

n∑
l=0

τlM
ϵgtl

})
=

n∏
l=0

exp
{
−cϵ

∫ t1

tl−1

(
1− ϕσϵ

(
C− ln f(s)(rl)

))
ds
}
,

where rl =
∑n

k=l τk, t−1 = 0, and τl ≥ 0 (0 ≤ l ≤ n). Since

1− ϕσϵ(τ) = c−1
ϵ

∫

(ϵ,∞)

(1− e−τx)ν(dx),

it follows that

E
(
exp

{
−

n∑
l=0

τlM
ϵgtl

})
=

n∏
l=0

exp
{
−
∫ t1

tl−1

∫

(ϵ,∞)

(
1− e−xC− ln f(s)(rl)

)
ν(dx) ds

}
.

Therefore,

lim
ϵ↓0

E
(
exp

{
−

n∑
l=0

τlM
ϵgtl

})

=

n∏
l=0

exp
{
−
∫ t1

tl−1

∫

(0,∞)

(
1− e−xC− ln f(s)(rl)

)
ν(dx) ds

}

=

n∏
l=0

exp
{∫ t1

tl−1

lnKµ(C− ln f(s)(rl)) ds
}
.

It is clear (again by (2.5) and Lemma 3.4) that the right-hand side of the second
equation above is the joint LST of Xt0 , Xt1 , · · · , Xtn . □

The following result is a direct consequence of Theorem 4.1 and (3.6), where
the notation w- lim is taken to mean weak limit.

Corollary 4.2. Under the assumptions of Theorem 4.1, the C-additive process
{Xt} admits the representation

Xt
d
= w- lim

ϵ↓0

∞∑
k=1

(
f(T ϵ

k))⊙C Dϵ
k

)
I[0,t](T

ϵ
k), (4.2)

We conclude with an extension of Theorem 3.5. The proof is omitted.

Corollary 4.3. Let µ ∈ I(R+) with characteristic couple (a, ν), where a ≥ 0
and ν is unbounded. Denote by µ1 the component of µ generated by (0, ν). Let
f ∈ E(R+; (0, 1]) and let {Xt} be an increasing C-additive process generated by
(µ, f) on some probability space (Ω,F , P ). There exists an increasing C-additive
process { �Xt} on some probability space (Ω0,F0, P0) that is identical in law to {Xt}
and such that

�Xt = �X(a)
t + w- lim

ϵ↓0
M ϵgt, (4.3)

where
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(i) ({M ϵgt}, ϵ > 0) (as defiend by (4.1)) is the family of increasing C-additive
processes on (Ω0,F0, P0), generated by (µ1, f);

(ii) { �X(a)
t } is an increasing C-additve process on (Ω0,F0, P0), generated by the

pair (δa, f);

(iii) { �X(a)
t } and the familiy ({M ϵgt}, ϵ > 0) are independent.

5. Convergence Results

In this section, we present some weak convergence results for increasing C-
additive processes generated by the pair (µ, f), when f is restricted to a subclass
of E(R+; (0, 1]).

We denote by E1(R+; (0, 1]) the subclass of E(R+; (0, 1]) that consist of all the
functions f(s) = exp

{
−
∫ s

0
k(y) dy

}
, where k(y) is positive and continuous over

[0,∞), with limy→∞ k(y) = lf for some lf ∈ (0,∞).

Lemma 5.1. Let µ ∈ I(R+) and f ∈ E1(R+; (0, 1]). The following assertions are
equivalent for any τ > 0:

(i) limt→∞
∫ t

0

��lnKµ(τ)
(
C− ln f(s)(τ)

)�� ds < ∞;

(ii)
∫ τ

0
(1/U(v)) lnKµ(v)
k◦f−1(A(v)/A(τ)) dv < ∞;

where A(v) is the A-function in (1.3) and f−1 is the inverse function of f .

Proof. We have by assumption
∫∞
0

k(y) dy = ∞, which implies that the function f

is stricltly decreasing, which implies that − ln f(s) =
∫ s

0
k(y) dy is strictly increas-

ing with lims→0+ − ln f(s) = 0 and lims→∞ − ln f(s) = ∞. Let v = C− ln f(s)(τ)
for 0 ≤ s ≤ τ . By the first equation of (1.4), v is a strictly decreasing function of
s. The second part of (1.4) implies A(v) = f(s)A(τ) or s = f−1(A(v)/A(τ)) (as f

is invertible). Since A′(v)
A(v) = − 1

U(v) , it follows that

ds = − 1/U(v)

k ◦ f−1(A(v)/A(τ))
dv.

If s = 0, then v = C0(τ) = τ and if s = t, then v = C− ln f(t)(τ). Therefore, the
change of variable v = C− ln f(s)(τ), along with the first part of (1.6), implies

∫ t

0

��lnKµ(τ)
(
C− ln f(s)(τ)

)�� ds =
∫ τ

C− ln f(t)(τ)

(1/U(v)) lnKµ(v)

k ◦ f−1(A(v)/A(τ))
dv. (5.1)

This concludes the proof, since by (1.1) limt→∞ C− ln f(t)(τ) = 0. □

Define ln+ x = max(0, lnx). We denote by Ilog(R+) the subset of distributions

µ ∈ I(R+) that satisfy the condition
∫∞
0

ln+ xµ(dx) < ∞.

Theorem 5.2. Let µ ∈ I(R+), with characteristic couple (a, ν) and
f ∈ E1(R+; (0, 1]). Let {Xt} be an increasing C-additive process generated by the
pair (µ, f). The following assertions are equivalent.

(i) The probability distribution µ0,t of Xt converges to a probability measure
µ0,∞ ∈ I(R+).
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(ii)

∫ ∞

0

ln+ x ν(dx) < ∞.

(iii) µ ∈ Ilog(R+).

Moreover, the LST ϕ0,∞(τ) of µ0,∞ admits the representations

lnϕ0,∞(τ) =

∫ τ

0

(1/U(v)) lnKµ(v)

k ◦ f−1(A(v)/A(τ))
dv =

∫ ∞

0

lnKµ

(
C− ln f(s)(τ)

)
ds. (5.2)

Proof. Since limv→0 f
−1(A(v)/A(τ)) = +∞, we have by (1.6) that

(1/U(v)) lnKµ(v)

k ◦ f−1(A(v)/A(τ))
∼ − 1

lf

lnKµ(v)

U(v)
, as v → 0+. (5.3)

Therefore, by Lemma 5.1 and the continuity theorem (Theorem 3.1, Appendix A,
in [12]), Xt converges in distribution as t → ∞ if and only if

∫ τ

0

− lnKµ(v)

U(v)
dv < ∞. (5.4)

Using the exact same proof as that of Corollary 3.21, p. 67, in [5], one can
show that (5.4) is equivalent to (ii), thus proving (i) ⇔ (ii). By Proposition 3.2,
Appendix A, in [12], (5.4) holds if and only if (iii) is true. This shows (i) ⇔ (iii).
Since µ0,t ∈ I(R+) for every t > 0, its limit µ0,∞ must be infinitely divisible. The
representation (5.2) follows from (5.1) and the continuity theorem (cited above)

as the function exp
{∫ τ

0
(1/U(v)) lnKµ(v)
k◦f−1(A(v)/A(τ)) dv

}
is clearly right-continuous at 0. □

Corollary 5.3. Let µ be a C-stable distribution with exponent γ ∈ (0, 1] and let
f ∈ E1(R+; (0, 1]). Let {Xt} be an increasing C-additive process generated by the
pair (µ, f). Then µ ∈ Ilog(R+) and the limiting probability distribution µ0,∞ of

{Xt} is C-stable with exponent γ and its LST admits the representation

lnϕ0,∞(τ) = −λ
(∫ ∞

0

f(y)γ dy
)
A(τ)γ (λ > 0). (5.5)

Proof. By (2.17), Kµ(τ) = −λA(τ)γ for some λ > 0. A simple integration exercise
shows that (5.4). and thus (5.2), hold, which implies that µ ∈ Ilog(R+). Equation

(5.5) follows from (2.18) and the contnuity theorem. The representation (5.5) also
implies that µ0,∞ is C-stable with exponent γ (again by (2.17)). □

Next, we discuss the case where f is in the subest of E1(R+; (0, 1]) consisting of
the functions fα(s) = αs, α ∈ (0, 1). In this case, kα(x) = lfα = − lnα.

We first recall a notion of self-decomposability for distributions on R+ intro-
duced in [4] (see also Hansen [3]).

A probability distribution κ on R+, with LST ϕ(τ), is said to be C-self-
decomposable if for every t > 0, there exists a probability distribution κt, with
LST ϕt(τ), such that

ϕ(τ) = ϕ(Ct(τ))ϕt(τ) (τ ≥ 0). (5.6)

Both κ and κt are necessarily infinitely divisible.
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A distribution on R+ is C-selfdecomposable if and only if its LST ϕ(τ) admits
the representation

lnϕ(τ) =

∫ τ

0

lnϕ0(v)

U(v)
dv =

∫ ∞

0

lnϕ0(Ct(τ)) dt (τ ≥ 0), (5.7)

where ϕ0(τ) is the LST of a distribution in I(R+) such that
∫ 1

0

− lnϕ0(v)

U(v)
dv < ∞. (5.8)

Theorem 5.2 restricted to the fα functions states as follows.

Theorem 5.4. Let µ ∈ I(R+), with characteristic couple (a, ν) and α ∈ (0, 1).

Let {X [α]
t } be an increasing C-additive process generated by the pair (µ, fα). The

following assertions are equivalent.

(i) The probability distribution µ
[α]
0,t of X

[α]
t converges to a probability measure

µ
[α]
0,∞ ∈ I(R+).

[ii)

∫ ∞

0

ln+ x ν(dx) < ∞.

(iii) µ ∈ Ilog(R+).

Moreover, the limiting distribution µ
[α]
0,∞ is C-selfdecomposable with an LST of the

form (5.6) with ϕ0(τ) = K
−1/ lnα
µ (τ).

Proof. Only the last statement requires a proof. But then (5.2) can be rewritten as

(5.7) with ϕ0(τ) = K
−1/ lnα
µ (τ). Since µ ∈ I(R+), ϕ0 is the LST of a distribution

in I(R+) that satisfies (5.8). □

The converse holds.

Theorem 5.5. Any C-selfdecomposable distribution arises as a the limiting dis-
trubution of an increasing C-additive process defined over some probability space.

Proof. Let µ be a C-selfdecomposable distribution and f(s) = e−s. By The-
orem 2.3, there exists an increasing C-additive process {Xt} defined on some
probability space (Ω,F , P ) and generated by the pair (µ, f). Since lnϕs,t(τ) =∫ t

s
lnKµ(Cy(τ)) dy, (0 ≤ s < t < ∞), it easily follows by Theorem 5.2 that equa-

tions (5.2) and (5.7) are identical, which in turn implies ϕ0,∞(τ) is the LST of
µ. □

We conclude with a new characterization of C-stable distributions.

Corollary 5.6. Let µ ∈ I(R+) and α ∈ (0, 1). The following statements are
equivalent.

(i) (i)µ is C-stable with exponent γ ∈ (0, 1].

(ii) (ii) µ ∈ Ilog(R+) and the increasing C-additive process {X [α]
t } generated

by the pair (µ, fα) has a limiting distribution µ
[α]
0,∞ with an LST satisfying

lnϕ
[α]
0,∞(τ) = c lnKµ(τ) (c = −1/(γ lnα)). (5.9)
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Proof. (i) ⇒ (ii) is a straightforward application of Corolary 5.3 with f = fα.

Assuming (ii), µ
[α]
0,∞ is C-selfdecomposable by Theorem 5.4. By (5.6), with ϕ0(τ) =

K
−1/ lnα
µ (τ), we have,

lnϕ
[α]
0,∞(τ) =

−1

lnα

∫ ∞

0

lnKµ(Ct(τ)) dt =
1

lnα

∫ τ

0

lnKµ(v)

U(v)
dv, (5.10)

where the second equation follows the change of variable v = Ct(τ), (1.1) and
(1.4). Combining (5.9) and (5.10) leads to the differential equation

c
d

dv
lnKµ(v) =

1

lnα

lnKµ(v

U(v)
=

−1

lnα

A′(v)

A(v)
lnKµ(v),

whose solution is lnKµ(τ) = −λA(τ)γ with λ = − lnKµ(1) and γ = −1/(c lnα).
It is easily seen that the LSTKµ(τ) satisfies (2.16), which implies that µ is C-stable
with exponent γ (with the latter being forcibly in (0, 1]). □

Acknowledgment. The author is grateful to a referee for very valuable comments
and suggestions.

References

1. Bouzar, N.: Autoregressive sequences via Lévy processes. REVSTAT-STAT J 8 (2010), 81–
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