Stability Result of Iterative Procedure in Normed Space

B. Prasad* and Komal Goyal**

ABSTRACT

The intent of this paper is to study the stability of Jungck-Noor iteration schemes for maps satisfying a general contractive condition in normed space. Our result contains some of the results of Berinde [2-3], [5], Bosede and Rhoades [6], Bosede [7], Imoru and Olatinwo [12], Olatinwo et al. [18].

Keywords: Jungck-Mann iteration, Jungck-Noor iteration, Stability of iterations, Fixed point iteration, Stability results in normed space, (S, T) stability.

1. INTRODUCTION AND PRILIMINIRIES

Let (X, d) be a complete metric space and $T: X \to X$. Let $\{x_n\}_{n=0}^{\infty} \subset X$ be the sequence generated by iteration procedure involving the operator T, if

$$x_{n+1} = f(T, x_n) = Tx_n, n = 0, 1, \dots$$
(1.1)

then it is called Picard iteration process. The Picard iteration can be used to approximate the unique fixed point for strict type contractive operator. There was a need of some other iterative procedures for slightly weaker contractive conditions.

If for $x_0 \in X$, the sequence $\{x_n\}_{n=0}^{\infty}$ is defined by,

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, n = 0, 1, \dots$$
(1.2)

where $\{\alpha_n\}_{n=0}^{\infty} \subset [0,1]$ is called Mann iteration process [16].

And

 $x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T z_n,$

if

$$z_n = (1 - \beta_n) x_n + \beta_n T x_n, n = 0, 1, \dots$$
(1.3)

where $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are the real sequences in [0, 1], then it is called Ishikawa iteration process [13].

The sequence is defined by,

$$x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T y_n,$$

$$y_n = (1 - \beta_n) x_n + \beta_n T z_n,$$

^{*} Department of Mathematics Jaypee Institute of Information Technology, Noida, India, Email: b_prasad10@yahoo.com

^{**} Department of Mathematics Jaypee Institute of Information Technology, Noida, India, Email: Komal.goyal0988@gmail.com

$$z_n = (1 - \gamma_n) x_n + \gamma_n T x_n, \ n = 0, \ 1, \dots$$
(1.4)

where $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ are the real sequences in [0, 1], then it is called Jungck-Noor iterative scheme.

On putting $\{\alpha_n\}=1$ in (1.2), it becomes Picard iterative process. Similarly, if $\beta_n = 0$ for each 'n' in (1.3), then it reduces to (1.2). If we put $\gamma_n = 0$ for each 'n' in (1.4), then it becomes (1.3).

Definition 1.1 [14]. Let *Y* be an arbitrary non empty set and (X, d) be a metric space. Let *S*, $T : Y \to X$ and $T(Y) \subset S(Y)$ for some $x_0 \in Y$, consider

$$Sx_{n+1} = Tx_n, \ n = 0, \ 1, \ 2...$$
 (1.5)

If

$$Sx_{n+1} = (1 - \alpha_n)Sx_n + \alpha_n Tx_n, \ n = 0, \ 1, \ 2...,$$
(1.6)

where $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence in [0, 1], then it is called Junck-Mann iteration process [36].

Olatinwo and Imoru [19] defined $\{Sx_n\}_{n=0}^{\infty}$ as

$$Sx_{n+1} = (1 - \alpha_n)Sx_n + \alpha_n Tz_n,$$

$$Sz_n = (1 - \beta_n)Sx_n + \beta_n Tx_n, n = 0, 1,...$$
(1.7)

where $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are the real sequences in [0, 1], this scheme is called Jungck-Ishikawa iteration.

Further, Olatinwo [20] defined $\{Sx_n\}_{n=0}^{\infty}$ for three step iteration procedure as follows.

Definition 1.2 [20]. Let $S, T: T \to X$ and $T(X) \subseteq S(X)$. Define

$$Sx_{n+1} = (1 - \alpha_n)Sx_n + \alpha_n Tz_n,$$

$$Sz_n = (1 - \beta_n)Sx_n + \beta_n Tr_n,$$

$$Sr_n = (1 - \gamma_n)Sx_n + \gamma_n Tx_n$$
(1.8)

where n = 0, 1, ... and $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ satisfy

- (i) $\alpha_0 = 1$
- (ii) $0 \le \alpha_n, \beta_n, \gamma_n \le 1, n > 0$
- (iii) $\sum \alpha_n = \infty$
- (iv) $\sum_{j=0}^{n} \alpha_{j} \prod_{i=j+1}^{n} (1-\alpha_{i}+a\alpha_{i})$ converges.

This is called Jungck-Noor iteration scheme [20].

The first result on the stability is due to Ostrowoski [22]. However Harder and Hick [10-11] defined *T*-stability as follows:

Definition 1.3 [10-11]. The iterative procedure $x_{n+1} = f(T, x_n)$ is said to be *T*-stable with respect to *T* if $\{x_n\}$ converges to a fixed point *q* of *T* and whenever $\{y_n\}$ is a sequence in *X* with $\lim_{n \to \infty} d(y_{n+1}, f(T, y_n)) = 0$, we have $\lim_{n \to \infty} y_n = q$.

The (S, T) stability mapping is defined by Singh et al. [36] in the following manner.

Definition 1.4 [36]. Let $s, T: Y \to X, T(Y) \subset S(Y)$ and "*z*" a coincidence point of *T* and *S* that is Sz = Tz = p (say), for any $x_0 \in Y$, let the sequence $\{Sx_n\}$, generated by iterative procedure (1.4), converges to '*p*'. Let $\{Sy_n\} \subset X$ be an arbitrary sequence, and set $\varepsilon_n = d(Sy_{n+1}, f(T, y_n)), n = 0, 1, 2...$ then the iterative procedure $f(T, x_n)$ will be called (S, T) stable if and only if $\lim \varepsilon_n = 0 \Rightarrow \lim Sy_n = p$.

Harder and Hick [10-11] obtained stability results for Zamfirescu operator (Z-operator) for Picard and Mann iterative procedures.

Suppose *X* is a Banach space and *Y* a nonempty set such that $T(Y) \subseteq S(Y)$. Then *S*, $T: Y \to X$ is called Zamfirescu operator if for $x, y \in Y$ and $h \in (0, 1)$,

$$\|Tx - Ty\| \le h \max\{\|Sx - Sy\|, \frac{\|Sx - Tx\| + \|Sy - Ty\|}{2}, \frac{\|Sx - Ty\| + \|Sy - Tx\|}{2}\}.$$
(1.9)

Rhoades [34-35] obtained fixed point results for Mann and Ishikawa iteration procedures in uniformly Banach space. Berinde [4] used these iterative procedures for approximating the fixed point of Z-operator in arbitrary Banach space. Several authors used Z-operator for different iterative procedures in the setting of different spaces. Motivated by rich literature of Z-operator, Osilike [21] established stability results for Picard, Mann and Ishikawa iterative procedures for a large class of mappings and introduced the following contractive condition.

$$||Tx - Ty|| \le \delta ||Sx - Sy|| + L ||Sx - Tx||, \ L > 0, \ 0 < \delta < 1.$$
(1.10)

It cn be seen that $(1.9) \Rightarrow (1.10)$. It can be understood it better by taking cases one by one.

Case I: On putting $\delta = h$ and L = 0 in (1.10), we get first part.

Case II:
$$\delta = \frac{h}{2-h}$$
 and $L = \frac{2h}{2-h}$ gives second part of (1.9).

Case III:
$$||Tx - Ty|| \le h \frac{||Sx - Ty|| + ||Sy - Tx||}{2} \le ||Sy - Tx|| \le h ||Sy - Sx|| + h ||Sx - Tx||.$$

Hence $\delta = h$ and L = h completes the proof.

Olantinwo [20] generalized the above contractive condition as follows.

$$||Tx - Ty|| \le \delta ||Sx - Sy|| + \psi(||Sx - Tx||), \ 0 \le \delta < 1,$$
(1.11)

where $\psi: R_+ \to R_+$ is a monotone decreasing sequence with $\psi(0) = 0$. If we take $\psi(u) = Lu$ in (1.11), we get (1.10) which shows (1.10) \Rightarrow (1.11). We see (1.9) \Rightarrow (1.10) \Rightarrow (1.11). Thus the theory of stability of fixed point iteration has been widely studied in the literature and interesting fixed point results are obtained by a number of authors in various settings, see for instance [1-6], [10-12], [18-32] and several reference thereof.

The following lemma of Berinde [4] is required for the sequel.

Lemma 1.1 [4]. If δ is a real number such that $0 \le \delta < 1$ and $\{\varepsilon_n\}_{n=0}^{\infty}$ is a sequence of positive number such that $\lim_{n\to\infty} \varepsilon_n = 0$, then for any sequence of positive numbers $\{u_n\}_{n=0}^{\infty}$ satisfying $u_{n+1} \le \delta u_n + \varepsilon_n, n = 0, 1, 2...,$ we have $\lim_{n\to\infty} u_n = 0$.

2. MAIN RESULT

Theorem 2.1. Let $(X, \|\cdot\|)$ be a normed space and $S, T: Y \to X$ be non-self maps on an arbitrary set Y such that $T(Y) \subset S(Y)$, where S(Y) is a complete subspace of X and S an injective operator. Let z be a coincidence point of S and T i.e; Sz = Tz = p (say). Suppose S and T satisfy,

$$||Tx - Ty|| \le \psi(||Sx - Tx||) + \delta d(Sx, Sy), \ \delta \in [0, 1), \ \psi(0) = 0.$$
 (2.1)

for $x_0 \in Y$. Let $\{Sx_n\}_{n=0}^{\infty}$ be Jungck-Noor iterative scheme (1.8) converging to p, where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences of positive number in [0, 1] with $\{\alpha_n\}$ satisfying $0 < \alpha \le \alpha_n \forall n$. Then the Jungck-Noor iterative scheme is (S, T) stable.

Proof. Suppose that $\{Sy_n\}_{n=0}^{\infty} \subset X$, $\varepsilon_n = \|Sy_{n+1} - (1 - \alpha_n)Sy_n - \alpha_n Ts_n\|, n = 0, 1, 2, 3...$ where

$$Ss_n = (1 - \beta_n)Sy_n + \beta_n Tq_n,$$

$$Sq_n = (1 - \gamma_n)Sy_n + \gamma_n Ty_n.$$

and let $\lim_{n\to\infty} \varepsilon_n = 0$. Then it follows from (1.8) and (2.1) that

$$\begin{split} \|Sy_{n+1} - p\| &\leq \|Sy_{n+1} - (1 - \alpha_n)Sy_n - \alpha_n Ts_n\| + \|(1 - \alpha_n)Sy_n + \alpha_n Ts_n - (1 - \alpha_n + \alpha_n)p\| \\ &\leq \varepsilon_n + (1 - \alpha_n)\|Sy_n - p\| + \alpha_n\|Ts_n - p\| \\ &\leq \varepsilon_n + (1 - \alpha_n)\|Sy_n - p\| + \alpha_n[\delta\|Sz - Ss_n\| + \psi(\|Sz - Tz\|)] \\ &\leq \varepsilon_n + (1 - \alpha_n)\|Sy_n - p\| + \delta\alpha_n\|p - Ss_n\| + \alpha_n\psi(0) \\ &\leq \varepsilon_n + (1 - \alpha_n)\|Sy_n - p\| + \delta\alpha_n\|p - Ss_n\| + \alpha_n.0 \\ &\leq \varepsilon_n + (1 - \alpha_n)\|Sy_n - p\| + \delta\alpha_n\|p - Ss_n\|. \end{split}$$

$$(2.2)$$

Now we have the following equation

$$\|p - Ss_n\| = \|(1 - \beta_n + \beta_n)p - (1 - \beta_n)Sy_n - \beta_nTq_n\|$$

$$\leq (1 - \beta_n)\|p - Sy_n\| + \beta_n\|p - Tq_n\|$$

$$\leq (1 - \beta_n)\|p - Sy_n\| + \beta_n\|Tz - Tq_n\|$$

$$\leq (1 - \beta_n)\|p - Sy_n\| + \beta_n[\delta\|Sz - Sq_n\| + \psi(\|Sz - Tz\|)]$$

$$\leq (1 - \beta_n)\|p - Sy_n\| + \delta\beta_n\|Sz - Sq_n\| + \beta_n\psi(0)$$

$$\leq (1 - \beta_n) \| p - Sy_n \| + \delta \beta_n \| Sz - Sq_n \| + \beta_n .0$$

$$\leq (1 - \beta_n) \| p - Sy_n \| + \delta \beta_n \| p - Sq_n \|.$$
(2.3)

Also we have

$$\begin{aligned} \|p - Sq_n\| &= \|(1 - \gamma_n + \gamma_n)p - (1 - \gamma_n)Sy_n - \gamma_nTy_n\| \\ &\leq (1 - \gamma_n)\|p - Sy_n\| + \gamma_n\|p - Ty_n\| \\ &\leq (1 - \gamma_n)\|p - Sy_n\| + \gamma_n\|Tz - Ty_n\| \\ &\leq (1 - \gamma_n)\|p - Sy_n\| + \gamma_n[\delta\|Sz - Sy_n\| + \psi(\|Sz - Tz\|)] \\ &\leq (1 - \gamma_n)\|p - Sy_n\| + \delta\gamma_n\|Sz - Sy_n\| + \gamma_n\psi(0) \\ &\leq (1 - \gamma_n)\|p - Sy_n\| + \delta\gamma_n\|Sz - Sy_n\| + \gamma_n.0 \\ &\leq (1 - \gamma_n)\|p - Sy_n\| + \delta\gamma_n\|p - Sy_n\|. \end{aligned}$$

$$(2.4)$$

It follows from (2.2), (2.3) and (2.4) that

$$\left\|Sy_{n+1} - p\right\| \le \varepsilon_n + \left[1 - \alpha_n + \delta\alpha_n \{1 - \beta_n + \delta\beta_n (1 - \gamma_n + \delta\gamma_n)\}\right] \left\|p - Sy_n\right\|.$$
(2.5)

Using $0 < \alpha \le \alpha_n$ and $\delta \in [0, 1)$, we have

$$[1-\alpha_n+\delta\alpha_n\{1-\beta_n+\delta\beta_n(1-\gamma_n+\delta\gamma_n)\}]<1.$$

Hence, using lemma (2.1), (2.5) yields $\lim_{n\to\infty} Sy_{n+1} = p$.

Conversely, let $\lim_{n\to\infty} Sy_{n+1} = p$. Then using contractive condition (2.1) and triangle inequality, we have

$$\varepsilon_{n} = \|Sy_{n+1} - (1 - \alpha_{n})Sy_{n} - \alpha_{n}Ts_{n}\|$$

$$\leq \|Sy_{n+1} - p\| + \|(1 - \alpha_{n} + \alpha_{n})p - (1 - \alpha_{n})Sy_{n} - \alpha_{n}Ts_{n}\|$$

$$\leq \|Sy_{n+1} - p\| + (1 - \alpha_{n})\|p - Sy_{n}\| + \alpha_{n}\|p - Ts_{n}\|$$

$$\leq \|Sy_{n+1} - p\| + (1 - \alpha_{n})\|p - Sy_{n}\| + \alpha_{n}\|Tz - Ts_{n}\|$$

$$\leq \|Sy_{n+1} - p\| + (1 - \alpha_{n})\|p - Sy_{n}\| + \alpha_{n}[\delta\|Sz - Ss_{n}\| + \psi(\|Sz - Tz\|)]$$

$$\leq \|Sy_{n+1} - p\| + (1 - \alpha_{n})\|p - Sy_{n}\| + \delta\alpha_{n}\|Sz - Ss_{n}\| + \alpha_{n}\psi(0)$$

$$\leq \|Sy_{n+1} - p\| + (1 - \alpha_{n})\|p - Sy_{n}\| + \delta\alpha_{n}\|Sz - Ss_{n}\| + \alpha_{n}.0$$

$$\leq \|Sy_{n+1} - p\| + (1 - \alpha_{n})\|p - Sy_{n}\| + \delta\alpha_{n}\|p - Ss_{n}\|.$$
(2.6)

Again using (2.3) and (2.4), it yields

$$\varepsilon_n \le \|Sy_{n+1} - p\| + [1 - \alpha_n + \delta\alpha_n \{1 - \beta_n + \delta\beta_n (1 - \gamma_n + \delta\gamma_n)\}] \|Sy_n - p\| \to 0 \text{ as } n \to \infty.$$

Hence, the iterative procedure defined in (1.8) is stable with respect to pair (S, T).

Example 2.1. Let $X = R_+$. Define $S, T: X \to X$ by $Sx = \frac{x}{2}$, $Tx = \frac{x}{4}$ and $\psi(x) = \frac{x}{3}$, where $\psi: R_+ \to R_+$

with $\psi(0)=0$ and (X, d) has the usual metric. Then *T* satisfies contractive condition (2.1) and F(T) = 0. Also Jungck-Noor iterative scheme (1.8) is stable.

Proof: Now p = 0 is the coincidence point. Taking $\alpha_n = \beta_n = \gamma_n = \frac{1}{2}$ for each $n \ge 1$.

Let
$$y_n = \frac{2}{2+n}$$

Then,

$$\varepsilon_n = \|Sy_{n+1} - (1 - \alpha_n)Sy_n - \alpha_n Ts_n\|, n = 0, 1, 2, 3...$$

 $\lim_{n\to\infty}y_n=p=0$

where

$$Ss_{n} = (1 - \beta_{n})Sy_{n} + \beta_{n}Tq_{n},$$

$$Sq_{n} = (1 - \gamma_{n})Sy_{n} + \gamma_{n}Ty_{n}.$$

$$Sq_{n} = (1 - \frac{1}{2})\frac{y_{n}}{2} + \frac{1}{2} \times \frac{y_{n}}{4} = \frac{3}{8}y_{n},$$

$$\therefore q_{n} = 2(\frac{3}{8}y_{n}) = \frac{3}{4}y_{n}.$$

$$Ss_{n} = (1 - \frac{1}{2})\frac{y_{n}}{2} + \frac{1}{2} \times \frac{1}{4} \times \frac{3}{4}y_{n} = \frac{11}{32}y_{n},$$

$$\therefore s_{n} = 2(\frac{11}{32}y_{n}) = \frac{11}{16}y_{n}.$$

$$Sy_{n+1} = (1 - \frac{1}{2})\frac{y_{n}}{2} + \frac{1}{2} \times \frac{1}{4} \times \frac{11}{16}y_{n} = \frac{33}{128}y_{n},$$

$$\therefore s_{n} = 2(\frac{33}{128}y_{n}) = \frac{33}{64}y_{n}.$$

$$\varepsilon_{n} = ||Sy_{n+1} - (1 - \alpha_{n})Sy_{n} - \alpha_{n}Ts_{n}||, n = 0, 1, 2, 3..$$

$$= \left\|\frac{1}{2}(\frac{2}{(2 + (n + 1))}) - \frac{33}{64} \times \frac{2}{2 + n}\right\| \to 0 \text{ as } n \to \infty$$

$$\lim_{n \to \infty} \varepsilon_{n} = 0.$$

Hence,

Therefore, Jungck-Noor iteration is stable.

On putting Y = X = E and S = id, the identity map on *X*, $\delta = a$ and considering *p*, a fixed point of *T*, that is, p = Tx = x in Theorem 2.1, we get Theorem 3.1of Bosede [7].

Corollary 2.1 [7]. Let $(E, \|\cdot\|)$ be a Banach space, $T: E \to E$ be a selfmap of *E* with a fixed point *p*, satisfying the contractive condition, $\|p - Ty\| = a \|p - y\|$ such that for each $y \in E$ and $0 \le a < 1$ where *p* is a fixed point. For $x_0 \in E$, let $\{x_n\}_{n=0}^{\infty}$ be the Noor iterative process defined as,

$$\begin{aligned} x_{n+1} &= (1 - \alpha_n) x_n + \alpha_n T q_n, \\ q_n &= (1 - \beta_n) x_n + \beta_n T r_n, \\ r_n &= (1 - \gamma_n) x_n + \gamma_n T x_n. \end{aligned}$$

converging to p, (i.e; Tp = p), where $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ are sequences of real numbers in [0, 1] such that $0 < \alpha \le \alpha_n$, $0 < \beta \le \beta_n$ and $0 < \gamma \le \gamma_n$ for all n. Then, the Noor iteration process is *T*-stable.

In the same way, on putting Y = X = E and S = id, the identity map on X, $\gamma_n = 0$, $\delta = a$ and considering p = Tx = x in Theorem 2.1, we get Theorem 3.2 of Bosede [7].

On putting Y = X = E, S = id and $\gamma_n = \beta_n = 0$, $\delta = a$ in Theorem 2.1, we get Theorem 2.2 of Bosede and Rhoades [6].

Corollary 2.2 [6]. Let E be a Banach space, T a selfmap of E with a fixed point p and satisfying

$$\|p - Ty\| \le a \|p - y\|$$
 for some $0 \le a < 1$ and for each $y \in X$.

The Mann iteration with $0 < \alpha \le \alpha_n$ for all *n*, is *T*-stable.

If we put $\alpha_n = \lambda$ in Corollary 2.2, we get *T*-stability for Kransnoselskij iterative procedure where $0 < \lambda < 1$.

And if we put $\alpha_n = 1$ in Corollary 2.2, we get *T*-stability for Picard iterative procedure.

On putting Y = X = E, S = id, $\delta = b$, $\gamma_n = \beta_n = 0$ and $\alpha_n = \frac{1}{2}$, we get Theorem 1 of Olatinwo et al. [18].

Corollary 2.3 [18]. Let $\{y_n\}_{n=0}^{\infty} \subset E$ and $\varepsilon_n = \left\|y_{n+1} - \frac{1}{2}(y_n + Ty_n)\right\|$. Let $(E, \|\cdot\|)$ be a normed linear space and $T: E \to E$ a selfmap of *E* satisfying

$$||Tx - Ty|| \le \psi(||x - Tx||) + b ||x - y||, \ 0 \le b < 1.$$

Suppose *T* has a fixed point *p*. For arbitrary $x_0 \in E$, define sequence $\{x_n\}_{n=0}^{\infty}$ iteratively by;

$$x_{n+1} = f(T, x_n) = \frac{1}{2}(x_n + Tx_n), \ n \ge 0.$$

Let $\psi: R_+ \to R_+$ be monotonic increasing with $\psi(0) = 0$. Then, the Krasnolseskij process is *T*-stable.

On putting Y = X = E, S = id, $\delta = b$, $\gamma_n = \beta_n = 0$ and $\alpha_n = a$, we get Theorem 2 of Olatinwo [18].

On putting Y = X = E, S = id, $\delta = b$, $\gamma_n = 0$, we get Theorem 3 of Olatinwo [18].

On putting Y = X = E, S = id, $\delta = b$, $\gamma_n = \beta_n = 0$, we get Theorem 3.2 of Imoru and Olatinwo [12].

Corollary 2.4 [12]. Let $(E, \|\cdot\|)$ be a normed linear space and let $T: E \to E$ be a selfmap of *E* satisfying

$$||Tx - Ty|| \le \psi(||x - Tx||) + b ||x - y||, \ 0 \le b < 1.$$

Suppose *T* has a fixed point p^* . Let $x_0 \in E$ and suppose that $x_{n+1} = f(T, x_n) = (1 - \alpha_n)x_n + \alpha_n T x_n$, $n \ge 0$, where $\{\alpha_n\}_{n=0}^{\infty}$ is a real sequence in [0, 1] such that $0 < \alpha \le \alpha_n$, n = 0, 1, 2, ... Suppose also that $\psi : R_+ \to R_+$ be monotonic increasing with $\psi(0) = 0$. Then, the Mann iteration is *T*-stable. We have already proved that (13) \Rightarrow (15) and on putting Y = X, S = id and $\gamma_n = \beta_n = 0$, we get Theorem 3 of Berinde [2].

Corollary 2.5 [2]. Let $(X, \|\cdot\|)$ be a normed linear space and $T: X \to X$ be a Zamfirescu contraction. Suppose there exists $p \in F(T)$ such that the Mann iteration $\{x_n\}_{n=0}^{\infty}$ with $x_0 \in X$ and $\{\alpha_n\}_{n=0}^{\infty}$ satisfying

 $\sum_{n=0}^{\infty} \alpha_n = \infty$, converges to *p*. Then the Mann iteration procedure is *T*-stable.

On putting Y = X = E, S = id, $\gamma_n = 0$ and $\psi(u) = L(u)$ where u = d(x, Tx), we get Theorem 1 of Berinde [5].

Corollary 2.6 [5]. Let *E* be a normed linear space, *K* a closed convex subset of *E*, and $T: K \to K$ an operator with $F(T) \neq \phi$, satisfying (14). Let $\{x_n\}_{n=0}^{\infty}$ be the Ishikawa iteration and $x_0 \in K$, arbitrary, where

 $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0, 1] with $\{\alpha_n\}$ satisfying $\sum_{n=0}^{\infty} \alpha_n = \infty$. Then $\{x_n\}$ converges strongly to the unique fixed point of *T*.

We have already proved that (13) \Rightarrow (15) and on putting Y = X = E, S = id and $\gamma_n = 0$, we get Corollary 2 of Berinde [5].

Similarly using (13) \Rightarrow (15), Y = X = E, S = id and $\gamma_n = \beta_n = 0$, we get Corollary 2 of Berinde [5].

On putting y = x and S = id, the identity map on X, $\alpha_n = 1$, $\beta_n = \gamma_n = 0$ and $\psi(u) = L(u)$ where u = d(x,Tx) in Theorem 2.1, we get that $\{x_n\}$ is stable with respect to T. From remark and example 1 in [2], it is clear that any stable iteration procedure is also almost stable and it is obvious that

any almost stable iteration procedure is also summably almost stable, since $\sum_{n=0}^{\infty} d(y_n, p) < \infty \Rightarrow \lim_{n \to \infty} y_n = p$. Hence, we get result Theorem 1 of Berinde [3].

Corollary 2.7 [3]. Let (X, d) be a metric space and $T: X \to X$ a mapping satisfying contractive condition

$$d(Tx,Ty) \le ad(x,y) + Ld(x,Tx) \text{ for } a \in [0,1), \ L \ge 0 \ \forall x, y \in X.$$

Suppose *T* has a fixed point *p*. Let $x_0 \in X$ and $x_{n+1} = Tx_n$, $n \ge 0$, then $\{x_n\}$ converges strongly to to *p* and is summable almost stable with respect to *T*.

Similar to above reason, On putting Y = X and S = id, the identity map on X, $\gamma_n = 0$ and $\psi(u) = L(u)$ where u = d(x, Tx) in Theorem 2.1, we get Theorem 2 of Berinde [3].

REFERENCES

- [1] M. D. Asaduzzaman, M. S. Khatun and M. Z. Ali, "On the convergence of the multi-step Noor fixed point iterative scheme with errors in the class of Zamfirescu operators," *Advances in Fixed Point Theory*, vol. 6, pp. 150-166, 2016.
- [2] V. Berinde, "On the stability of some fixed point procedures," *Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica-Informatica*, vol. 18, pp. 7-14, 2002.
- [3] V. Berinde, "Summable almost stability of fixed point iteration procedures," *Carpathian J. Math*, vol. 19, pp. 81-88, 2003.

- [4] V. Berinde, "On the convergence of the Ishikawa iteration in the class of quasi contractive operator 2," *Acta Math. Univ. Comenianae*, vol. 73, pp. 1-11, 2004.
- [5] V. Berinde, "A convergence theorem for some mean value fixed point iteration procedures." *Dem Math*, vol. 38, pp. 177-184, 2005.
- [6] A. O. Bosede and B. E. Rhoades. "Stability of Picard and Mann iteration for a general class of functions," *Journal of Advanced Mathematical Studies*, vol. 3, pp. 23-26, 2010.
- [7] A. O. Bosede, "Stability of Noor Iteration for a General Class of Functions in Banach Spaces," Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, vol. 51, pp. 19-25, 2012.
- [8] S. Czerwik, "Nonlinear set-valued contraction mappings in b-metric spaces," Atti Del Seminario Matematico E Fisico Universita Di Modena, vol. 46, pp. 263-276, 1998.
- [9] Fukhar-ud-din, Hafiz and V. Berinde, "Iterative methods for the class of quasi-contractive type operators and comparison of their rate of convergence in convex metric spaces," *Filomat*, vol. 30, pp. 223-230, 2016.
- [10] A. M. Harder and T. L. Hicks, "A stable iteration procedure for nonexpansive mappings," *Math. Japonica*, vol. 33, pp. 687-692, 1988.
- [11] A. M. Harder and T. L. Hicks, "Stability results for fixed point iteration procedures," *Math. Japonica*, vol. 33, pp. 693-706, 1988.
- [12] C. O. Imoru and M. O. Olatinwo. "On the stability of Picard and Mann iteration processes." *Carpathian J. Math*, vol. 19, pp. 155-160, 2003.
- [13] S. Ishikawa, "Fixed points by a new iteration method," *Proceedings of the American Mathematical Society*, vol. 44, pp. 147-150, 1974.
- [14] G. Jungck, "Commuting mappings and fixed points," The American Mathematical Monthly, vol. 83, pp. 261-263, 1976.
- [15] S. M. Kang, F. Ali, A. Rafiq, Y. C. Kwun and S. Jabeen, "On the Convergence of Mann and Ishikawa Type Iterations in the Class of Quasi Contractive Operators," *Journal of Computational Analysis & Applications*, vol. 21, pp. 451-459, 2016.
- [16] W. R. Mann, "Mean value methods in iteration," *Proceedings of the American Mathematical Society*, vol. 4, pp. 506-510, 1953.
- [17] M. A. Noor, "New approximation schemes for general variational inequalities," *Journal of Mathematical Analysis and applications*, vol. 251, pp. 217-229, 2000.
- [18] M. Olatinwo, O. O. Owojori, and C. O. Imoru. "Some stability results on Krasnolslseskij and Ishikawa fixed point iteration procedures," J. Math. Stat2, vol. 1, pp. 360-362, 2006.
- [19] M. Olatinwo and C. O. Imoru, "Some stability and strong convergence results for the Jungck-Ishikawa iteration process," *Creative Mathematics and Informatics*, vol. 17, pp. 33-42, 2008.
- [20] M. Olatinwo, "A generalization of some convergence results using the Jungck-Noor three step iteration process in arbitrary Banach space," *Fasciculi Mathematici*, vol. 40, pp. 37-43, 2008.
- [21] M. O. Osilike, "Stability results for Ishikawa fixed point iteration procedure," *Indian J. Pure Appl. Math.*, vol. 26, pp. 937-941, 1995.
- [22] A. Ostrowski, "The Round off Stability of Iterations," ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 47, pp. 77-81, 1967.
- [23] R. P. Pathak, S. Dashputre, S. D. Diwan and R. Gupta, "Convergence and stability theorems for a faster iterative scheme for a general class of contractive-like operators," *Journal of Mathematical and Computational Science*, vol. 5, pp. 728-736, 2015.
- [24] B. Prasad, "A stability result in generalized metric spaces," International Transactions in Mathematical Sciences and Computer, vol. 3, pp. 13-18, 2010.
- [25] B. Prasad, P. Pradhan and R. Sahni, "Modified Noor iterative schemes in Banach spaces," *International Mathematical Forum*, vol. 5, pp. 1895-1902, 2010.
- [26] B. Prasad and R. Sahni, "Stability of a general iterative algorithm," in *Proceedings of the 10th WSEAS international conference on Applied computer science*, pp. 216-221, 2010.
- [27] B. Prasad and K. Katiyar, "Fractals via Ishikawa iteration," in *Control, Computation and Information Systems*, vol. 140, pp. 197-203, 2011.
- [28] B. Prasad and R. Sahni, "Convergence of some general iterative schemes," *International Journal of Mathematical Analysis*, vol. 5, pp. 1237-1242, 2011.
- [29] B. Prasad and R. Sahni, "A convergence theorem for Jungck-Ishikawa iteration," in Recent Researches in Artificial

Intelligence, Knowledge Engineering and Data Bases, 11th WSEAS International Conference on AIKED, Cambridge University, pp. 79-84, 2011.

- [30] B. Prasad and R. Sahni, "A Weak stability result for Jungck-Mann iteration," *Electronics Computer Technology (ICECT)*, 2011 3rd International Conference on, vol. 5, pp. 231-234, 2011.
- [31] B. Prasad and R. Sahni, "Weak Stability Results for Jungck-Ishikawa Iteration," *International Journal of Computer Application*, vol. 16, pp. 28-33, 2011.
- [32] B. Prasad and R. Sahni, "Stability of a general iterative algorithm," *Applied Computer Science*, pp. 216-221, 2011.
- [33] N. Redjel and A. Dehici, "Some results in fixed point theory and application to the convergence of some iterative processes," *Fixed Point Theory and Applications*, vol. 2015, pp. 1-17, 2015.
- [34] B. E. Rhoades, "Comments on two fixed point iteration methods," J. Math. Anal. Appl., vol. 56, pp. 741–750, 1976.
- [35] B. E. Rhoades, "Fixed point theorems and stability results for fixed point iteration procedures," *Indian J. Pure Appl. Math.*, vol. 21, pp. 1–9, 1990.
- [36] S. L. Singh, C. Bhatnagar and S. N. Mishra, "Stability of Jungck-type iterative procedures," *International Journal of Mathematics and Mathematical Sciences*, vol. 2005, pp. 3035-3043, 2005.
- [37] S. L. Singh and B. Prasad, "Some coincidence theorems and stability of iterative procedures," *Computers & Mathematics with Applications*, vol. 55, pp. 2512-2520, 2008.