
I J C T A, 9(4), 2016, pp. 1921-1931
© International Science Press

1 Research Scholar, ECE Department, Dr. M.G.R. Educational and Research Institute University, Chennai, India,
Email: siva6677@gmail.com

2 Professor & Head, ECE Department, Dr. M.G.R. Educational and Research Institute, Chennai, India, Email: ravi_mls@yahoo.com

Implementation of Montgomery Modular
Multiplication Algorithm for Multi-Core
Systems
Venkata Siva Prasad Ch.1, S. Ravi2, M. Anand2

ABSTRACT

In this paper Design the Montgomery Modular Multiplication algorithm for Efficient Multi-core systems using in
Large Data in Communication and Industry fields. As HW/SW co-design technique is used to find the efficient
system architecture and the instruction scheduling method VLIW prototype of general algorithms are developed
with Linux kernel for Maintaining the Area Of the design and Time Response of the Multi-Core System. Scheduling
in a multi-core systems while simulation process that can reduce the number of Iteration in the data transfers
between different cores in these cores are Implemented in the depend on the Threads. The proposed processor is
implemented under Multi-core Gizmo Processor technology. Compared to the implementations on a single-core
system, the performance can be improved on Modified Multiplication Algorithm. Moreover, we also study the area
reduction techniques for proposed multi-core processor from the perspectives of algorithm, architecture, and circuit.

Keywords: Montgomery Modular Multiplication, Multi-core, Parallel Computation, VLIW.

1. INTRODUCTION

The Explosive grown in telecommunication network& Large Scale Industry and Internet popularity for
Transfer large data from one Location(Server) To other Location(client) Across The World for that time
care for sending big data through network protocol in information Timing issues is also increasing &
mainly constrains on the Time and Power consumption and Area. The algorithm has involved in the use of
modular exponentiation of large numbers for encryption of data Developed in the Very large Instruction
Word(VLIW) method is considered secure since factorization becomes intractable for very large numbers.
To overcome designed that Montgomery Modular Reduction Algorithm was introduced to Developed the
implementation space efficient, high speed architectures, When performing parallel computation, task
scheduling is highly dependent on the hardware architecture. Here using a Very Long Instruction Word
(VLIW) processor as a prototype, This processor can be configured to have 1, 2, 4, 8 or even more cores.
Each core can work separately to be general, only the very basic instructions are supported. The rest of the
paper is organized as follow. Section 2 briefly reviews work on the Montgomery algorithm. In section 3, we
describe the multi-core architecture with VLIW of our platform. in section 4, Implementations of parallel
MMM algorithm scheduling methods are proposed. Finally, we show results in section 5 and conclude the
paper including future work in section 6.

2. MONTGOMERY MULTIPLICATION ALGORITHM

The proposed Montgomery algorithm allows modular arithmetic to be accomplished efficiently when the
modulus is large (2048 bits or more).

1922 Venkata Siva Prasad Ch., S. Ravi and M. Anand

• Faster way to do modular exponentiation

• Operate on Montgomery residues

• Division becomes a simple shift

• The Montgomery algorithm consists of two approaches: multiplication and reduction.

Montgomery multiplication is a method for computing x. y mod m for positive integers x, y, and m. It
moderates execution time on a computer when there are large numbers of multiplications to be done with
the same modulus n, and with a small number of multipliers. In precise, it is useful to compute x e mod m
for a large value of m.

In common, Montgomery multiplication algorithm computes the Montgomery product.

 (,) . . 1(mod)Mon Mul x y x y r m� �

Where the multipliers x and y are less than the modulus m. it is needed to declare another integer r
which must be greater than m, as the gcd (r, m) = 1. The method, really, changes the reduction modulo m to
r. usually r is chosen to be an integral power of 2. Therefore, the reduction modulo r is simply a masking
operation.

As held from the MonMul () function above, x and y is numbers that represent the m-residues, which
can be calculated as follows

x� = x .r mod n
y� = y .r mod n

The two integer’s r-1 and n�are calculated, by using the Extended Euclidean algorithm, such that:

r r – 1 – m m� = 1

The final result of the Montgomery multiplication will be in the n-residue.

z� = x��.y� .r – 1 mod m

Finally, a conversion step has to be performed to transform the result back from the m-residue
representation to normal residue representation.

z = MonMul (z�, 1)

The computation of MonMul (x, y) is given in Algorithm 1.

Algorithm 1: Montgomery Modular Multiplication.

Step 1: Input an odd modulus n and a radix r = 2 �log2 n�, such that GCD (m, r) = 1, an auxiliary
value m��= –m –1 mod r, 2 m-residue integers x� and y�.

Step 2: function: MonMul (x�, y�).

Step 3: Calculate Z: = x� .y�.

Step 4: Calculate z: = (t + [t. m� mod r]. m)/r.

Step 5: If z � m then return (u-m) else return z.

Step 6: Output x� .y� .r–1 (mod m).

The Montgomery modular multiplication algorithm was designed to avoid division in modular
multiplications. Given two n-bit inputs, X and Y, this algorithm gives Z = X · Y · R–1 mod M, where R equals
to 2n and M is the n-bit modulo. Algorithm 1 shows the Montgomery modular multiplication of conditional
by choosing a suitable the operands X, Y and M are divided into w-bit words. In the beginning of each
iteration, X0 · Yi is calculated to generate T. After the generation of T, the multiplication of X · Yi and

 Implementation of Montgomery Modular Multiplication Algorithm for Multi-Core Systems 1923

reduction of C are performed together by doing Z = Z + X · Yi + M · T. After that, Z0 always becomes 0. After
s iterations and one conditional Z = X · Y · R–1 mod M is obtained.

Illustration of Montgomery Modular Multiplication

With two cores

• X = 7 = 0111

• Y = 5 = 0101

• M = 11 = 1011

• Z initially 0

– Z = (0 + 5 + 11) / 2 = 8

– Z = (8 + 5 + 11) / 2 = 12

– Z = (12 + 5 + 11) / 2 = 14

– Z = (14 + 0) / 2 = 7 (final result).

3. SCHEDULING ARCHITECTURE FOR MULTI-CORE PROCESSOR

The hardware architecture and explore the best software algorithm for the fixed hardware configuration.
the main focus of this paper, needs an environment to get a quick and correct evaluation of cost and
performance for which allows us to estimate immediate system performance in a cycle-accurate manner
before synthesizing the entire design.

Figure 1: 64 Bit Scheduling Element

1924 Venkata Siva Prasad Ch., S. Ravi and M. Anand

This platform consists of a main controller, a data memory, an instruction memory and several cores.
Only the main controller can access the instruction memory and the data memory. The main controller
fetches instructions from the instruction memory and dispatches them to all cores in parallel via the instruction
bus. W denotes the operation size of w-bit core, A 64-bit (w = 64) core is also shown in Figure 1. It is a
highly simplified Load/Store CPU. It has a instruction decoder, a register file with 64 general 64-bit registers
and one status register. The Arithmetic Logic Unit(ALU) includes one 64-bit multiplier and one 64-bit
adder. It also has an output register to store the data that will be written to the data memory, and an input
register to buffer the data from the data memory. When data needs to be moved from one core to another, it
is first stored to the data memory, then loaded by the destination core. The purpose of this prototype processor
is to explore different algorithms on multi-core systems.

3.1. Very long instruction word (VLIW)

The New Concept of VLIW refers to processor architectures designed to take advantage of instruction
level parallelism (ILP). Whereas conventional processors mostly allow programs only to specify instructions
that will be executed in sequence, a VLIW processor allows programs to explicitly specify instructions that
will be executed at the same time (that is, in parallel). This type of processor architecture is intended to
allow higher performance without the inherent complexity of some other approaches. VLIW code is ordered
for the processor at compile time, this is all done before the code is ever actually executed. As a VLIW
compiler sorts through the code, it examines it to determine which instructions will be able to be executed
simultaneously. This is often done via a process called trace scheduling will be in figure-2 has explained
operation of VLIW of operation with 4 cores running in the process with execution units.

The ability to integrate coding into larger words and fewer lines of instructions, VLIW has become
extremely useful in its applications such as like Dolby Audio, video players and video games. The VLIW
being what it is, offers special embedded software features for many of these multimedia types. However,
followed by its simple in architecture is its extremely complicated software compilers having to advance
check the instructions to allow such parallelism.

4. IMPLEMENTATION OF PARALLEL MONTGOMERY MODULAR MULTIPLICATION

The proposed an iteration-based scheduling method of each Processing Element (PE) performs one iteration
of the loop in Algorithm 1. It’s is attractive because carries are only used in the local PE. Note that this method

Figure 2: VLIW Processor With 4 Core Operations

 Implementation of Montgomery Modular Multiplication Algorithm for Multi-Core Systems 1925

was originally designed for a hardware implementation. the inherent parallelism of Algorithm 2 to the original
Montgomery multiplication of The resulting parallel Montgomery multiplication given with Algorithm 2
below. On a multi-core processor, one can also parallelize the additions given on lines 4 to 6 of Algorithm 1.
When the number of cores available is a power of 2, this partial product accumulation can be achieved in a
binary tree fashion, as shown below, with at most �log2 s� steps where s is the number of cores available.

For i = 1 to log2 s

For j = 0 to s 2 i – 1 tj � tj + tj + s 2i

end for end for In the above setting, all the cores are exploited as evenly as possible with the maximal
utilization which would result in the minimal latency. However, this optimal chain of additions would not
always be possible. In the rest of this section, we provide some addition chains for efficient implementations
of Algorithm 2 on processors with 2, 4 and 6 cores as examples

Two dimensions of parallelism:

– Width of processing element w

– Number of pipelined PEs p

• Multiply takes k = n/p kernel cycles

Montgomery proposed a new algorithm where division is avoided. An integer Z is represented as Z · R
mod M, where M is the modulo and R = 2r is a radix that is co primes to M. As shown in Figure-3shows the

Figure 3: Multi-core Process Scheduling

TimeCore-1 Core-2 Core-3 Core-4

X
0
+Y

0
+M

0
.T+Z

0
X

2
+Y

0
+M

2
.T+Z

2
X

4
+Y

0
+M

4
.T+Z

4
X

6
+Y

0
+M

6
.T+Z

6

X
1
+Y

0
+M

1
.T+Z

1
X

3
+Y

0
+M

3
.T+Z

3
X

5
+Y

0
+M

5
.T+Z

5
X

7
+Y

0
+M

7
.T+Z

6

Z
1
+Z

1
Z

3
+Z

3
Z

5
+Z

5

X
0
+Y

1
+M

0
.T+Z

0
X

2
+Y

1
+M

2
.T+Z

3
X

4
+Y

1
+M

4
.T+Z

4
X

6
+Y

1
+M

6
.T+Z

6

X
1
+Y

1
+M

1
.T+Z

1
X

3
+Y

1
+M

3
.T+Z

3
X

5
+Y

1
+M

5
.T+Z

5
X

7
+Y

1
+M

7
.T+Z

7

Z
1
+Z

1
Z

3
+Z

3
Z

5
+Z

5

X
0
+Y

3
+M

0
.T+Z

0
X

2
+Y

3
+M

2
.T+Z

2
X

4
+Y

3
+M

4
.T+Z

4
X

6
+Y

3
+M

0
.T+Z

6

X
1
+Y

3
+M

1
.T+Z

1
X

3
+Y

3
+M

3
.T+Z

3
X

5
+Y

3
+M

5
.T+Z

5
X

1
+Y

3
+M

7
.T+Z

7

Z
1
+Z

1
Z

3
+Z

3
Z

5
+Z

5

X
0
+Y

4
+M

0
.T+Z

0
X

2
+Y

3
+M

2
.T+Z

2
X

4
+Y

3
+M

4
.T+Z

4
X

0
+Y

4
+M

6
.T+Z

6

X
1
+Y

4
+M

1
.T+Z

1
X

3
+Y

3
+M

3
.T+Z

3
X

5
+Y

3
+M

5
.T+Z

5
X

1
+Y

4
+M

7
.T+Z

7

Z
1
+Z

1
Z

3
+Z

3
Z

5
+Z

5

1926 Venkata Siva Prasad Ch., S. Ravi and M. Anand

scheduling method, denoted as Algorithm-2, for 256-bit Montgomery multiplication for a 4-core system.
As n = 256 and w = 64, each Core has 64 iterations are needed. Core-1 performs the first iteration and
generates Z0 to Z63 one by one. Each word is transferred to core-2 as soon as it is generated. Core-2 then
performs the second iteration and then transfers Z64 to Z127 to core-3. After 4 iterations Z = (Z251, ..., Z0)
is transferred back to core-1 from core-4 and the 5th iteration begins. As in total 64 iterations are required,
each core needs to perform 4 iterations. After 8 iterations and a conditional subtraction, Z = X · Y · R–1 mod
M is generated and stored separately in four cores. Z can be written to the data memory or can be used by
another modular multiplication. As a result, the number of load and store operation are reduced. When
using one core to perform 256-bit Montgomery modular multiplication, 16 clock cycles are required. The
implementation result is summarized in Table-2 and Table-4. According to the table, the bottleneck of this
implementation is addition operations. Many hardware implementations were proposed to improve the
performance. The increasing use of multi-core systems have opened another window for improving the
performance of software implementations. Even for embedded systems several multi-core processors are
now available.

Algorithm 2. Parallel Montgomery Residue
multiplication

Input: X;Y��Zn where n is an odd integer and M

Then Z = –M

–1 mod 2m where m = �log2 n�.

Output: X��Y�02–m mod n.

1: Z� Parallel Multiply (X; Y) {Algorithm 1}

2: Zi� Parallel Multiply (Z; M) mod 2m {Algorithm 1}

3: Zi� ParallelMultiply(Zi; M) {Algorithm 1}

4: Zi� (Zi + Z) = 2m

5: if Zi � M then

6: Return (Zi – M)

7: else

8: Return (Zi)

9: end if

Illustration of the Montgomery Residues

• Let the modulus M be an odd n-bit integer 2n–1 < M < 2n

• Define r = 2n a = ar mod M

• Define the M-residue of an integer a<M as

• There is a one-to-one correspondence between integers and M-residues for

0 <a<M-1

Example

• M = 11, r = 16

 Implementation of Montgomery Modular Multiplication Algorithm for Multi-Core Systems 1927

0 0*16 mod 11 0

1 1*16 mod 11 5

2 2*16 mod 11 10

3 3*16 mod 11 4

4 4*16 mod 11 9

5 5*16 mod 11 3

6 6*16 mod 11 8

7 7*16 mod 11 2

8 8*16 mod 11 7

9 9*16 mod 11 1

10 10*16 mod 11 6

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Table 1
2048 instructions with 6 lines VLIW

Max Instructions/Line

6

Ops Register 1 Register 2 Register 3

ADD R10 R4 R6

MULT R6 R4 R10

MULT R1 R6 R5

ADD R5 R1 R6

ADD R1 R1 R1

MULT R1 R1 R1

ADD R1 R1 R1

SUB R1 R3 R5

ADD R1 R1 R1

SUB R5 R3 R1

ADD R1 R4 R9

ADD R4 R9 R1

5. RESULT & DISCUSSION

The multi-core platform implemented with Open Mp Multi-Kernel. The operands, X, Y and M, are stored in
the data memory. comparison with implementation of both Algorithm-1 and Algorithm-2 on the platform
with various hardware configurations. The results are presented in below tables. We implemented our
algorithm for the operand sizes of 1024, 2048, 4096, 8192, 16384 and 32768 bits on general-purpose
multi-core processors using OpenMP and obtained the timings. As shown in Table-1 the 12 operand with
instructions set 6 of results in Table-2 with 8.33% reduction and with table-3 algorithm-2 has given the
16.33% instruction lines saved using Montgomery Algorithm.

With the MMM algorithm -1 the lines saved per instruction set in scheduling of with Multi-core

The modulation has on with algorithm 2 of multi-core set of instructions.

The Multi-core processor of the modular has on the instruction of the VLIW of a Montgomery Modular
Instructions are

1928 Venkata Siva Prasad Ch., S. Ravi and M. Anand

Table 2
Algorithm-1 with Multi-core

VLIW INTEGRATED OUTPUT

ADD R10 R4 R6

MULT R6 R4 R10 MULT R1 R6 R5
ADD R5 R1 R6
ADD R1 R1 R1
SUB R1 R3 R5
ADD R1 R1 R1
SUB R5 R3 R1
ADD R1 R4 R9
ADD R4 R9 R1

VLIW Line %

Total % of Lines Saved = 16.666666666666664%

Table 3
Algorithm -2 Saved Lines

ADD R10 R4 R6

MULT R6 R4 R10 MULT R1 R6 R5

ADD R5 R1 R6

ADD R1 R6 R8

MULT R8 R1 R6

AD R1 R1 R1

DIV R1 R3 R5

ADD R1 R1 R1

SUB R5 R1 R3 ADD R1 R4 R9

ADD R4 R9 R1

VLIW Line %

Total % of Lines Saved = 16.666666666666664%

Table 4
-2048 instructions with 16 lines VLIW

16

Ops Register 1 Register 2 Register 3

MULT R1 R4 R6

ADD R3 R8 R3

MULT R2 R3 R4

MULT R1 R3 R7

ADD R1 R1 R1

OR R6 R1 R4

SUB R7 R5 R8

ADD R7 R1 R1

MULT R7 R4 R6

SUB R4 R6 R9

ADD R1 R2 R4

(contd...)

 Implementation of Montgomery Modular Multiplication Algorithm for Multi-Core Systems 1929

DIV R3 R6 R9

MULT R2 R3 R1

ADD R1 R1 R4

SUB R3 R1 R2

ADD R6 R3 R3

DIV R6 R5 R5

ADD R1 R4 R1

ADD R2 R2 R4

MULT R10 R3 R6

XOR R6 R8 R2

OR R2 R6 R9

MULT R4 R2 R9

ADD R1 R3 R6

SUB R9 R10 R4

NOR R4 R4 R2

MULT R3 R4 R1

XNOR R5 R4 R7

XNOR R9 R1 R9

NOR R5 R6 R10

ADD R2 R5 R7

MULT R4 R2 R8

(Table 4 contd...)

Max Instructions/Line

16

Ops Register 1 Register 2 Register 3

Table 5
Algorithm-1 saves lines

VLIW INTEGRATED OUTPUT

ADD R3 R4 R5

MULT R5 R3 R4 ADD R1 R1 R1 MULT R10 R5 R7

ADD R1 R1 R1 DIV R5 R7 R10 MULT R2 R7 R4

ADD R1 R1 R1

ADD R1 R1 R1 XNOR R7 R4 R2

ADD R1 R1 R1

ADD R1 R1 R1 OR R2 R7 R4

MULT R4 R2 R7 ADD R1 R1 R1

NOR R1 R7 R9

ADD R1 R1 R1

ADD R1 R1 R1

MULT R1 R7 R7

ADD R1 R1 R1

SUB R9 R1 R7

ADD R1 R1 R1

VLIW Line %

Total % of Lines Saved = 29.666666666666668%

1930 Venkata Siva Prasad Ch., S. Ravi and M. Anand

Table 6
Algorithm-2 saves lines

VLIW INTEGRATED OUTPUT

MULT R1 R4 R6 ADD R3 R8 R3

Mult R2 R3 R Add R2 R1 R1

Sub R2 R2 R2 Or R6 R1 R4 Sub R7 R5 R8

Add R7 R1 R1 Mult R7 R4 R6

Sub R4 R6 R9

Add R1 R2 R4 Div R3 R1 R9

Mult R1 R3 R2 Add R1 R1 R4 Or R3 R5 R8 Mult R7 R5 R6

Div R6 R5 R5 Add R1 R1 R1 Add R2 R2 R4

Mult R10 R3 R6 Sub R2 R2 R2

Or R2 R6 R9

Mult R4 R2 R9 Add R1 R3 R6

Add R1 R1 R1 Nor R4 R4 R2

Mult R3 R4 R1 Xnor R5 R4 R7

Or R9 R6 R7 Nor R5 R6 R10

Add R2 R5 R7 Mult R4 R2 R8

VLIW Line %

Total % of Lines Saved = 53.125%

6. CONCLUSION

This paper introduced an efficient software implementation of the Montgomery multiplication
algorithm on a multi-core system. Multi-core processor that is devoted to computing scheduling
algorithms scheduling method could reduce the number of data transfers between different cores.
the performance of 256-bit Montgomery multiplication was improved by using 4-core systems,
respectively with the algorithm-2. Overcome of the low-latency and high-throughput VLIW of
Montgomery Modular Multiplication computation. High performance of Very long-Instruction word
of MMs is achieved by using efficient modular multipliers and employing fast inter-core
communication. Experimental results show that our design outperforms previous works based on
varied platforms in performance, for instance, it can complete 1024-bit VLIW in saved data lines
0.087 ms at 960 MHz. the future work includes a hardware implementation based on our proposed
parallel-processing algorithm with a special data-path that can perform multiple operations Increasing
the speed of the multi-core system.

 Implementation of Montgomery Modular Multiplication Algorithm for Multi-Core Systems 1931

REFERENCE

[1] Nicolau; J. A. Fisher “Measuring the Parallelism Available for Very Long Instruction Word Architectures” IEEE
Transactions on Computers , Volume: C-33, Issue: 11, 1984, pp. 968–976.

[2] T. Fryza; R. Marsalek; F. Adamec, “Effective programming of very long instruction word digital signal processors”,
Radioelektronika, 2012 22nd International Conference, 2012, pp. 1–4.

[3] X. Yang; Y. Zhang; D. Liu; D. Guo; H. He, “Single instruction multiple data code auto generation for a very long
instruction words digital signal processor in sensor-based systems” IET Wireless Sensor Systems, Volume: 3, Issue: 2,
2013, pp. 119–125.

[4] R. Jordans; R. Corvino; L. Józwiak, “Algorithm Parallelism Estimation for Constraining Instruction-Set Synthesis for
VLIW Processors” Digital System Design (DSD), 15th Euromicro Conference, 2012, pp. 152–155.

[5] S. Rajaraman; P. Sirpotdar; A. Wavare; A. B. Patki, “Multithreading implementation in a single core TMS320C6713
DSP” Advances in Communication and Computing Technologies (ICACACT), International Conference, 2014, pp.
1–5.

[6] D. Sabena; M. S. Reorda; L. Sterpone “On the Automatic Generation of Optimized Software-Based Self-Test Programs
for VLIW Processors” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,Volume: 22, Issue: 4, 2014,
pp. 813–823.

[7] M. Milward; D. Stevens; V. Chouliaras, “Embedded UML design flow to the configurable LE1 Multi-Core VLIW
processor” Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2012 7th International Workshop, 2012,
pp. 1–8.

[8] T. J. Lin; C. N. Liu; S. Y. Tseng; Y. H. Chu; A. Y. Wu “Overview of ITRI PAC project - from VLIW DSP processor
to multicore computing platform” VLSI Design, Automation and Test, 2008. VLSI-DAT 2008. IEEE International
Symposium, 2008, pp. 188–191.

[9] Xu Yang 1 ; Yanjun Zhang 1 ; Dake Liu 1 ; Deyuan Guo 2 ; Hu He 2 “Single instruction multiple data code auto generation
for a very long instruction words digital signal processor in sensor-based systems” Volume 3, Issue 2, June 2013,
pp. 119–125.

[10] Z. Chen; P. Schaumont, “A Parallel Implementation of Montgomery Multiplication on MulticoreSystems: Algorithm,
Analysis, and Prototype”, IEEE Transactions on Computers, Volume: 60, Issue: 12, 2011, pp. 1692–1703.

[11] R. Dou; J. Han; Y. Bo; Z. Yu; X. Zeng, “An Efficient Implementation of Montgomery Multiplication on Multicore Platform
With Optimized Algorithm, Task Partitioning, and Network Architecture” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Volume: 22, Issue: 11 2014, pp. 2245–2255.

