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SOLUTIONS OF FAR-FIELD AMPLITUDE AND 
SCATTERING CROSS SECTION FOR A RIGID 

ELLIPSOID BY INTEGRAL EQUATION TECHNIQUES

Chaitanya Kumar

Abstract: I present here the solutions for the boundary value problems of scattering 
of low-frequency sound waves by an arbitrary rigid ellipsoid by integral equation 
techniques whose density and compressibility are different from those of the 
surrounding infinite medium. The analysis is based on a computational scheme 
in which we first convert the boundary value problems into integral equations. 
Thereafter, I convert these integral equations to infinite set of algebraic equations. 
A judicial truncation scheme then helps us in achieving our results. Interesting 
feature of this computation technique is that the very first truncation of the algebraic 
system yields the exact solutions for far field amplitude and scattering cross section 
for a rigid ellipsoid.

1.  MATHEMATICAL FORMULATION

I discuss the problem of the irradiation of an obstacle scatterer, occupying a finite 
region R2, by an acoustic wave. The boundary of the obstacle is denoted by S while 
the region exterior is R1. Let  be a Cartesian coordinate system whose 
origin O is at the centroid of the scatterer and let  denote the unit normal vector to 
S pointing out of R2 into the host medium. The incident plane wave propagating in 
the direction of the unit vector  in the infinite host medium has the potential  (I 
suppress the time factor exp  throughout this analysis) given as 

                  (1)

where  are unit vectors along  axes respectively while 
 is the wave length.

The governing differential equations are 

                                        (2)

                                             (3)

where the quantity  is the relative index of refraction. If we write

                                                 (4)
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then ( )s x  is the scattered field which satisfies the radiation condition at 
infinity. The boundary conditions on S are  

( ) ( )S Sx x  

( ) ( )S Sx x
n n

, 

where  is a non-negative number which gives the ratio of outer to inner 
compressibilities. The two parameters  and  effectively characterize the 
composite media. When  =1.  =1, the regions R1 and R2 are filled with the 
same material so that both the potential field and their normal derivatives are 
continuous across S and, accordingly no scattering occurs. When   0, I have 
the scattering problem for a rigid obstacle. However, it is not possible to get the 
soft body limit from this analysis. 

To derive the integral equation I use the equation   
2 2

1 2( ) ( , ) ( ), , ,k G x x x x x x R R S R      (5) 

where x  and x  are, respectively, the field and source points. 

exp( | |)( , )
4 | |

ik x xG x x
x x

 

is Green's function when the whole region R is occupied by the host medium and 
( )x x  is the Dirac delta function. When we multiply eqn. (2) by ( , )G x x  

and (5) by ( )x  subtract and integrate over the region R1, and let S denote the 
infinite sphere  with center at the origin O , we get 1 2or x R x R , 

1

2

( ),
( ) | ( , ) ( , ) ( )

0,

( , ) ( ) ( ) ( , ))

S S S SS

S S S SS

x x R Gx x x G x x x dS
n nx R

GG x x x x x x dS
n n

 

 0( ) | ( , ) ( , ) ( ) ( )S S S SS

Gx x x G x x x dS x
n n

 

 

 
2

0
2( ) { [ ( ) ( , ) ( , ) ( )]}

R
x div x G x x G x x x dR   
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2

0 ( ) [ ( ) ( , ) ( , ) ( )
R

x x G x x G x x x     

2 1 2(1 ) ( ) ( , )] ,x G x x dR x R or R                   (6) 

Now we use eqn. (5) and set 1B  and 2( 1)C  so that eqn. (6) 
becomes 

2

0 2
2( ) ( ) [ ( ) ( , ) ( , ) ( )] ,

R
x x B x G x x Ck G x x x dR x R 

     (7) 
This formula is valid everywhere and constitutes the governing integral equation 
to determine ( )x  in R2. After ( )x  has been thus determined, I substitute it 
in this very equation and find ( )x . 

To solve the integral equation (7) I use the expansions 

0 0

0 0

( ) ( )ˆ( ) exp( . ) ( ) ( )
! !

n n
n

n
n n

ik ikx ik x b x x
n n

          (8a) 

where  

 (0) ˆ( ) ( )n
n x b x . 

            
| | 21( , ) ... | |

4 | | 4 4 8

ik x xe ik k RG x x R x x
x x R

    (8b) 

 
0

( )( ) ( ),
!

n

n
n

ikx x
n

 (8c) 

where the functions ( )n x  are independent of the parameter k. Substituting 
these expansions in integral equation (7) I get the following integral equations for 
the function ( ), 0,1,2,....,n x n  

2

0
0 0 0 2

1( ) ( ) ( )
4R

x x B x dR
R

  ,                  (9) 

2

0
1 1 1 2

1( ) ( ) ( )
4R

x x B x dR
R

                    (10) 

2

0
2 2 0 0 2

1 1( ) ( ) ( ) ( ). ( )
4 4 2R

Rx x B x x C x dR
R R


       (11) 

and so on and where x R . Also 

0 0 0 2
0 2

ˆ ˆ( ) 1, ( ) , ( ) ( )x x b x x b x  
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are the terms in the series (8a). 
Equations (9)-(11) are the integral equations of the potential theory and can 

be processed by the truncation scheme as explained in references [12-15]. As 
mentioned before, I first derive the solutions in the interior region and then use 
them to obtain the exterior soutions. I illustrate the method for a triaxial ellipsoid. 

INTERIOR SOLUTION 

For a triaxial ellipsoid whose semiaxes have the lengths 1 2 3, and a a a , the 
interior region R2 is 

22 2
31 2

2 2 2 2
1 2 3

: 1xx xR
a a a

,  1 2 3 0a a a . 

Since, in the integral eqns. (9)-(11), the terms 0 ˆ( )n
n b x  are the known nth 

degree homogeneous functions in 1 2 3, and x x x , it follows from the analysis in 
[12-15] that the  

(i) zeroth order approximation of the integral eqns. (9) yields the exact 
interior solution 0 ( )x . 

(ii) first order approximation of eqn. (10) yields the exact solution for 1 ( )x
; 

(iii) second order approximation of eqn. (11) yields the exact solution for  

2 ( )x , and so on. 

To find the exact solution of equation (9) we write it as 

 
2

0
0 0 2 20,

,

1( ) ( ) ( ) ,
4 | | iR

i

Bx x x dR x R
x x

       (12) 

When we differentiate both sides m times with respect to x , we have 

1 1 2
2

1 2

0
0, ,..., 0, , ,...., 20,

,...

1( ) ( ) ( ) ,
4 | |m m

m

p p p p p iR
i p p p

Bx x x dR
x x

  (13) 

where p's have the values 1, 2, 3, . Next, I use Taylor's expansion 

1 2 1 20, 0, ...
0

1( ) (0) ... ,
! s si q q q q q q

s

x x x x
s

 

where q's have the values 1, 2, 3, in (13) and get 

1 2 1 2 1 2 1 2 1 2

1
0

0, ... 0, ,.... .... , .... 0, ,...
0

( 1) 1(0) (0) (0)
4 !m m m s s

m

p p p p p p ip p p q q q iq q q
s

B T
s

   (14) 

while the quantities 
1 2 1 2,... , ,....m sip p p q q qT  are the shape factors defined as 
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1 2 1 2 1 2

2
1 2

,... , ,.... 2
, , ,....

1 ...
| |m s s

m

ip p p q q q q q qR
ip p p

T x x x dR
x

                (15) 

Since 0
0 ( ) 1x , only the term 0 (0)  is nonzero while 

1 20, ,... (0) 0
mp p p , and 

I find from (14) that 0
0 0(0) (0) 1,  so that 

 0 2( ) 1,x x R                                         (16) 

Processing integral eqn. (10) in the same fashion, I have 

1 2 1 2 1 2 1 2 1 2

1
0

1, ,... 1, ,... , ,... , , ,... 1, ,...
0

( 1) 1(0) (0) (0)
4 !m m m s s

m

p p p p p p i p p p q q q iq q q
s

B T
s

 (17) 

Now 0
1 1 1 2 2 3 3

ˆ( ) ( . )x b x b x b x b x , I find that 
1 2

0
1, ,... (0) 0, 2

mp p p m  
and consequently 

1 21, ,... (0) 0, 2
mp p p m  

and the only non-zero coefficients in Taylor's expansion of 1 ( )x  are 

1, (0), 1,2,3p p  Indeed for 0
1 10, (0) (0) 0m  and for m = 1, s = 0, 

relation (17) yields 

0
1, 1, 1, 1,(0) (0) (0) (0)

4 4p p ip i p pp p
B BT b T ,  p not summed. 

where I have used the fact that 0,ipT i p  in view of the symmetry of the 
ellipsoid. Thus, the foregoing relation yields 

 1, (0) ,
1

4

p
p

pp

b
B T

 p not summed.                                             (18) 

To find the factors ppT  explicitly, I appeal to relation (15) and set | | ,x r  so 
that 

3
2

2
1

2 2
2 3

11 2 1 2 32 2 2 2 2 2 2 2 1/ 21
1 1 1 1 1 2 2 3 3

1 1
( )i

s

R x

a aT dR dx dx dx
x r a x a x a x a x

 

 
2

2 2 2 2 2 21
1 2 3 1 1 1 2 2 3 33

1

, ( )
S

xa a a dS r a x a x a x
r

, 

where 
3

2

1

: 1,i
i

S x  is the sphere of unit radius. Thus 



234 Chaitanya Kumar

 
 

12 ( )pp pT VI a ,  p not summed                                                                 (19) 

where 1 2 3V a a a  and  

 2 2 2
1 1 2 320
( ) , ( )( )( )

( )p u
p u

duI a R u a u a u a
u a R

           (20) 

Substituting the value (19) in (18) we have 

1,

1

(0) , 1,2,3
1 ( )

2

p
p

p

b
pBV I a

 (21) 

Accordingly, the exact solution of the integral equation (10) is 

 
3

1 1, 2
1

1

( ) (0) ,
1 ( )

2

p p
p p

p
p

b x
x x x RBV I a

                (22) 

FAR-FIELD AMPLITUDE AND SCATTERING CROSS SECTION 

In relation (4) I have defined the scattered field ( )s x  in the region R1. With the 
information gathered in the previous sections I can evaluate the field ( )s x . 
Indeed, from relations (4) and (7) I have 

2

2
2

ˆˆ( ) [ ( ) ( , ) ( , ) ( )] ( , )
ikr

s

R

ex B x G x x Ck G x x x dR g x k
ikr

  .  

 as | |r x                                           (23) 

where 

2

2

2
ˆˆ ˆ ˆ( , ) [ ( ) ( )]exp( )

4 R

ikg x k iBx x Ck x ikx x dR     (24) 

is the far-field amplitude and x̂  and k̂  are unit vectors. 

Next, I substitute the expansions 
2

0 1 2
( )( ) ( ) ( ) ( ) ...,

2!
ikx x ik x x  

and 

0

( )ˆ ˆexp( ( ) ( ),
!

n

n

ikik x x x x
n

 

in (24) and obtain the first approximation, 
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2

3
4

1 2
4ˆˆ ˆ( , ) ( ) ( )

4 3 R

ik VCg x k Bx x dR O k .          (25) 

This is the approximation first given by Rayleigh [18]. Now, from relation (22) I 
find that 

3

1
1

1

ˆ
( )

1 ( )
2

p p

p
p

b i
x BV I a

  

is a constant vector, so that (25) yields 

 
3 3

4

1
1

ˆˆˆ( , ) ( ).
3 1 ( )

3

p p

P
p

b xik Vg x k C B O kBV I a
                 (26) 

By letting B  1 and C  1 in equation (26), I get the formula of Far-Field 
amplitude for a rigid ellipsoid  

 
3 3

4

1
1

ˆˆˆ( , ) 1 ( )
3 1 ( )

2

p p

p
p

b xik Vg x k O kV I a
                 (27) 

 
where the integral 1( )pI a  is defined by relation (20). 

At this stage I make a few observations about the scattering amplitude g: (i) 
it satisfies the reciprocity relation; (ii) it satisfies the scattering theorem; (iii) if 
the scatterer has inversion symmetry ( . . implies )i e x S x S , then I can 
assume that 

3 4 5 6
3 4 5 6

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) ....g x k ik A x k k A x k ik A x k k A x k    (28) 

Where ˆˆ( , )nA x k  are real functions and in view of the above mentioned 
observations 

 4
ˆˆ( , )A x k  = 0                                         (29) 

   6 3 3
1ˆˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )

4
A x k A p x A p x d p                  (30) 

and so on. Accordingly, the first approximation to Reg ˆˆ( , )x k  is of order k6.  

By comparing relations (26) and (28) it follows that 
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3

3
1

1

ˆ
3 1 ( )

3

p p

P
p

b xVA C B
BV I a

.                             (31) 

Then from (29) I find that 

2
6 3

1ˆ ˆ ˆ ˆ ˆ( , ) ( ( )) ( )
4

A xk k A p x d p  
22 2

31 2

0 0
1 2 3

cossin cos sin sin sin
36

bV b bC B d d
A A A  

 

 
22 2 2 2
31 2

2 2 2
1 2 39 3

bV B b bC
A A A

                                (32) 

where 

11 ( ), 1,2,3
2p p

BVA I a p . 

The scattering cross section S  is given by the formula 

2
2 2

1 4ˆ ˆ ˆˆ ˆ| ( , ) | ( ) Reg (k, k)S g p k d p
k k

 

Substituting in it the value of ˆ ˆ( , )g p x  from (28) to (32) we have 

 
22 2 3

2 6 4 2 6
6 2

1

4ˆ ˆ4 (k, k)+O(k ) ( ).
9 3

p
S

p p

bV Bk A k C O k
A

   (33) 

By letting B  1 and C   1 in equation (33) I obtain the corresponding 
formula of scattering cross section S  for a rigid ellipsoid 

 
22 3

4 6
2

1

4 11 ( ).
9 3

p
S

p p

bV k O k
A

                         (34) 
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