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Abstract. We prove the existence of solutions of stochastic differential inclu-
sion with mean derivatives relative to the past. The right-hand sides of both

the line with forward mean derivative and with quadratic mean derivative are
lower semi-continuous. The right-hand of the line with quadratic mean deriv-
ative has closed convex images while the right-hand side with forward mean
derivative may not hav convex images.).

Introduction

The construction of mean derivatives (forward, backward, etc.) was introduced
by E. Nelson (see, e.g., [1, 2, 3]) for the needs of the so called “Stochastic Mechanics”
(a version of quantum mechanics). Note that in [4] an additional mean derivative
called quadratic, was introduced, that made in principle possible to recover a sto-
chastic process from its various Nelson’s mean derivatives and the quadratic one.
After that it was found that the equations and inclusions with mean derivatives
arise in many problems in mathematical physics, economy, engineering, etc. In
particular, inclusions with mean derivatives naturally arise in some problems of
optimal control.

In this paper we investigate the inclusions with mean derivatives having lower
semi-continuous right-hand sides. A new point here is that both the lines with
forward mean derivative and the line with quyadratic mean derivative have set-
valued right hand sides and in addition the right-hand side of the line with quadratic
mean derivative has closed convex images while the right-hand side of the line with
forward mean derivative may not hav convex images. We prove an existence of
solution theorem for such inclusion under some natural conditions.

The set of symmetric positive-definite n × n matrices we denote by S+(n) and
its closure, the set of positive semi-definite matrices, by S̄+(n).

1. Mean derivatives

Let on certain probability space (Ω,F ,P) a stochastic process ξ(t) with values in
Rn be given. We suppose that at every t the element ξ(t) belongs to the functional
space L1.
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Denote by Pξ
t the σ-subalgebra of F that is generated by preimages of Borel sets

in Rn under all mappings ξ(s) : Ω → Rn, 0 < s < t. By E(· | Pξ
t ) we denote the

conditional expectation with respect to Pξ
t . Following Nelson [1, 2, 3] we call Pξ

t

the past of process ξ(t).
Nelson introduced several constructions of mean derivatives, but in this paper

we deal only with the mean derivatives with respect to the “past” according to the
following definition

Definition 1.1. ([1, 4]) The forward mean derivative relative to the past (P-mean
derivative) DPξ(t) of ξ(t) at a time instant t is L1-random element of the form

DPξ(t) = lim
△t→+0

E

(
ξ(t+△t)− ξ(t)

△t

∣∣∣Pξ
t

)
, (1.1)

where the limit is assumed to exist in L1 and △t → +0 means that △t tends to 0
and △t > 0.

From the properties of conditional expectation (see [5] ) it follows that Dξ(t)
can be represented as compositions of ξ(t) and Borel measurable vector fields (re-
gressions)

a(t, x) = lim
∆t→+0

E(
ξ(t+∆t)− ξ(t)

∆t
|ξ(t) = x) (1.2)

on Rn. This means that Dξ(t) = a(t, ξ(t)).
Following [4, 6] we introduce the new mean derivative D2, called quadratic rela-

tive to the past, that differentiates an L1 random process ξ(t), t ∈ [0, T ] according
to the rule

DP
2 ξ(t) = lim

△t→+0
E

(
(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t

∣∣∣Pξ
t

)
, (1.3)

where the limit is assumed to exist in L1, △t → +0 means that △t tends to 0
and △t > 0. Here (ξ(t+△t)− ξ(t)) is considered as a column vector in Rn while
(ξ(t+△t)− ξ(t))∗ is a row vector (transposed, or conjugate vector) and the limit
is supposed to exists in L1(Ω,F ,P).

We emphasize that the matrix product of a column on the left and a row on
the right is a matrix. It is shown that D2ξ(t) is a symmetric positive semi-definite
matrix function on [0, T ]× Rn.

Consider the Banach space C0([0, T ],Rn) of continuous curves in Rn given on
[0, T ] with usual uniform norm and the σ-algebra C generated by cylinder sets.
By Pt we denote the σ-subalgebra of C generated by cylinder sets with bases over
[0, t] ⊂ [0, T ]. Recall that C is the Borel σ-algebra on C0([0, T ],Rn).

Let a : [0, T ] × C0([0, T ],Rn) → Rn and α : [0, T ] × C0([0, T ],Rn) → S̄+(n) be
measurable mappings.

The equation with P-mean derivatives is a system of the form{
DPξ(t) = a(t, ξ(·)),
DP

2 ξ(t) = α(t, ξ(·)). (1.4)

Definition 1.2. ([7]) We say that (1.4) on Rn has a solution on [0, T ] with initial
condition ξ(0) = ξ0 if there exists a probability space (Ω,F ,P) and a process ξ(t)
given on (Ω,F ,P) and taking values in Rn such that ξ(0) = ξ0 and for almost all
t ∈ [0, T ] equation (1.4) is satisfied P-a.s. by ξ(t).
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Let Ξ : [0, T ] × C0([0, T ],Rn) → Z be a mapping to some metric space Z.
Below we shall often suppose that such mappings with various spaces Z satisfy the
following condition:

Condition 1. For each t ∈ [0, T ] from the fact that the curves x1(·), x2(·) ∈
C0([0, T ],Rn) coincide for 0 ≤ s ≤ t, it follows that Ξ(t, x1(·)) = Ξ(t, x2(·)).

Remark 1.3. Note that the fact that a mapping Ξ satisfies Condition 1, is equivalent
to the fact that Ξ at each t is measurable with respect to Borel σ-algebra in Z and
Pt in Ω̃ (see [8]).

Lemma 1.4. ([7]) For a continuous (measurable, smooth) mapping

α : [0, T ]× C0([0, T ],Rn) → S+(n)

satisfying Condition 1, there exists a continuous (measurable, smooth, respectively)
mapping A : [0, T ]×C0([0, T ],Rn) → L(Rn,Rn) that satisfies Condition 1 and such

that α(t, x(·)) = A(t, x(·))A∗(t, x(·)) for each (t, x(·)) ∈ R× Ω̃.

The proof of Lemma 1.4 can be found in [7, Lemma 1].
Consider set-valued mappings a(t, x(·)) and α(t, x(·)) that send [0, T ]×C0([0, T ],

Rn) to Rn and S+(n), respectively, and in addition satisfy Condition 1. The dif-
ferential inclusion with forward P-mean derivatives is a system of the form{

DPξ(t) ∈ a(t, ξ(·)),
DP

2 ξ(t) ∈ α(t, ξ(·)). (1.5)

Definition 1.5. ([7]) We say that inclusion (1.5) has a solution with initial condi-
tion ξ0 ∈ Rn if there exists a probability space and a stochastic process ξ(t) given
on it and taking values in Rn, such that ξ(0) = ξ0 and a.s. ξ(t) satisfies inclusion
(1.5).

2. Set-valued mappings with lower semi-continuous
right-hand sides

A set-valued mapping F from a set X into a set Y is a correspondence that
assigns a non-empty subset F (x) ⊂ Y to every point x ∈ X; F (x) is called the
value of x.

In order to distinguish set-valued mappings form single-valued ones we shall
denote a set-valued mapping F sending X to Y , by the symbol F : X ( Y while
for a single-valued mapping we shall keep the notation f : X → Y .

If X and Y are metric spaces, for set-valued mappings there are several different
analogues of continuity that in the case of single-valued mappings are transformed
into usual continuity (here we do not deal with the description of such notion for
set-valued mappings of topological spaces, see, e.g., [9]). In this paper we deal only
with lower semi-continuous set-valued mappings, so we give only their definitions.

Definition 2.1. A set-valued mapping F is called lower semicontinuous at the
point x ∈ X if for each ε > 0 there exists a neighbourhood U(x) of x such that
from x′ ∈ U(x) it follows that F (x) belongs to the ε-neighbourhood of F (x′). F is
called lower semicontinuous on X if it is lower semicontinuous at every point of X

An important technical role in investigating set-valued mappings is played by
single-valued mappings that approximate the set-valued ones in some sense. We
describe two kinds of such single-valued mappings: selectors and ε-approximations.
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Definition 2.2. Let F : X ( Y be a set-valued mapping. A single-valued mapping
f : X → Y such that for each x ∈ X the inclusion f(x) ∈ F (x) holds, is called a
selector of F .

Not every set-valued mapping has a continuous selector. For lower semicontinu-
ous set-valued mappings with convex closed values their existence is proved in the
classical Michael’s Theorem.

Theorem 2.3. (Michael’s Theorem) If X is an arbitrary metric space and Y is a
Banach space, a lower semicontinuous mapping such that the value of every point
of X is a convex closed set, has a continuous selector.

If the values of a lower semicontinuous set-valued mapping (generally speaking)
are not convex, it may not have continuous selectors. Then the following construc-
tion is often very much useful.

Definition 2.4. Let E be a separable Banach space. A non-empty set Y ⊂
L1([0, l], E) is called decomposable if f · χ(Y) + g · χ([0, l]\Y) ∈ Y for all f, g ∈ Y
and for every measurable subset Y in [0, l] where χ is the characteristic function of
the corresponding set.

The reader can find more details about decomposable sets in [10] and [11].

Theorem 2.5. Let (Ξ, d) be a separable metric space, X be a Banach space. Con-
sider the space Y = L1(([0, T ],B, λ), X)) of integrable maps from [0, T ] into X (here
B is the Borel σ-algebra and λ is the normalised Lebesgue measure). If a set-valued
map G : Ξ → Y is lower semicontinuous and has closed decomposable images, it
has a continuous selector.

Theorem 2.5 is a particular case of the Fryszkowski-Bressan-Colombo Theorem,
see, e.g., [10, Lemma 9.2].

Below we are using only deterministic initial values, i.e., ξ0 being a point in Rn.

3. The main result

Theorem 3.1. Let the set-valued vector field

a : [0, T ]× C0([0, T ],Rn) → Rn

be lower semi-continuous, have closed images, uniformly bounded, i.e.,

∥a(t, x(·))∥ < C (3.1)

for some C > 0 and for all a(t, x(·)) ∈ a(t, x(·)), and satisfy Condition 1.
Let α : [0, T ] × C0([0, T ],Rn) → S+(n) be set-valued, lower semi-continuous,

have closed convex values, be uniformly bounded and satisfy Condition 1. We also
suppose that there exist constants C0 > 0 and C1 > C0 such that the following
inequality

C0 < tr α(t, x(·)) < C1, (3.2)

for every α(t, x(·)) ∈ α(t, x(·)) holds uniformly.
Then under the above hypotheses the inclusion{

DPξ(t) ∈ a(t, ξ(·)),
DP

2 ξ(t) ∈ α(t, ξ(·)). (3.3)

for the initial condition ξ(0) = ξ0 has a solution well defined on the entire interval
t ∈ [0, T ].
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Proof. First of all, by Theorem 2.3 (Michael’s Theorem) there exists a continuous
selector α(t, ξ(·)) of α(t, ξ(·)) that evidently satisfies Condition 1 and inequality
(3.2).

Let x(·) be a continuous curve. Consider the set-valued vector field a(t, x(·))
along x(·) and denote by Pa(·, x(·)) the set of all measurable selectors of a(t, x(·)),
i.e., the set of measurable maps {f : R → Rn : f(x(t)) ∈ a(t, x(·))}. It is obvious
that since estimate (3.1) is satisfied, all those selectors are integrable on any finite
interval in R with respect to Lebesgue measure.

In C0([0, T ],Rn) introduce the σ-algebra F̃ generated by cylindrical sets. By P̃t

denote the σ-algebra generated by cylindrical sets over [0, t] ⊂ [0, T ].
Consider the set-valued mapping B that sends x(·) ∈ C0([0, T ],Rn) into

Pa(·, x(·)). Because of estimate (3.1) all selectors from Pa(·, x(·)) are integrable
(see above), hence B takes values in the space L1(([0, T ],B, λ),Rn). It is known
(see, e.g., [11, Section 5.5]) that under the above-mentioned conditions

B : C0([0, T ],Rn) → L1(([0, T ],B, λ),Rn)

is lower semicontinuous and for any x(·) ∈ C0([0, T ],Rn) the set Pa(·, x(·)) (the
imageB(x(·))) is decomposable and closed. Thus, by Lemma 2.5B has a continuous
selector b : C0([0, T ],Rn) → L1(([0, T ],B, λ),Rn).

For any t ∈ [0, T ] let us introduce the map ft : C
0([0, T ],Rn) → C0([0, T ],Rn)

sending a curve x(·) ∈ C0([0, T ],Rn) into the curve

ft(τ, x(·)) =
{

x(τ) for τ ∈ [0, t]
x(t) for τ ∈ [t, l]

.

Obviously the map ft is continuous. Since ft(τ, x(·)) belongs to C0([0, T ],Rn),
the curve b(ft(τ, x(·))) ∈ L1(([0, T ],B, λ),Rn) is well defined. By construction
b(ft(τ, x(·))) ∈ a(τ, x(τ)) for almost all τ ∈ [0, t] and so this selector continuously
depends on t in L1(([0, T ],B, λ),Rn).

Introduce the map a : [0, T ]× C0([0, T ],Rn) → Rn by the formula

a(t, x(·)) = b(ft(τ, x(·))). (3.4)

By the construction this map is continuous jointly in t ∈ [0, T ] and x(·) ∈ C0([0, T ],
Rn). It is obvious that if x1(·) and x2(·) coincide on [0, t] then a(t, x1(·)) =

a(t, x2(·)). This means that a(t, x(·)) is measurable with respect to P̃t. (see Remark
1.3).

Taking into account (3.1) one can easily derive that ∥a(t, x(·))∥ is uniformly
bounded.

In follows from Lemma 1.4 that there exists continuous mapping A : [0, T ] ×
C0([0, T ],Rn) → L(Rn,Rn) that satisfies Condition 1 and such that α(t, x(·)) =
A(t, x(·))A∗(t, x(·)) for each (t, x(·)) ∈ R× C0([0, T ],Rn).

Consider the diffusion type equation

dξ(t) = A(t, ξ(·))dw(t). (3.5)

By [8, Sec. III.2, Theorem 4] equation (3.5) has a solution. Note that it follows
from (3.2) that A(t, x(·)) is uniformly bounded and has uniformly bounded converse
operator. Then by Corollary 1 to [8, Sec. III.2, Theorem 2] the equation

dξ(t) = a(t, ξ(·))dt+A(t, ξ(·))dw(t) (3.6)
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has a solution as well. One can easily see that the solution ξ(t) of (3.6) is a solution
of (3.3). From the general theory of equations with mean derivatives it follows that
DPξ(t) = a(t, ξ(·) ∈ a(t, ξ(·)) and DP

2 ξ(t) = α(t, ξ(·)). �
Note that the solution of (3.6) is not unique.
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