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Abstract: The issue of polynomial approximation of degree seven for circular arcs is considered. This septic
approximation is found in such away that the Chebyshev error function is of degree fourteen with the least deviation
from the x -axis. The Chebyshev error function equioscillates fifteen times rather than nine times equioscillations
that are mathematically guaranteed by the Borel and Chebyshev theorems. The error function is characterized by
having the same extremas and roots of the Chebyshev polynomial of degree fourteen.

keywords: Bézier curves; septic approximation; circular arc; equioscillation; CAD.

1. INTRODUCTION

Let ],[ baC  be the set of continuous functions on the closed interval ],[ ba . The uniform (Chebyshev) norm on

the linear space ],[ baC  is defined by

].,[|,)(|max=|||| baCfxff
bxa

��
��

�

Let Pn be the set of all polynomials of degree n , i.e. polynomials of the form i
i

n

in xaxP � 0=
=)( . The space

Pn is of finite dimension, closed, and convex because it is a subspace of ],[ baC . For a function ],[ baCf � ,

define the deviation )( nP�  of nn PP �  from f  by

.||=||)( ��� nn PfP

Also define

}.),({inf=)(= nnnnn PPPfEE ���

It is clear that
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.0, 3210 ������ EEEEEn

En is closed and, therefore, is compact.

For a function ],[ baCf � , a polynomial *
nP  is called the polynomial of best uniform approximation to f

if nn EP =)( *� .

E. Borel proved that there exists in nP  a polynomial *
nP  for which nn EP =)( *� , see [9]. A function )(xE

is said to equioscillate 2�n  times on ],[ ba  if there are 2�n  points, bxxxxa nn �� �� 2121 <<<< �  with

21|,)(|max|=)(| ���
��

nixExE
bxa

i

and )( 1�ixE  has opposite sign of 11),( ��� nixE i . Chebyshev proved that this polynomial *
nP  is unique and

is characterized by the existence of 2�n  points (Chebyshev alternant, 221 <<< �nxxx � ) which alternately

satisfy

2.,1,2,=,=)()(* �� niExfxP niin ��

However, for computational purposes, only polynomials of degrees 0 and 1 are characterized, see [9].
There is no method or characterization to find polynomials of best approximation of degrees 2�n . The
improvement in this field is very slow and it is a challenging issue to tackle this problem; “As a matter of fact, the
latter problem involves such formidable difficulties that a general solution has not been found to this day [9]”.

Let nP
~

 be the set of all monic polynomials of degree n  on [0,1]=I , i.e. polynomials of the form

i
i

n

i

n
n xaxxP � �

�
1

0=
=)( . It is well-known that the shifted monic Chebyshev polynomial 1)(2

~
�tTn  has the smallest

maximum value on I, i.e.

,
~

,||
~

||||
~

|| nnnn PPPT ��� ��

where equality holds only if nn TP
~

=
~

. The Chebyshev polynomial 1)(2
~

�tTn  equioscillates 2�n  times in [0,1] .

The polynomial approximation of degree seven for the circle is treated; the polynomial of best approximation
that equioscillates fifteen times rather than nine times is constructed. This is a substantial improvement in the
field of approximation theory. A process to locate the best approximation of degree seven that equioscillates
nine times is not possible so far.

Circular arcs are widely used to represent motions and model many objects. The implicit form of the circle
is impractical for computer applications, and the trigonometric equations are also impractical and there is a need
for a convenient and practical form to generate points on the circle. The parametric curves are suitable for
computer applications. They present an alternative sufficient method to represent and make a curve. Parametric
curves grant additional parameters to get better approximation for the stated problem. This approach is used to
get approximations of order 2n instead of the classical order of n+1 using the Lagrange interpolation, see [10,
12] and the references therein.

~
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The paper has the following construction. The approximation problem is explained in section two. The
Bézier curves of degree seven and the Bézier points are examined in section three. The septic Bézier curve with
the least deviation is demonstrated in section four, while its roots and extrema are given in section five. Section
six contains the conclusions.

2. THE APPROXIMATION PROBLEM

Given the circular arc � � �� ��� ttttc ,)(sin),(cos: �  as in Fig. 1. As explained before, this form is not

proper for computer applications. We need to find a polynomial curve that represents the circular arc with least
deviation from the x -axis. Classical methods of approximation depend on the Lagrange and Hermite
approximations and yield order of approximation of 1�n . In this paper, the geometric properties of the curve
are utilized in the choice of the Bézier points to get the Bézier curve of degree seven with approximation rate
fourteen rather than the classical rate of eight. The circular arc c  will be represented by employment of Bézier

curve � � 10,)(),(: �� ttytxtp � , where )(),( tytx  are polynomials of degree seven, to approximate c  with

rate of approximation of fourteen.

The issue of approximating a circular arc has been inspected by many researchers. In the literature,
assortments of conditions, norms, and degrees are applied, see [1, 2, 3, 4, 5, 8, 11, 13] and the references therein.
Albeit, it is the first time that the degree seven is scrutinized; non of these papers debates this case with high
order of approximation. Our results are optimal and can not be improved.

The �l -norm is harnessed as a measure for the error function for approximating the circular arc c  by the

polynomial curve p  as follows:

1.)()(:=)( 22 �� tytxtE (1)

Instead of the �l -norm, the following modified Euclidean error form )(tE  is applied:

1.)()(:=)( 22 �� tytxte (2)

It is rational to apply this error form because 0=)(te , i. e. the components )(tx  and )(ty of the

approximating polynomial curve p  make up for the implicit equation of the circle.

Figure 1: A circular arc
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Our aim is to detect the polynomial curve � � 10,)(),(: �� ttytxtp � , where )(tx  and )(ty  are septic

polynomials. The following two statuses have to be redeemed:

1. The parametric polynomial p  minimizes |)(|max [0,1] tet� ,

2. The modified Euclidean error term )(te  equioscillates fifteen times over [0,1] .

We apply These statuses to get the Bézier points. This is realized by finding the values of the parameters
introduced from the geometric properties of the circular arc, see the books [6, 7].

The modified Chebyshev polynomial e(t) will be equalized with the monic Chebyshev polynomial of
degree fourteen that has uniform error of 2–13. The angle � is taken to be as large as possible in order to approximate
the largest circular arc with uniform error 2–13. For a future research, one should caliber�  in order to further
minimize the uniform error. The process may include semi numerical procedure.

3. SEPTIC BÉZIER CURVE

Write the septic curve )(tp  as a septic Bézier curve in the following form:

1.0 ,
)(

)(
=:)(=)( 7

7

0=

����
�

�
��
�

�� t
ty

tx
tBptp ii

i
(3)

The points 6543210 ,,,,,, ppppppp  and 7p  are called the Bézier points, and the septic

polynomials

,)(135=)(,)(135=)(,)(121=)(,)(17=)(,)(1=)( 347
4

437
3

527
2

67
1

77
0 tttBtttBtttBtttBttB �����

)(17=)(,)(121=)( 67
6

257
5 tttBtttB ��  and  77

7 =)( ttB  are the Bernstein polynomials.

We are attentive to coerce the error to possess minimum deviation regardless at which part of the curve this
error appears in the middle or at the boundary points. To obtain continuity between the approximating curve and
the circular arc, the error function can be amended to reign zeros at the boundaries. Though, in this case, the error
will be more than the error in the case we explore.

As explained before, we are interested in minimizing the uniform error over the whole segment [0,1] .
Adopting a harmonic choice for the Bézier points with the circular arc will enable us to get the best uniform
approximation with the least deviation. The key point is the proper choice of the Bézier points to be content with
the approximation problem. The circle takes possession of many symmetries that will be used to detect the

adequate positioning for the control points. We begin with the first control point 0p ; it has to be as follows:

� �)(sin),(cos= 000 ����p . The values of 0�  and 0�  will be found later to satisfy the approximation problem.

The other end control point 7p  should reflect the existing symmetry in the circle, and therefore has the form

� �)(sin),(cos= 007 ���� �p . Initiate � �111 ,= bap , then the point 6p  should reflect the existing symmetry in

the circle, and therefore � �116 ,= bap � . Initiate � �222 ,= bap , then the point 5p  should reflect the existing

symmetry in the circle, and therefore � �225 ,= bap � . Initiate � �333 ,= bap , then the point 4p  should reflect the
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existing symmetry in the circle, and therefore � �334 ,= bap � . For the sake of simplification, set

)(sin=),(cos= 0000 ���� ba . The Bézier points have the following settings, see Fig. 3,
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Substitute the Bézier points in (4) in the Bézier curve )(tp  in (3) to get [0,1]��t :

� � � � � �
� � � � � � � � .
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 Later on, we will find out that there are several solutions. The solution that is in agreement with the tuning
of the circle has to cycle counter clockwise starting from the second quadrant and terminating in the fourth
quadrant. Subsequently, the Bézier curve p  is ought to behave alike by cycling counter clockwise starting from
the second quadrant and terminating in the fourth quadrant. To achieve this the following terms have to be
contented:

0.>,,0,<,,,, 10332210 bbabbaaa (6)

The parameters in the last equation designate the Bézier curve in (5); they are used to obtain the best
approximation with least deviation. The conditions are enjoined on the approximating curve p. The components

of p are substituted into the error function )(te . Since the components )(tx  and )(ty  are septic polynomials,

then the error function )(te  is a polynomial of degree fourteen. In the coming section, the conditions are applied
on the approximation polynomial to get the free parameters in (6).

Figure 2: The half of the solution for 
2

1
0 �� t
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4. BEST SEPTIC BÉZIER CURVE

 In this section, the parameters 32103210 ,,,,,,, bbbbaaaa  are set so that the statuses of the approximation problem

are given as in the following theorem:

Theorem 1: Substituting the following values of the parameters:

25084513,2.41316517=86602024,1.84054898=774776883,0.06793067= 210 ��� aaa (7)

48122498,0.87363898=8148063,0.99775121=5766575,3.64640959= 103 bba (8)

954441623.64680920=94531855,2.78669526= 32 �� bb (9)

in the Bézier points (4) and thereafter in the Bézier curve (5) realizes the following statuses: p  minimizes the

Chebyshev norm of the error function |)(|max [0,1] tet� , and the error function )(te  equioscillates fifteen times in

[0,1] . The error functions realize [0,1]��t :

.2|)(|max=,
)(22

1
)(

)(22

1
,

2

1
)(

2

1 14

10
13131313

�

��
�

�
��

�
���� tEwheretEte

t
�

�� (10)

Proof: These values of the parameters are realized in the septic polynomials )(tx  and )(ty  in equation (5)

and thereafter realized in the Chebyshev error function )(te  in (2). Simplifying the resulting equation leads to
the following equation:

� 2
2

2
1

2
0

132
3210
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2
0
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032 67201411220622604865663490431))2180( bbbbbbbbbbbaa ����������
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It is known in approximation theory that the Chebyshev polynomial of first kind of degree

fourteen, 1)/8192(2
~
14 �tT  is the unique polynomial among all polynomials of degree fourteen that has the least

deviation from the x -axis, where 1,1][)),(arccos(14cos=)(
~
14 ��uuuT . Since the resulting error function is

a polynomial of degree fourteen, thus, it attains the uniform error when it equals the monic Chebyshev polynomial
of degree fourteen. This feature is utilized to realize the approximation statuses. Making the error function equal

to the Chebyshev polynomial of first kind of degree fourteen, 1)/8192(2
~
14 �tT  by equating the coefficients in

both polynomials gives eight equalities that are used to find the values of the parameters 32103210 ,,,,,,, bbbbaaaa .

With the help of the computer algebra system (Mathematica) we get the values of the parameters; these values
are sophisticated, and it is unwieldy to present them, thus, they are documented in the decimal forms as specified
in equations (7) - (9). Consequently, the septic polynomial p  realizes the statuses of the approximation problem.

The two error functions )(te  and )(tE  are related by the following formula:

� � ).()(2=1))()((1))()((=1)()(=)( 222222 tEtEtytxtytxtytxte �������

 We get )(tE  in the form:

.
)(2

)(
=)(

tE

te
tE

�

Since the error )(te  is confined uniformly by 132

1
, thus we get
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[0,1].,2|)(|max=,
)(22

1
)(

)(22

1 14
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1313
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��
ttEwheretE

t
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Thus the error formula is established and Theorem 1 is proved.

Fig. 2 shows the figures of part of the circular arc and its septic Bézier curve ]
2

1
[0,��t , while the complete

circular arc and its septic Bézier curve are shown in Fig. 3  with the error in Fig. 4. Fig. 4 reveals that the human
eyes are not capable to distinguish the resulted error.

Figure 4: Euclidean Error of the septic Bézier curve in Theorem 1.

Figure 3: Circular arc and it’s septic Bézier curve in Theorem 1.
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The approach in this paper offers a skillful placement of the Bézier points that can not be speculated by a
designer to inclose one and half of the circle with the best uniform error.

5. ROOTS AND EXTREMA

The roots and the extrema of the Chebyshev error functions are given in this section. We first specify the roots

of the error functions )(te  and )(tE :

 Proposition I: The roots of the Chebyshev error functions )(te  and )(tE  are given by:
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1
= 1413

��
�� tt

Due to symmetry, they have the property:

15.=1,= jifortt ji ��

Proof: Substituting the values of ti in )(te  yields ,141,2,=0,=)( �ite i � . These are all of the roots of

e(t) because it is a polynomial of degree fourteen and has exactly fourteen roots. The other error function E(t) has

the same roots because 0=)(te  iff 1=)()( 22 tytx �  iff 1=)()( 22 tytx �  iff 0=)(tE .

Proposition II: The extreme values of the error functions )(te  and )(tE  occur at the parameters:
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0.=~0.012536,=))
14

(cos(1
2

1
=~

1413 tt
�

�

Due to symmetry, they have the property:

14.=1,=~~ jifortt ji ��

Proof: Since )(te  is of degree fourteen, thus its derivative is of degree thirteen and has thirteen roots.

Substitute these thirteen values of 131
~,,~ tt �  to get ,131,=0,=)~( �ite i �� . We check the end points for critical

points and get 0=~1,=~
140 tt .

Since [0,1],
8192

1
1)()(

8192

1
1 22 ������� ttytx , subsequently [0,1]0,)()( 22 ���� ttytx .

Differentiating )(tE  and equate to 0  to obtain 0=
)()(

)(
22 tytx

te

�

�
. Since the denominator is not equal 0 , then

this happens only iff 0=)(te� . Thus both error functions )(te  and )(tE  possess the extrema at the same
parameters. This completes the proof.

Proposition III: The error functions )(te  and )(tE  attain their extrema at it
~ ’s with the following values:

,5.0,=,
8192

1
=)~(,6,0,=,
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1
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�
�
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1
���

�
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�
ttEte

Proof: By substituting these parameters it
~  into the error functions the equalities are realized.

Proposition IV: At any value [0,1]�t , the errors using the septic Bézier curve in Theorem 1 to approximate
the circular arc behave according to the following polynomial of degree fourteen:

��������� 87
65432

379848155040
2

88179

2

17017

16

17017

8
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1024
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49

8192

1
=)( tt

tttttt
te

��� 109 793408655424 tt [0,1].,16384114688358400659456 14131211 ����� ttttt

Proof: The proposition is a consequence of Theorem 1.

Using the link between the errors E(t) and e(t) gives:
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��������� 87
65432

18992477520
4

88179

4

17017

32

17017
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2048
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2048
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16384

1
=~)( tt

tttttt
tE

109 396704327712 tt ��  [0,1].,819257344179200329728 14131211 ������ ttttt

6. CONCLUSIONS

Classical septic approximation of the circle yields an eighth order of approximation. We showed in this paper
that by a proper choice of the Bézier points that the septic approximation of the circle yields fourteenth order of
approximation. Moreover, the approximation attains statuses of Chebyshev quality; it equioscillates fifteen times.
The numerical demonstrations expose the effectiveness of the proposed method. The approximation intersects

the curve fourteen times with uniform error 132�  and thus outperforms any other approximation.
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