
977 International Journal of Control Theory and Applications

International Journal of Control Theory and Applications

ISSN : 0974–5572

© International Science Press

Volume 9 • Number 40 • 2016

C.G. Anupama, Rashi Nair and Soumi Roy

A Proposal to Develop a Testing Framework for Agile
Software Process

C.G. Anupamaa Rashi Nairb and Soumi Royb

aAssistant Professor, Department of Software Engineering, SRM University
E-mail: anupama.g@ktr.srmuniv.ac.in
bStudent, B.Tech. Software Engineering, SRM University
E-mail: rashi_rakeshkumar@srmuniv.edu.in, soumi_roy@srmuniv.edu.in

Abstract: Agile software process is used by numerous organizations for developing their projects. This software
process is increasingly in demand because of its ability to deal with changing requirements. This has proven to
be a boon since the market is ever changing and because of it the customer’s demands are ever changing. But this
very boon of the process makes testing in these projects fairly tough and intricate. Ever changing requirements and
development in iterations makes it unclear as to which type of testing should be performed when and how many
test cases are relevant after the changes made. This paper suggests a simple framework as a proposal for different
testing (unit, regression, system and acceptance) to be employed in each development iteration suitable for Agile
Software Process.
Keywords: Scrum, Agile, Usability Testing, Software Testing.

1. INTRODUCTION
Agile methodology is an iterative, time boxed approach to deliver software incrementally from the start of the
project, instead of delivering it all at once near the end [22]. It breaks down the project into little bits of user
functionality called user stories, then Prioritize them and then continuously delivering them in short two to four
week cycles called iterations. Agile methodology’s major focus is to satisfy the customer’s demands; therefore
it always welcomes customer’s ever-changing requirements. And it believes in practical demonstration of the
product rather than the documentation [22]. There are some noteworthy agile methodologies - Scrum, Extreme
programming (XP), Unifi ed process (UP), Crystal, Feature driven development, etc.

1.1. Common Problems in Agile Development
1. Scrum deviates from the real work of the project: Scrum is the regular meeting of the project

members with a Scrum Master. In a Scrum meeting, features and requirements are discussed;
sometimes they come up with a new idea and discuss about that, which is good, but there are many
times when their idea is a total deviation from the main project [15].

978International Journal of Control Theory and Applications

C.G. Anupama, Rashi Nair and Soumi Roy

2. Developers may feel that Scrum is unnecessary and slows them down: Scrum Methodology is
used by many companies for their software development. It gives the developers a way to sit down
and discuss about any issues they are facing in the development of the project or if they have a new
approach to continue the project in a more effi cient way [18].

 On the other hand, if they are developing a project which already has a specifi c approach or a specifi c
design to meet, then a collaborative approach like Scrum is not necessary.

3. Generation of Inadequate Test Coverage: In Agile Methodology customers requirements are
ever-changing; therefore it doesn’t have a proper documentation of any requirements, design or
architecture; this becomes an issue while testing [18]. Sometimes it’s not known what features should
be tested fi rst, what should be the testing sequence, how the testing should be approached like, which
testing should be done fi rst and how, etc. All these issues make the testing process very diffi cult.

4. Performance Congestion: As the requirements change the source code changes too. If the developer
is not focused, he might not be clear about the change and may not be sure which part should be
changed or altered; a few ineffi cient changes can increase the lines of code which will make the code
more complex and lead to performance issues [22].

2. LITERATURE SURVEY

2.1. Exploratory Software Testing in Agile Project [1]
Exploratory testing uses the ‘explore and fi nd’ approach to verify the functionalities and detect bugs in the
system. This method doesn’t need a lot of time to create the test plans (compared to the script-based methods)
and hence is suitable for agile projects. The objects in exploratory software testing are – user input, state and
user data.

2.2. Agile EDI Framework for B2B Applications [2]
A refi ned Agile Unifi ed Process framework tailored for EDI (Electronic Data Interchange) is proposed consisting
of the four phases of Unifi ed Process along with custom steps to be followed in each phase:

1. Inception: Defi ne, plan, prepare, feasibility study and contract

2. Elaboration: Identify, validate, evolve and staffi ng

3. Construction: Initiate, build, connect, map, test and fi nalize documentation

4. Transition: System test, user acceptance test, deployment, transfer and close

2.3. Applying Usability Testing to Improving Scrum Methodology in Develop Assistant
Information System [3]

This study evaluates whether integrating usability testing with Scrum will improve software development
related to testing, feedback and product quality. They get the users’ feedback at the end of each sprint. Usability
scenario and PSSUQ (Post-Study System Usability Questionnaire) are the main mechanisms used to support
the usability-testing strategy.

3. PROPOSED FRAMEWORK
The proposed framework (Figure 1) is meant to serve as a guideline for agile teams to follow for testing.

979 International Journal of Control Theory and Applications

A Proposal to Develop a Testing Framework for Agile Software Process

3.1. Project initiation
This is the set of tasks performed before starting the product development [23]. It includes forming a team,
briefi ng the team, setting up the fi rst meeting with the customer, collecting requirements from the customer in
the form of stories, extracting direct requirements from these stories and preparing a basic system design so that
development can start.

3.2. Iteration 1
Get initial requirements : From the set of already extracted requirements (Let’s call the set of all initial
requirements as IReq), select the ones which signify core functionalities [21] - the requirements which would
defi ne the product. These are chosen so that in later iterations the team can build around these core functionalities.

Develop: This is when the fi rst set of requirements is developed.
Unit test: Each unit in the part developed product is tested for its quality and output. Unit testing can usually

be automated as smaller modules generally have basic functions [26]. But depending upon the product under
development the team can also go for manual testing. The test cases for each module need to be documented for
future use in development. Once all modules successfully pass the unit test, integrate them.

Figure 1: Proposed Framework

980International Journal of Control Theory and Applications

C.G. Anupama, Rashi Nair and Soumi Roy

If in case time is running short, eliminate a few more requirements and develop the remaining as delivery
of working software is the prime concern.

(Let’s call the set of all implemented requirements as 1req for iteration one)
Acceptance test: When the fi rst sprint is at its deadline, a meeting is conducted along with the customer.

The fi rst increment of the product is showcased in this meeting. The main objective is to validate whether the
requirements given initially are satisfi ed or not [26]. It is not necessary to deliver all the initial requirements.
Just the prioritized ones would be enough. The reasons being that the customer might change his mind and that
delivering fewer requirements in each iteration thrives quality.

Hence, during the meeting the customer gives his feedback as to whether the delivered requirements are
as per his wishes or not. He also tells whether there are any other requirements or changes.

The main results of this test are:
Sreq : List of previous requirements that need to be scrapped off (if any).
Nreq : List of new requirements or changes (if any).
Sreq and Nreq for iteration one will be referred to as 1Sreq and 1Nreq.
These modifi cations will be implemented in the next iteration.
Backup build : This step is a safety measure and might prove to be useful in further increments.
There’s a chance that the customer might say a requirement is not needed anymore and then at later

iterations he might say it’s needed again [13]. In such cases, the developers can trace back to the particular build
which implemented that requirement. This will help save time and effort. The test cases and coverages need to
be backed up as well. Not necessary in a detailed manner, but in a way that it makes deriving test cases for the
coming increments easier.

3.3. Iteration 2
Get requirements: Just like the previous iteration, this iteration also stars by sorting the requirements [22].

The total requirements at this stage are:
 TReq = (((IReq - 1req) - 1SReq) + 1NReq)
From these requirements some are chosen for this iteration depending on the feasibility and suitability.

Starting with these chosen requirements, the next step will begin.
Classify : These chosen requirements need to be classifi ed as-
Change in previous requirement: Sometimes, the customer asks for modifi cations or engagements in

previously stated requirements. Mostly the customer does not state explicit whether it’s a change or not. The
customer will give stories and the team needs to extract the requirements [22]. After extracting, the team must
only identify if it’s a change in any previously stated requirement or not.

New requirement : There’s also a good chance that the customer has a completely new requirement. This
must also be identifi ed by the team [22]. It is usually eat to identify new requirements.

If the requirement is a change in a previous requirement then the team can refer/trace back to the required
previous build and make modifi cations in the required module. This module can then be integrated into the
current build.

If the requirement is a new requirement, the team can move on to the next step which is development.
Develop : Now it’s time for development again. The team tries to implement the chosen set of requirements

for this iteration. If, like the previous iteration, some requirements are not feasible or suitable currently then
they are left to be implemented in later iterations.

981 International Journal of Control Theory and Applications

A Proposal to Develop a Testing Framework for Agile Software Process

Unit Test : New modules and modules in which changes have been made must be mandatorily unit tested
[27]. If the team has ample time then they can test the other modules as well. Otherwise, a system test can be
performed after integrating the modules.

(Let’s call the set of all implemented requirements as 2req for iteration two)
Regression test : From the second iteration onwards, regression test is a new step in this framework.

The train being the fact that in regression test is done in order to identify whether any changes that have been
made, introduced new bugs/issues in the software. Now, in the fi rst iteration, the fi rst set of requirements
are implemented and only after implemented the customer feedback is taken so there’s no chance of a major
change. But in the second iteration, the changes requested in the acceptance test of the fi rst iteration must be
implemented (It’s not necessary that all the requested changes will be delivered in this iteration only; they can
be delivered in later iterations as well).

Therefore to check if any new bugs or issues have been introduced in the software, regression test must
be done [27].

Acceptance test: Again, like the previous iteration, acceptance test is done to validate the implemented
requirements [26]. At the end of the sprint, a meeting asking with the customer is held and same procedure is
followed as in the previous iteration. The output of this meeting is again the list of requirements to be scrapped
off and the list of new requirements/changes in requirements. For the second iteration they’re referred to as
2SReq and 2NReq.

So the total requirements while starting the next iteration would be:
 TReq = (((TReq - 2req) - 2SReq) + 2NReq)
(In further iterations, they will be called nSReq and nNReq where n represents the iteration number)
Backup build: This is again done as a safety measure if in case the customer wants a requirement that

was previously implemented.
These steps are followed for n iterations depending on the customer’s satisfaction. When customer says

that there are no more requirements [10] and that he’s satisfi ed with the product features then the iterations can
come to an end.

After it is confi rmed that the customer has no more requirements, the fi nal product undergoes a system
test. This must be done in order to tackle any residual bugs or issues that might exist in the product.

After the successful system testing, a fi nal acceptance test [27] is performed. In most cases, the customer
will be satisfi ed by now. But there’s a chance he comes up with more changes. In that case, development process
is continued from the last iteration into a new sprint. And at the end of this sprint, the customer validates the
product again.

Finally when the customer is completely satisfi ed with the product, it is delivered [10] to them and the
other proceedings of payment, etc. are followed. The product then goes into maintenance from then on.

As the agile methodology focuses on faster delivery of working product, exploratory testing [1] can prove
to be helpful in this regard. It gives the tester freedom to interact with the system in any manner he wants
without having to create detailed and exhaustive test plans. This is not mandatory of course. If a fi rm does not
have time to invest in elaborate test plans, then they can go for the exploratory testing approach [24]. It will give
them good results and reduce time required to carry out the tests.

4. CONCLUSION
Agile methodology is a powerful technique when it comes to customer satisfaction. To ensure that the testing
procedure is not ambiguous and chaotic, agile development teams can follow this framework as a roadmap.
The proposed framework suggests carrying out unit test and acceptance test in the fi rst iteration. And from the
second iteration onwards it includes regression test as an intermediate between the two to check for new issues.
It also suggests backing up each build for future references and use.

Depending on the fi rm’s need and suitability, exploratory testing approach can also be employed to save
time and effort.

982International Journal of Control Theory and Applications

C.G. Anupama, Rashi Nair and Soumi Roy

5. REFERENCES
[1] Exploratory Software Testing in Agile Project: http://ieeexplore.ieee.org/document/7219581/

[2] Agile EDI framework for B2B applications: httpeexplore.ieee.org/document/5328107/

[3] Applying Usability Testing to Improve Scrum Methodology in developing Assistant Information System: http://ieeexplore.
ieee.org/document/7858222/

[4] GRAFT: Generic and Reusable Automation framework for Agile testing: http://ieeexplore.ieee.org/document/6949235/

[5] Performance Testing on an Agile Project: http://ieeexplore.ieee.org/document/4293621/

[6] Agile software testing in a large-scale project: http://ieeexplore.ieee.org/document/1657936/

[7] Testing of Changing Requirement in an Agile Environment - A Case Study of Telecom Project: http://ieeexplore.ieee.org/
document/4344111/

[8] Adding usability testing to an agile project: http://ieeexplore.ieee.org/document/1667591/

[9] Case study on Critical Success Factors of agile software process improvement: http://ieeexplore.ieee.org/document/5917014/

[10] Agile Software Process model: http://ieeexplore.ieee.org/document/625042/

[11] Agile Software Process and its experience: http://ieeexplore.ieee.org/document/671097/

[12] Integrating testing into Agile software development processes: http://ieeexplore.ieee.org/document/7018519/

[13] Experiment Report on the Implementation of Agile Testing: http://ieeexplore.ieee.org/document/7113577/

[14] Agile Testing: A Systematic Mapping across Three Conferences: Understanding Agile Testing in the XP/Agile Universe,
Agile, and XP Conferences: http://ieeexplore.ieee.org/document/6612876/

[15] Agile Testing: Past, Present, and Future -- Charting a Systematic Map of Testing in Agile Software Development:
http://ieeexplore.ieee.org/document/6298092/

[16] Enabling Agile Testing through Continuous Integration: http://ieeexplore.ieee.org/document/5261055/

[17] Applying agile practices to avoid chaos in User Acceptance Testing: A case study: http://ieeexplore.ieee.org/
document/7480122/

[18] Challenges in Adapting Agile Testing in a Legacy Product: http://ieeexplore.ieee.org/document/7577426/

[19] A preliminary analysis of various testing techniques in Agile development - a systematic literature review: http://ieeexplore.
ieee.org/document/7783283/

[20] Independent Security Testing on Agile Software Development: A Case Study in Software Company: http://ieeexplore.ieee.
org/document/7299961/

[21] Roger S, “Software Engineering – A Practitioner’s Approach”, Seventh edition, Pressman, 2010

[22] Craig Larman, “Agile and Iterative Development – A Manager’s Guide”, Pearson Education – 2004

[23] Ramesh Gopalaswamy, “Managing Global Software Projects”, Tata McGraw Hill

[24] James A. Whittaker, “Exploratory Software Testing: Tips, Tricks, Tours, And Techniques To Guide Test Design”, 2009

[25] Lisa Crispin, Janet Gregory, “Agile Testing: A Practical Guide for Testers and Agile Teams”, Pearson Education, 2008

[26] Paul Ammann, Jeff Offutt, “Introduction to Software Testing”, Cambridge University Press, 2008

[27] Srinivasan Desikan, Gopalaswamy Ramesh, “Software Testing: Principles and Practices”, Pearson, 2012

