VERTEX POLYNOMIALS DERIVED THROUGH VARIOUS GRAPH THEORETICAL OPERATIONS

G. Suresh Singh ${ }^{1}$ and Sreedevi S. L. ${ }^{2}$

Abstract

Binary operations on graphs and its properties have been a fascinating area in the graph theory ever since its evolvement. Graph theoretic polynomials play a vital role in describing the properties associated with a graph. The polynomials such as chromatic polynomial gives idea on the colouring requirements of the vertices of graph, matching polynomials gives highlights on the matching properties of graph, vertex polynomial gives clear idea about the vertex degree, edge polynomial on weight of edge and so on.

In this paper, we study, vertex polynomials of certain classes of graphs resulting from graph operations like cartesian product, conjunction, join and symmetric difference.

Key Words: graph operations, vertex polynomials.
Classification Code: 05C.

1. INTRODUCTION

1.1. Graph Operations

Certain binary operations are applied on two distinct graphs G_{1} and G_{2}, to generate a new one G, with some specific properties as per defined for the particular operation. For the operations like cartesian product, conjunction and symmetric difference, the vertex set V of the resultant graph G, is $V=V_{1} \times V_{2}$, and edge set E depends on the incidence relation between the vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{k}, v_{1}\right)$ as per the concerned operation (where $u_{i} ' s \in V_{1}$ and $v_{i}^{\prime} s \in V_{2}$ of graphs G_{1} and G_{2} respectively). When the operation join is considered, the vertex set $V=V_{1} \cup V_{2}$ and edge set corresponds to that of $E_{1} \cup E_{2}$ together with the edges joining every vertex of G_{1} to that of G_{2}. For all other terminologies and notations we follow, [2].

1.2. Vertex Polynomial

In [3], S. Sedghi, N. Shobe and M.A. Salahshoor defined the vertex polynomial S_{G} (x) of a graph G defined as $S_{G}(x)=\sum_{j=0}^{\wedge(G)} a_{j} x^{j}$, where a_{j} is the number of vertices with degree $j, \Delta(G)$ refers to the maximum degree of the graph G.

[^0]Vertex polynomials of some standard graphs are as follows:
(i) $\quad S_{K_{n}}(x)=n x^{n-1}$
(ii) $S_{C_{n}}(x)=n x^{2}$
(iii) $S_{P_{n}}(x)=2 x+(n-2) x^{2}$
(iv) $S_{G_{k}}(x)=n x^{k}$
(v) $S_{K_{m, n}}(x)=m x^{n}+n x^{m}$

Next we obtain the vertex polynomials of the graphs planar grids, ladder graphs, torus grids, wheels and fans. Also we study some properties of the vertex polynomials.

2. MAIN RESULTS

Observation 2.1: Vertex polynomial of a planar grid is $4 x^{2}+2(m+n-4) x^{3}+$ $(m-2)(n-2) x^{4}$.

Proof. The planar grid is obtained by the cartesian product of P_{m} and P_{n}. It is clear that $P_{m} \times P_{n}$ has got mn vertices and $(m-1) n+(n-1) m$ edges.

Now first consider the planar grid $P_{5} \times P_{6}$.

Figure 1: Cartesian product of \boldsymbol{P}_{5} and \boldsymbol{P}_{6}

From the definition of vertex polynomial, it is clear that $S_{P_{5} \times P_{6}}(x)=4 x^{2}+14 x^{3}+12 x^{4}$.

In general, for any $m, n>2$, the graphical structure remains the same, but differs only in the number of grids formed. On observing the figure it is understood that there are only vertex degrees 2,3 , and 4 and whose cardinality is $4,2(m-2)+2$ $(n-2),(m-2)(n-2)$ respectively. Therefore, for a planar grid $G=P_{m} \times P_{n}$, we have

$$
S_{G}(x)=4 x^{2}+2(m+n-4) x^{3}+(m-2)(n-2) x^{4}
$$

Observation 2.2: Vertex polynomial of a ladder graph is $4 x^{2}+(m-2) 2 x^{3}$.
Proof. Ladder graph $L_{n}=P_{m} \times K_{2}$. Put $n=2$ in $P_{m} \times P_{n}$. Then from observation 2.1, the result follows. Thus, $S_{L_{n}}(x)=4 x^{2}+2(m-2) x^{3}$

Observation 2.3 Vertex polynomial of a torus grid is $m n x^{4}$.
Proof. Torus grid is obtained by the cartesian product of two cycles C_{m} and C_{n}.
Now Consider, the torus grid $C_{4} \times C_{3}$.

Figure 2: Cartesian product of C_{4} and C_{3}

By the definition of vertex polynomial we have $S_{C_{4} \times C_{3}}(x)=12 x^{4}$
In general if we fix m and change n, or fix n and change m, the change occurs only in the number of vertices.

Therefore the graph $G=C_{m} \times C_{n}$ has $m n$ vertices and each of which is of degree 4. It follows that for torus grid,

$$
S_{G}(x)=m n x^{4}
$$

Observation 2.4 Vertex polynomial of a prism is $2 m x^{3}+m(n-2) x^{4}$.
Proof. The prism is obtained by the cartesian product of P_{n} and $C_{m}, m \geq 3$.
Consider the graph $P_{4} \times C_{5}$

Figure 3: Cartesian product of P_{4} and C_{5}
From the definition of vertex polynomial, $S_{P_{4} \times C_{5}}(x)=10 x^{3}+10 x^{4}$.
In general, for any graph $G=P_{n} \times C_{m}$ there are only $2 m$ vertices of degree 3 and ($m n-2 m$) vertices of degree 4.

Hence in a prism, $S_{G}(x)=2 m x^{3}+m(n-2) x^{4}$.
Corollary 2.5 Vertex polynomial of $P_{2} \times C_{m}, m \geq 3$ is $2 m x^{3}$
Proof. The result follows directly from observation 2.4.
Theorem 2.6 Let G_1 and G_2 be two graphs of order m and n respectively and let,

$$
G=G_{1} \times G_{2} \text {. Then, } \operatorname{deg}\left(S_{G}(x)\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right) \text {. }
$$

Proof. Let G_{1} and G_{2} be two graphs of order m and n respectively and let,
$V\left(G_{1}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots u_{m}\right\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$, then following the definition of $G=G_{1} \times G_{2}$, the vertices $\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right)$ are adjacent if either $u_{i}=u_{k}$ and v_{j} adjacent to v_{l} in G_{2} or $v_{j}=v_{l}$ and u_{i} adjacent to u_{k} in G_{1}.

That is, degree of vertex $w_{k}=\left(u_{i}, v_{j}\right)=d\left(u_{i}\right)+d\left(v_{j}\right)\left[d\left(u_{i}\right)\right.$ represents the degree of the vertex u_{i}, where $\left.u_{i} \in V\left(G_{1}\right)\right]$.

There exists at least one vertex $w_{g}=\left(u_{k}, v_{i}\right)$ of G with maximum degree. Since, $d\left(w_{g}\right)=d\left(u_{k}\right)+d\left(v_{i}\right)$, the sum is maximum only if, $d\left(u_{k}\right)=\Delta\left(G_{1}\right)$ and $d\left(v_{i}\right)=\Delta\left(G_{2}\right)$.

That is, $d\left(w_{g}\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$.
We have, $S_{G}(x)=\Sigma_{j=0}^{\Delta(G)} a_{j} x^{j}$. The degree of $S_{G}(x)$ corresponds to the maximum degree of the vertex of graph G. Since in cartesian product, $\Delta(G)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$, it follows $\operatorname{deg}\left(S_{G}(x)\right)=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$.

Example

Consider the figure 4

Figure 4: Cartesian product of G_{1} and G_{2}

From the figure,

$$
\begin{aligned}
& d\left(u_{2}\right)=3=\Delta\left(G_{1}\right), \\
& d\left(v_{2}\right)=2=\Delta\left(G_{2}\right), \\
& d\left(w_{5}=\left(u_{2}, v_{2}\right)\right)=5=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)=\Delta(G)
\end{aligned}
$$

Also, $S_{G}(x)=2 x^{2}+5 x^{3}+4 x^{4}+x^{5}$.
$\operatorname{deg}\left(S_{G}(x)\right)=5=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)$
Theorem 2.7 Let $=G_{1} \times G_{2}$. Then, $S_{G}(x)=S_{G_{1}}(x) \times S_{G_{2}}(x)$.
Proof. We have $S_{G}(x)=\Sigma_{j=0}^{\Delta(G)} a_{j} x^{j}$.
Now, let $a_{1}, a_{2}, \ldots a_{m}$ be the degrees of the vertices of G_{1} and $b_{1}, b_{2}, \ldots b_{n}$ be that of G_{2}, where $a_{i}^{\prime} s$ and $b_{j}^{\prime} s$ need not be all distinct.

Then the degree of vertices of $G_{1} \times G_{2}$ can be observed as,

$$
a_{1}+b_{1}, a_{1}+b_{2}, \ldots a_{1}+b_{n}, a_{2}+b_{1}, a_{2}+b_{2}, \ldots a_{2}+b_{n}, \ldots, a_{m}+b_{1}, a_{m}+b_{2}, \ldots a_{m}+b_{n} .
$$

Now,

$$
S_{G_{1}}(x)=x^{a_{1}}+x^{a_{2}}+\ldots+x^{a_{m}}
$$

and

$$
S_{G_{2}}(x)=x^{b_{1}}+x^{b_{2}}+\ldots+x^{b_{n}}
$$

But for $G=G_{1} \times G_{2}$,

$$
\begin{aligned}
S_{G}(x) & =x^{a_{1}+b_{1}}+x^{a_{1}+b_{2}}+\ldots+x^{a_{1}+b_{n}}+\ldots+x^{a_{m}+b_{1}}+x^{a_{m}+b_{2}}+\ldots+x^{a_{m}+b_{n}} \\
& =x^{a_{1}}\left(x^{b_{1}}+x^{b_{2}}+\ldots x^{b_{n}}\right)+\ldots+x^{a_{m}}\left(x^{b_{1}}+x^{b_{2}}+\ldots x^{b_{n}}\right) \\
& =\left(x^{a_{1}}+x^{a_{2}}+\ldots x^{a_{m}}\right)\left(x^{b_{1}}+x^{b_{2}}+\ldots x^{b_{n}}\right) \\
& =S_{G_{1}}(x) \times S_{G_{2}}(x)
\end{aligned}
$$

Example

In figure $4, S_{G_{1}}(x)=x+2 x+x^{3}, S_{G_{2}}(x)=2 x+x^{2}$ and $S_{G}(x)=2 x^{2}+5 x^{3}+4 x^{4}+x^{5}$.

$$
\begin{aligned}
S_{G_{1}}(x) \times S_{G_{2}}(x) & =\left(x+2 x+x^{3}\right)\left(2 x+x^{2}\right) \\
& =2 x^{2}+5 x^{3}+4 x^{4}+x^{5} \\
& =S_{G}(x) .
\end{aligned}
$$

Lemma 2.8 Vertex polynomial of mesh $P_{m} \wedge P_{n}$ is

$$
4 x+2(m+n-4) x^{2}+(m-2)(n-2) x^{4} .
$$

Proof. Let $G=P_{m} \wedge P_{n}$. As per the definition of conjunction, $\left|V_{G}\right|=m n$ and two vertices $u=\left(u_{i}, v_{j}\right), v=\left(u_{k}, v_{l}\right)$ are adjacent if u_{i} adjacent to u_{k} in P_{m} and v_{j} adjacent to v_{l} in P_{n}, which in turn implies that the vertex degree of $u=\left(u_{i}, v_{j}\right)$ corresponds to the product of the adjacencies of vertices u_{i} in P_{m} and v_{j} in P_{n}. Since in P_{m} and P_{n}, the only vertex degrees are 1 and 2 , in the resultant graph, vertex degrees must be $1(=1 \times 1), 2(=1 \times 2)$ and $4(=2 \times 2)$.

In P_{m} and P_{n}, respectively $(m-2)$ and $(n-2)$ vertices are of degree 2 . Also there are 2 vertices are of degree 1 in both P_{m} and P_{n}. Hence in $P_{m} \wedge P_{n}, 4$ vertices are of degree $1,2(m+n-4)$ vertices are of degree 2 and $(m-2)(n-2)$ vertices are of degree 4 .

Therefore, $S_{G}(x)=4 x+2(m+n-4) x^{2}+(m-2)(n-2) x^{4}$.
Corollary 2.9 Vertex polynomial of $P_{m} \wedge K_{2}$ is $4 x+2(m-2) x^{2}$.
Proof. Putting $n=2$ in lemma 2.8, the result follows.
Observation 2.10 Vertex polynomial of $C_{m} \wedge C_{n}$ is $m n x^{4}$.
Proof. $G=C_{m} \wedge C_{n}$ has mn vertices, each vertex of C_{m} and C_{n} is of degree 2. Following the definition of conjunction, each vertex of G has degree $4(=2 \times 2)$.

Hence $S_{G}(x)=m n x^{4}$.
Observation 2.11 Vertex polynomial of $P_{m} \wedge C_{n}$ is $2 n x^{2}+(m-2) n x^{4}$.
Proof. $G=P_{m} \wedge C_{n}$, has mn vertices, with 2 vertices of P_{m} of degree 1 and ($m-2$) vertices of P_{m} as well as n vertices of C_{n} are of degree 2. Hence in $G=P_{m} \wedge C_{n}, 2 n$ vertices are of degree 2 and $(m-2) n$ vertices are of degree 4.

Hence, $S_{G}(x)=2 n x^{2}+(m-2) n x^{4}$.
Corollary 2.12 Vertex polynomial of $K_{2} \wedge C_{n}$ is $2 n x^{2}$.
Proof. Directly follows from lemma 2.11, by considering $m=2$.
Theorem 2.13 If $G=G_{1} \wedge G_{2}$. Then $\operatorname{deg}\left(S_{G}(x)\right)=\Delta\left(G_{1}\right) . \Delta\left(G_{2}\right)$.
Proof. Let $d_{i}^{\prime} s$ be the vertex degrees of G_{1} and f_{i}^{\prime} s be that of G_{2}, where all $d_{i} s$ and $f_{i}^{\prime} s$ need not be distinct. From the definition of conjunction, for any vertex $u=\left(u_{i}, v_{j}\right)$

$$
d(u)=d\left(u_{i}\right) \cdot d\left(v_{j}\right) \text { and }
$$

u has maximum degree in G, if $d\left(u_{i}\right)=\Delta\left(G_{1}\right)$ and $d\left(v_{i}\right)=\Delta\left(G_{2}\right)$.
Also, from the definition of $S_{G}(x)$, the degree of $S_{G}(x)$ corresponds to the maximum degree of the vertex of the graph G, considered.

Hence $\operatorname{deg}(S G(\mathrm{x}))=$?(G_1).?(G_2)

Theorem 2.14

Let $G=G_{1} \wedge G_{2}$, where G_{1} and G_{2} are graphs with orders n and m respectively. Then $S_{G}(x)=\sum_{j=1}^{m} \Sigma_{i=1}^{n} x^{d_{i} f j}$; where $d_{i}^{\prime} s$ and f_{j}^{\prime} s corresponds to the vertex degrees of G_{1} and G_{2} respectively.

Proof: Let the vertex degrees of G_{1} and G_{2} be $d_{1}, d_{2}, d_{3} \ldots d_{n}$ and $f_{1}, f_{2}, f_{3} \ldots f_{m}$ respectively (where all $d_{i} ' s$ and $f_{j}^{\prime} s$ need not be distinct).

Then vertex degrees of mn vertices of $G=G_{1} \wedge G_{2}$, are as:
$d_{1} f_{1}, d_{1} f_{2}, \ldots d_{1} f_{m}, d_{2} f_{1}, d_{2} f_{2}, \ldots d_{2} f_{m}, \ldots d_{n} f_{1}, d_{n} f_{2}, \ldots d_{n} f_{m}$
For any graph G we have $S_{G}(x)=\Sigma_{j=0}^{\Delta(G)} a_{j} x^{j}$.
Thus $S_{G}(x)=x^{d_{1} f_{1}}+x^{d_{1} f_{2}}+\ldots+x^{d_{2} f_{1}}+\ldots+x^{d_{2} f_{m}}+\ldots+x^{d_{n} f_{1}}+\ldots+x^{d_{n} f_{m}}$.

$$
=\Sigma_{j=1}^{m} \Sigma_{i=1}^{n} x^{d_{i} f_{j}}
$$

Hence the theorem.
Corollary 2.15 If G_{1} is an r-regular graph of order n and G_{2} is k-regular of order m. If $G=G_{1} \wedge G_{2}$ then, $S_{G}(x)=m n x^{r k}$.

Proof. Follows from theorem 2.14.
Observation 2.16 The vertex polynomial of a Wheel is $n x^{3}+x^{n}$
Proof. A Wheel W_{n} is obtained by the join of K_{1} and C_{n}.
Consider the wheel $W_{6}=K_{1} \vee C_{6}$,

Figure 5: Wheel (\mathbf{W}_{6})

From the figure it is clear that,

$$
S_{W_{6}}(x)=6 x^{3}+x^{6} .
$$

In general, $K_{1} \vee C_{n}$ consists of n vertices of degree 3 and one vertex of degree n.
Therefore, if $W_{n}=K_{1} \vee C_{n}$,
$S_{W_{n}}(x)=n x^{3}+x^{n}$.
Observation 2.17 Vertex polynomial of a Fan graph is $2 x^{2}+(n-2) x^{3}+x^{n}$.
Proof. $K_{1} \vee P_{n}$ is considered as the fan $F_{n} . F_{n}$ consists of P_{n} along with all edges joining every vertex of P_{n} to K_{1}.

Consider $F_{5}=K_{1} \vee P 5$

K_{1}

F_{5}
Figure 6: Fan \boldsymbol{F}_{5}
F_{5} has 2 vertices of degree 2,3 vertices of degree 3 and 1 vertex of degree 5 .
So $S_{F_{5}}(x)=2 x^{2}+3 x^{3}+x^{5}$.
In P_{n}, $(n-2)$ vertices are of degree 2 and two vertices are of degree 1 . Hence in $K_{1} \vee P_{n}$, there exists $(n-2)$ vertices of degree 3 , two vertices of degree 2 and a single vertex of degree n.

Thus, for $F_{n}=K_{1} \vee P_{n}$,

$$
S_{F_{n}}(x)=2 x^{2}+(n-2) x^{3}+x^{n}
$$

Theorem 2.18 Let $G=G_{1} \vee G_{2}$, where G_{1} and G_{2} are of order m and n respectively. Then, $\operatorname{deg}\left(S_{G}(x)\right)=m+n-1$.
$\operatorname{deg}\left(S_{G}(x)\right)=m+n-1$.
Proof. Since order of $G_{1}=n$ and order of $G_{2}=m$, the maximum degree of a vertex in G_{1} is $(n-1)$ and that of G_{2} is $(m-1)$. Let $d\left(u_{i}\right)=n-1$ and, $d\left(v_{j}\right)=m-1$. In $G=G_{1} \vee G_{2}$, each vertex u_{i} of G_{1} is joined to every vertex v_{j} of G_{2}, in addition to the edges of G_{1} and G_{2}. Therefore, $d_{G}\left(u_{i}\right)=n-1+m,\left[d_{G}\left(u_{i}\right)\right.$ represents the degree of vertex u_{i} in $G=G_{1} \vee G_{2}$]. Similarly, $d_{G}\left(v_{j}\right)=m-1+n$.

That is, maximum degree of a vertex in G is $m+n-1$
Hence, $\operatorname{deg}\left(S_{G}(x)\right)=m+n-1$.
Theorem 2.19 Vertex polynomial of the symmetric difference (\oplus) [1], of any graph G_{1} of order n and K_{2} is $2 n x^{n}$.

Proof: Let G_{1} is a graph of order n and G_{2} of order m. In $G=G_{1} \oplus G_{2}$, two vertices $u=\left(u_{i}, v_{j}\right)$ and $v=\left(u_{k}, v_{l}\right)$ are adjacent if either u_{i} adjacent to u_{k} in G_{1} or v_{j} adjacent to v_{l} in G_{2}, but not the both. Hence the degree of a vertex $u=\left(u_{i}, v_{j}\right)$ in G is,

$$
\begin{aligned}
d(u) & =d\left(u_{i}\right)\left(m-d\left(v_{j}\right)\right)+d\left(v_{j}\right)\left(n-d\left(u_{i}\right)\right) \\
& =m d\left(u_{i}\right)+n d\left(v_{j}\right)-2 d\left(u_{i}\right) d\left(v_{j}\right)
\end{aligned}
$$

Consider the graph drawn below,

Figure 6: Symmetric difference of G_{1} and K_{2}

Here G_{1} is of order 5, and the vertex polynomial of $G=G_{1} \oplus K_{2}$ is $S_{G}(x)=10 x^{5}$.
In general, if G_{1} is any arbitrary graph of order n and G_{2} is K_{2}, then in $G,|V|=$ $2 n$. Let $d_{1}, d_{2}, d_{3} \ldots d_{n}$ be the degrees of the vertices of G_{1}. Then the degrees of $2 n$ vertices of G must be n [say for vertex with degree d_{1} in G_{1} and for either of the two vertices of $\left.K_{2},\left(d_{1} \times 2\right)+(1 \times n)-2 \times d_{1} \times 1=n\right]$.

Thus $S_{G}(x)=2 n x^{n}$.

Acknowledgement

The second author wish to thank University of Kerala for its financial support towards this research work.

Reference

[1] Frank Harary and Gordon W. Wilcox, 'Boolean Operations on Graphs', Math. Scand. 20 (1967) 41-51.
[2] G. Suresh Singh, 'Graph Theory', PHI New Delhi, 2010.
[3] S. Sedghi, N. Shobe and M.A. Salahshoor, 'The Polynomials of a Graph', Iranian Journal of Mathematical Sciences and Informatics, Vol. 3, No. 2 (2008) pp 55-67.

[^0]: * Department of Mathematics, University of Kerala, E-mail: sureshsinghg@yahoo.co.in; sreedevisl@gmail.com

