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ABSTRACT

First, this paper proposes a general procedure for the hybrid synchronization of identical hyperchaotic systems

using novel sliding mode control. The general result derived using novel sliding mode control method is established

via Lyapunov stability theory. As an application of the general result, the problem of hybrid synchronization of

identical hyperchaotic Vaidyanathan-Volos systems (2016) is studied and a new sliding mode controller is derived.

Numerical simulations with MATLAB have been shown to illustrate all the main results derived in this work.
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1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive

to even small perturbations in its initial conditions [1]. In other words, a chaotic system is a nonlinear

dynamical system with at least one positive Lyapunov exponent. Some paradigms of chaotic systems can

be listed as Arneodo system [4], Sprott systems [5], Chen system [6], Lü-Chen system [7], Liu system [8],

Cai system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],

Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems

[36-37], Jafari system [38], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They

have important applications in control and communication engineering. Some recently discovered 4-D

hyperchaotic systems are hyperchaotic Vaidyanathan systems [39-40], hyperchaotic Vaidyanathan-Azar

system [41], hyperchaotic Sampath system [42], etc,

Chaos theory has several applications in a variety of fields such as oscillators [43-44], chemical reactors

[45-58], biology [59-80], ecology [81-82], neural networks [83-84], robotics [85-86], memristors [87-89],

fuzzy systems [90-91], etc.

The problem of control of a chaotic system is to find a state feedback control law to stabilize a chaotic

system around its unstable equilibrium [92-93]. Some popular methods for chaos control are active control

[94-98], adaptive control [99-100], sliding mode control [101-103], etc.

If a particular chaotic system is called the master or drive system and another chaotic system is called

the slave or response system, then the idea of hybrid synchronization is to completely synchronize one part
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of the systems (namely, the odd states) and anti-synchronize the other part of the systems (namely, the even

states) so that both complete and anti-synchronization persist in the process of synchronization of the

master and slave systems.

The synchronization of chaotic systems has applications in secure communications [104-107],

cryptosystems [108-109], encryption [110-111], etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of

impressive approaches have been proposed. Since the pioneering work by Pecora and Carroll [112-113] for

the chaos synchronization problem, many different methods have been proposed in the control literature

such as active control method [114-132], adaptive control method [133-149], sampled-data feedback control

method [150-151], time-delay feedback approach [152], backstepping method [153-164], sliding mode

control method [165-173], etc.

In this paper, new results have been derived for the hybrid synchronization of identical hyperchaotic

systems using novel sliding control. The sliding mode control has advantages of low sensitivity to parameter

variations in the plant and disturbances affecting the plant.

In Section 2, we describe the hybrid synchronization of identical hyperchaotic systems. In Section 3,

we derive a general result for the hybrid synchronization of identical hyperchaotic systems using novel

sliding mode control. In Section 4, we describe the hyperchaotic Vaidyanathan-Volos system ([42], 2016)

and its qualitative properties. The phase portraits of the hyperchaotic Vaidyanathan-Volos system are described

using MATLAB. In Section 5, we describe the sliding mode controller design for the hybrid synchronization

of the hyperchaotic Vaidyanathan-Volos systems using novel sliding mode control and its numerical

simulations using MATLAB. Section 6 contains a summary of the main results derived in this paper.

2. HYBRID SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC SYSTEMS

In this section, we provide a problem statement for the hybrid synchronization of identical hyperchaotic systems.

As the master or drive system, we consider the hyperchaotic system given by

( )x Ax x  (1)

In Eq. (1), nxR  denotes the state of the system, A  denotes the matrix of system parameters and 

contains the nonlinear parts of the system.

As the slave or response system, we take the controlled hyperchaotic system given by

( )y Ay y u   (2)

In Eq. (2), nyR  denotes the state of the system and nuR  is the control.

The hybrid synchronization error between the hyperchaotic systems (1) and (2) is defined as

if  is odd

if  is even

i i

i

i i

y x i
e

y x i


 


(3)

A simple calculation yields the error dynamics as

( , )e Ae x y u   (4)

Thus, the hybrid synchronization problem for the hyperchaotic systems (1) and (2) can be defined as

follows: Find a controller u so as to render the hybrid synchronization error e(t) to be globally asymptotically

stable for all values of (0) ,ne R  i.e.
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lim ( ) 0
t

e t


  for all (0) .ne R (5)

3. A NOVEL SLIDING CONTROLLER DESIGN

First, we set the design by setting the control as

( ) ( , ) ( )u t x y Bv t   (6)

In Eq. (6), nBR  is chosen such that (A, B) is completely controllable.

By substituting (6) into (4), we get the closed-loop error dynamics

e Ae Bv  (7)

The system (7) is a linear time-variant control system with single input v.

We start the sliding controller design by defining the sliding variable as

1 1 2 2( ) ,n ns e Ce c e c e c e     (8)

where 1 nC R  is a constant vector to be determined.

The sliding manifold is defined as the hyperplane

 : ( ) 0 .nS e s e Ce   R (9)

We shall assume that a sliding motion occurs on the hyperplane S.

In sliding mode, the following equations must be satisfied:

0s   and 0s CAe CBv   (10)

We assume that

0CB  (11)

The sliding motion is influenced by the equivalent control derived from (10) as

1( ) ( ) ( )eqv t CB CAe t  (12)

By substituting (12) into (7), we obtain the equivalent error dynamics in the sliding phase as

1( ) ,e Ae CB CAe Ee   (13)

where

1[ ( ) ]E I B CB C A  (14)

We note that E is independent of the control and has at most (n – 1) nonzero eigenvalues, depending on

the chosen switching surface, while the associated eigenvectors belong to ker(C)

Since (A, B) is controllable, we can use sliding control theory to choose B and C so that E has any

desired (n – 1) stable eigenvalues.

This shows that the dynamics in the sliding mode is globally asymptotically stable.

Finally, for the sliding controller design, we apply a novel sliding control law, viz.

2sgn( )s ks qs s   (15)

In Eq. (15), sgn(.) denotes the sign function and the sliding mode control constants k > 0, q > 0 are

found in such a way that the sliding condition is satisfied and that the sliding motion will occur.
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By combining equations (10), (12) and (15), we finally obtain the sliding mode control (SMC) v(t)

as

1 2( ) ( ) [ ( ) sgn( )]v t CB C kI A e qs s    (16)

Next, we establish the main result of this section.

Theorem 1. The sliding mode controller law defined by (6) achieves global and asymptotic hybrid

synchronization of the identical hyperchaotic systems (1) and (2) for all initial conditions (0), (0) ,nx y R
where v is defined by the novel sliding control law (16), 1nB R  is such that (A, B) is controllable, 1 nC R
is such that 0CB   and that the matrix E defined by (14) has (n – 1) stable eigenvalues.

Proof. Upon substitution of the control laws (6) and (16) into the error dynamics (4), we get the closed-

loop error dynamics as

1 2( ) ( ) sgn( )e Ae B CB C kI A e qs s       (17)

We shall show that the error system (17) is globally asymptotically stable by considering the quadratic

Lyapunov function

21
( ) ( )

2
V e s e (18)

The sliding mode motion is characterized by the equations

( ) 0s e   and ( ) 0s e  (19)

By the choice of E, the dynamics in the sliding mode is globally asymptotically stable.

When ( ) 0,  ( ) 0.s e V e 

Also, when ( ) 0,s e   differentiating V  along the error dynamics (17) or the equivalent dynamics (15),

we get

2 3( ) sgn( ) 0.V e ss ks qs s      (20)

Hence, by Lyapunov stability theory [174], the error dynamics (17) is globally asymptotically stable for

all (0) .ne R

This completes the proof. 

4. HYPERCHAOTIC VAIDYANATHAN-VOLOS SYSTEM

Hyperchaotic Vaidyanathan-Volos system ([42], 2016) is described by the 4-D dynamics

1 2 1 4

2 1 1 3 4

3 1 2 3

4 1 2

( )x a x x x

x bx px x x

x x x cx

x x x

  


  


 
   






(21)

where 1 2 3 4, , ,x x x x  are state variables and , , ,a b c p  are positive parameters of the system.

The Vaidyanathan-Volos system (21) exhibits a hyperchaotic attractor for the values
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12,   36,   5,   12a b c p    (22)

The Lyapunov exponents of the system (21) are numerically obtained with MATLAB as

1 2 3 41.0784,   0.1114,   0,   18.1714L L L L     (23)

As there are two positive Lyapunov exponents in (23), the system (21) is hyperchaotic.

Since the sum of the Lyapunov exponents in (23) is negative, the hyperchaotic Vaidyanathan-Volos

system is dissipative.

The Lyapunov dimension of the hyperchaotic Vaidyanathan-Volos system (21) is found as

1 2 3

4

3.0655
| |

L

L L L
D

L

 
  (24)

For simulations, the initial values of the Vaidyanathan-Volos system (21) are taken as

1 2 3 4(0) 1.8,   (0) 1.6,   (0) 1.2,   (0) 1.4x x x x    (25)

Figures 1-4 show the 3-D view of the hyperchaotic attractor of the Vaidyanathan-Volos system (21) in

1 2 3( , , ),x x x  
1 2 4( , , ),x x x 1 3 4( , , )x x x and 2 3 4( , , )x x x  spaces, respectively..

Figure 1: 3-D view of hyperchaotic Vaidyanathan-Volos system in (x
1
, x

2
, x

3
) space
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Figure 2: 3-D view of hyperchaotic Vaidyanathan-Volos system in (x
1
, x

2
, x

4
) space

Figure 3: 3-D view of hyperchaotic Vaidyanathan-Volos system in (x
1
, x

3
, x

4
) space
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5. HYBRID SYNCHRONIZATION OF HYPERCHAOTIC VAIDYANATHAN-VOLOS

SYSTEMS VIA NOVEL SLIDING CONTROL

In this section, we describe novel sliding mode control design for the hybrid synchronization of identical

hyperchaotic Vaidyanathan-Volos systems.

As the master system, we consider the hyperchaotic Vaidyanathan-Volos system given by

1 2 1 4

2 1 1 3 4

3 1 2 3

4 1 2

( )x a x x x

x bx px x x

x x x cx

x x x

  


  


 
   






(26)

where x
1
, x

2
, x

3
, x

4
 are state variables and a, b, c, d, p, q are positive parameters.

As the slave system, we consider the hyperchaotic Vaidyanathan-Volos system given by

1 2 1 4 1

2 1 1 3 4 2

3 1 2 3 3

4 1 2 4

( )y a y y y u

y by py y y u

y y y cy u

y y y u

   


   


  
    






(27)

where y
1
, y

2
, y

3
, y

4 
are state variables and u

1
, u

2
, u

3
, u

4 
are the controls.

Figure 4: 3-D view of hyperchaotic Vaidyanathan-Volos system in (x
2
, x

3
, x

4
) space
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The hybrid synchronization error between the systems (26) and (27) is defined by

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

 


 


 
  

(28)

Then the error dynamics is obtained as

1 2 1 4 2 4 1

2 1 4 1 1 3 1 3 2

3 3 1 2 1 2 3

4 1 2 1 4

( ) 2 2

2 ( )

2

e a e e e ax x u

e be e bx p y y x x u

e ce y y x x u

e e e x u

     


     


    
     






(29)

In matrix form, we can write the error dynamics (29) as

( , ) ,e Ae x y u   (30)

where

2 4 1

1 1 3 1 3 2

1 2 1 2 3

1 4

2 20 1

2 ( )0 0 1
, ( , ) ,

0 0 0

21 1 0 0

ax x ua a

bx p y y x x ub
A x y u

y y x x uc

x u



      
    

 
      
     
    

          

(31)

First, we set u as

( ) ( , ) ( ),u t x y Bv t   (32)

where B is selected such that (A, B) is completely controllable.

We choose B as

1

1

1

1

B

 
 
 
 
 
 

(33)

We choose the parameters of the Vaidyanathan-Volos systems as in the hyperchaotic case,

viz.

12,   36,   5,   12a b c p    (34)

The sliding mode variable is selected as

  1 2 3 460 40 10 50 60 40 10 50s Ce e e e e e       (35)

which renders the sliding motion globally asymptotically stable.

Next, we take the sliding mode gains as
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6k   and 0.2.q  (36)

From Eq. (16) of Section 3, we obtain the novel sliding control v as

2

1 2 3 418.8333 16.8333 0.1667 3.3333 0.0033 sgn( )v e e e e s s      (37)

As an application of Theorem 1 to the identical hyperchaotic Vaidyanathan-Volos systems, we obtain

the following main result of this section.

Theorem 2. The identical hyperchaotic Vaidyanathan-Volos systems (26) and (27) are globally and

asymptotically hybrid synchronized for all initial conditions 4(0), (0)x y R  with the sliding controller u

defined by (32), where ( , )x y  and B are defined by (31) andis defined by (37). 

For numerical simulation, we take the parameter values as in the hyperchaotic case, i.e.

12,   36,   5,   12a b c p   

As an initial condition for the master system (25), we take

1 2 3 4(0) 5.2,   (0) 2.3,   (0) 4.5,   (0) 7.7x x x x     

As an initial condition for the slave system (26), we take

1 2 3 4(0) 1.4,   (0) 5.8,   (0) 2.6,   (0) 8.4y y y y    

Figures 5-8 depict the hybrid synchronization of the hyperchaotic Vaidyanathan-Volos systems.

Figure 9 depicts the time-history of the hybrid synchronization errors.

Figure 5: Hybrid synchronization of the states x
1 
and y

1
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Figure 6: Hybrid synchronization of the states x
2 
and y

2

Figure 7: Hybrid synchronization of the states x
3 
and y

3
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Figure 8: Hybrid synchronization of the states x
4 
and y

4

Figure 9: Time history of the hybrid synchronization errors
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6. CONCLUSIONS

In this paper, a novel sliding mode controller has been designed for the hybrid synchronization of identical

hyperchaotic systems. Lyapunov stability theory has been used to prove this main result of the work. Next,

as an application of the main result, a sliding controller has been designed for achieving hyperchaos hybrid

synchronization of identical hyperchaotic Vaidyanathan-Volos systems (2016). Numerical simulations using

MATLAB have been provided to illustrate phase portraits of the hyperchaotic Vaidyanathan-Volos system

and the novel sliding mode controller for the hyperchaos hybrid synchronization of identical hyperchaotic

Vaidyanathan-Volos systems.
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