
I J C T A, 9(20), 2016, pp. 231-243
© International Science Press

A Survey on Last level Cache Partitioning
Techniques in Chip Multi-Processors
Jobin Jose* and N. Ramasubramanian**

ABSTRACT

Chip Multi Processors (CMPs), a new generation of multicore architecture emerged as the base of System on
Chip(SoC) paradigm. Multiple processing cores are packed into a single chip here. Each core is capable of executing
simple and complex applications in parallel. Memory is being considered as a scarce resource for the application.
The multilevel memory hierarchy that involves various levels of caches are being accommodated into the chip in
shared/private mode for faster access of data. Of these, the Last Level Cache (LLC) is being shared amongst
various processing cores. Multiple applications are accessing the same L2 cache, and thus increases the conflicts in
cache entries and this acts as a source of contention. These applications may produce the destructive interference
between cores and at the same time occurs cache misses. This will cause a serious effect on the performance and
efficiency in terms of energy of the system. In order to mitigate these problems, the shared LLC is being partitioned
amongst the applications. Depending on the cache organization, different schemes are used for partitioning that
includes an initial placement and replacement policies that helps to develop a good system which will improve the
utilization of cache space. This paper presents a study on various cache partitioning schemes used for the LLC in
terms of replacement policy, simulating tools and cache design and analyze in term of performance and found that
dynamic way based partitioning techniques performs better in terms of energy.

Keywords: Chip Multi Processors; Multi level memory; Last level cache;LLC; Cache partitioning; Replacement
policy; cache misses.

1. INTRODUCTION

The revolution of multi-core processors has turned into a new direction after the introduction of Chip
multiprocessors (CMPs)[1] that solve many disadvantages of uni-processor systems such as scalability,
energy and area efficiency. The CMPs improves the throughput and the degree of parallelism at various
levels. With the introduction of CMPs, the multi core architecture has moved from desktop computers to
embedded systems. Multiple small cores are accommodated in the small die area that makes the CMP more
area efficient. The power consumption and the resource sharing via wires are still appears as performance
hindrance factors for it. The basic element in the CMP architecture consists of homogeneous or heterogeneous
processing element(PE), that includes cores and the on- chip cache memory together. The cores use caches
to reduce both the latency in memory accees and traffic. The cache in the system, are shared via properly
designed interconnection networks that has organized as shared or private, of which the shared cache
provides better performance, as this was accessed by multiple cores. As the number of cores in the
multiprocessor system increased, the shared cache has become a source of contention which has increased
the memory pressure and thus affects the utilization efficiency. The sharing also causes interference due to
multiple accesses by different cores. This often produces a large amount of misses in the system. The
private cache is often small in capacity, that can be accommodated as on chip caches which reduces the
access latency and provides high utilization. Although the private caches provides good access efficiency,
it cannot be used in the environments where high memory is demanded. Due to the wire delays in the inter

* Department of Computer Science and Engineering National Institute of Technology, Tiruchirappalli, Email: jobin16981@gmail.com

** Department of Computer Science and Engineering National Institute of Technology, Tiruchirappalli, Email: nrs@nitt.edu

232 Jobin Jose and N. Ramasubramanian

connection, it is very difficult to provide a uniform access to the cache and sufficient bandwidth to the
accessing applications.

One method to solve these problems is partitioning the cache, that logically partitions the large cache
space into several parts, whose granularity depends on the application demand, that is executing in each
core. The applications can be categorized as high demand applications, saturated applications and low
demand applications, based on the cache demand. In order to have better utilization, the high demand
applications are to be treated appropriately. The partitioning scheme has two parts: one is the allocation
scheme and another is the replacement policy. The former deals with the placement of blocks in the cache
and the latter deals with the replacement of blocks upon eviction. The placement of blocks deals with the
initial as well as placement of blocks, that can be determined by the utility. The partitioning is available in
two variations: static and dynamic, where the former predetermines the amount of cache blocks needed for
the workload at the beginning[4]and the latter adjusts the cache sizes dynamically wherein the allocation
policy determines the size and number of the partition[8,23] that improves the performance, throughput,
fairness[10,27], QoS etc. and a partitioning scheme that enforces those sizes. This paper aims to provide a
survey about various cache partitioning techniques that has been applied to CMP structure and analyze the
performance.

The subsequent organization of the paper is as follows: Section II provides the design issues in
partitioning, III describes the various categories of cache partitioning schemes. Section IV describes the
comparative analysis of different cache partitioning schemes in CMPs. Concluding remarks are given in
Section IV.

2. DESIGN ISSUES IN CACHE PARTITIONING

There are various issues in partitioning cache, which are discussed below:

1. Cache Indexing: Indexing techniques are at different levels of cache may incur conflict misses[2],
which is costlier and produces memory overload.

2. Resizing penalty: The resizing of cache blocks during partition incurs certain impact on the
applications that are accessing the blocks in the cache. The high performance applications may not
get sufficient memory for its efficient execution and also certain data may be flushed out[24].

3. Associativity: The term implies the mapping of data into the cache. The level of associativity usually
decreases while partition into ways. The unrestricted placement of cache lines sometimes increases
the associativity [2,24]. High degrees of associativity risk increasing memory access latency.

4. Scalability: The partitions can get the size from other partitions [2,21], based on the demand of
accessing applications.

5. Workload: The application workload may be selected in such a way that it should be memory
intensive, having large working set size and good locality. Homogeneous mix or heterogeneous
mix of applications can be considered depending on the characteristics of the method. This
categorization is possible based on their cache space sensitivity[22] and MKPI and CPI.

6. Cache Sensitivity: The sensitivity of a cache is measured in terms of hit rates and miss rates in the
cache. This is a very good measure of evaluating the execution time of each process and thus to
minimize the worst case execution times[6].

7. Memory fragmentation: Equal-sized cache partitioning causes memory fragmentation [1,3].

8. Conflict misses: This may arise the eviction of data from the cache lines. These evictions can be
managed applying suitably defined replacement policies [3].

A Survey on Last level Cache Partitioning Techniques in Chip Multi-Processors 233

9. Responsiveness: The wastage of memory by keeping them idle is a big source of performance
degradation and consumes more energy .The partitioning scheme must take on full utilization[14]
of all cache blocks. If portions of the cache is not being utilized fully, can be turned off[7,8].

10. Resource contention: The contention of resources often happens in shared memories as well as
bandwidth. This may happen when higher priority tasks and low priority tasks are accessing the
memory [18]. Once this is partitioned, contention in memories can be minimized as the bandwidth
cannot be partitioned .But, adding more applications by oversubscribing will increase the contention
and thus degrades the performance.

11. Access latency: The partitioning cause some latency in accessing the cache blocks. The latency of
accessing the drowsy blocks is high in[16] as is the case of shared caches in[16].

12. Cache Conflict : Cache conflicts occur when some contents are assigned on to the same cache
line[1] which is a very fundamental issue in caches, more specifically, in cache partitioning too.
When multiple applications are competing for the resources to access, this issue will occur. This
can be avoided by code placement and padding techniques in [6].

3. CACHE PARTITIONING TECHNIQUES

3.1. Way Based Partitioning

Generally, the partitioning schemes can be classified as static and dynamic partitioning methods which
apply on real time applications whereas some may work also in mixed mode. The main aim of the partitioning
methods discussed in this section is to improve the utilization[17].At the same time some schemes are used
to provide isolation and interference reduction[8], energy minimization, in terms static and dynamic
energy[5,12,16,18] and some schemes ensures fairness[10]. Majority of the partitioning schemes on caches
works on way based partitioning that splits the cache space into two logical sections, that adopts various
methodologies. Many of these schemes comes under dynamic schemes with one exception as in DCR+CP[5]
and make-span[15], a static partitioning on shared caches can be employed to minimize the energy for the
real time systems. A static profiling technique is employed to avail the benefit of partitioning on L2. The
number of ways are statically allocated to each core and is determined at the earlier stage itself. This
method also provides dynamic configuration of L1 caches along with the partitioning which minimizes the
total energy, whereas in [15], provides a balance in partition size. The allocation does not change till the
completion of execution of threads and ensures all threads finish at the same time provide more fairness.

The dynamic partitioning schemes, divides the cache space at run time that works on a variety of ways.
The [6,7,8,9,10,11,12,14,16,17,18,21,24,25,26,27] comes under this category. Each employs partitioning
based on the adaptation of various methodologies such as managed and unmanaged regions[8], data
ownership based partitioning in to shared and private regions[11,12,16] with the difference is that, the [11]
is based on real time task ownership. This ensures that private cache is accessible only by the owner task
and the shared cache is accessible by all the tasks. During a stipulated time frame if the private space is not
fully utilized by the owner, then the remaining space can be allocated to other non critical tasks. The
CaPPS[17] uses slightly different terminology for partitioning called partial sharing on the basis of core
ownership that divides cache into private and shared regions. The RWP [25] divides the cache into clean
and dirty regions that minimizes the read misses by employing a read-write policy over the cache lines. The
[4] uses a drowsy mode that divides the cache space into A/B partitions, in which the initial access is on
partition A and the miss on item will lead to the access in partition B, which is in drowsy mode. The entire
cache is partitioned on the granularity of threads described in [10] and a fairness value is assigned to each
slice and is compared with the previous value and the greater value indicates the correct partition for
fairness and that guarantees size on partitions. The partitioning scheme described in[27], meant for

234 Jobin Jose and N. Ramasubramanian

heterogeneous applications can be viewed as a unified shared cache that considers no associativity. This
scheme splits the cache blocks equally among the applications initially and then reallocates the cache block
to an application that has performance degradation due to the cache misses. Another scheme that employs
into the LLC called NUCache[7], that separates the cache ways into Mainways and Deliways in a logical
manner. This maintains set associativity while partitioning. All incoming blocks are initially placed in main
ways and blocks from the delinquent PC are placed in the deliways on replacement, provided they should
produce additional hits. Most of these schemes considered for review uses a unified cache structure with no
guarantee on associativity initially, whereas vantage[8] highly associative cache and [6] uses both associative
and direct mapped caches. The Liu et.al in[6] uses a shared cache as L2 that splits into different shares
depending on the number of cores and assign tasks to cores with the aim of minimization of another aspect
i.e Worst Case Execution Time(WCET) which we haven’t examined earlier in this paper. Along with the
task assignment, a locking mechanism is also being performed to restrict the size on each shares. With the
motivation of improving the locality of reference, a bloom filter based scheme is proposed in[9]. The hash
function based filter array is used to identify far misses that occur in each shared cache set.

The initial block placement of blocks into the cache does not incur any overhead, whereas PRETI
requires future knowledge about all requests. The new cache line is inserted based on dynamic insertion
policy that determines the partition in which the newline is inserted in place of an evicted line. The
determination of the candidate for replacement and evictions of a cache line is done based on the frequency
in which the line is being accessed. This can be accomplished by accommodating a counter and shadow
tags in the structure. These counter determines the utility[8] of the cache line with minor improvements,
such that vantage provides churn based management technique based on the insertion rate on each partition
at any given time. In RWP[25], the utility monitor is used to determine the partition size which employs set
sampling that maintains shadow directories for both clean and dirty lines. The technique proposed in[21]called
cooperative partitioning that uses a utility based UCP lookahead algorithm to determine the optimal partition
for allocation to the applications, whereas in[26] the victim block is determined by the utility value, checked
by a utility predictor and the reuse distance. In contrary to utility, futility, a term which determines the
uselessness of each cache line for ranking the cache line for replacement. This employs a replacement
based algorithm called futility scaling[24] that guarantees partitions can grow/shrink their sizes.

The baseline replacement policy is LRU[8, 11, 12, 14, 16, 17, 24], which is a simple and common
policy in almost all partitioning schemes with some minor modifications such as time stamp based LRU[24]
clubbed with churn based management[8], replacement happens on a miss[16,17] and [25] uses an additional
policy called MRU to determine the block placement. Whenever a miss happens in the main partition[14],
the lookup is done on drowsy partition and if found, will be brought into partition by evicting certain lines.
In[17] the oldest block which are either in the shared space or in the private space that produce a miss are
replaced. The overhead occurs in the replacement policy, due to the addition of extra field in the tag. The
unused ways in the centre region can be turned off which may incurs extra cycles in RECAP where as
vantage performs evictions from the unmanaged region and demotions from the managed region. Before
performing the replacement in CaPPS [17], the replacement candidates are to be occupied in the shared
ways. RECAP does not provide isolation and requires extra circuitry for monitoring and partitioning.

A hardware implementation of dynamic partitioning scheme targeting MPSoCs using FPGA is described
in [26]. Multiple applications from various processors can utilize different regions of the memory since it
uses global address space which is partitioned. The cache management logic allocates cache to other cores
while one core is searching for the resources. The availability of cache ways to the requesting cores is
determined based on the state of the resources to be synchronized with the cores with the help of an API. To
allocate cache ways, cache ways management unit(CMMU) along with block reference field logic is used.
The released cache ways are flushed out in one tick of the clock cycle before reallocation. The reconfiguration
of ways to cores are done by certain commands. The replacement policy used here is FIFO.

A Survey on Last level Cache Partitioning Techniques in Chip Multi-Processors 235

The other categories of partitioning methods will be described later in this section. Though they are, by
nature, follows dynamic partitioning to a certain extend, their implementation is slightly different in some
other context. That is the reason why we have mentioned it as a separate category. A main memory based
partitioning scheme, meant for PCM main memory to minimize the write energy and limited endurance is
proposed in[12].Though it is slightly out of our focus, the partitioning scheme alone has much significance
here. This partitioning called WCP, is based on write back-aware policy that distributes the write bandwidth
evenly across competing applications and minimizes the cache misses and writebacks.The partitioning
decisions are taken based on the utility as described in[25] in terms of hit counts and shadow tags which is
stored in hit counters and shadow tag arrays, that selects the valid or best partition by assigning weights,
depending on the reduced miss rate and write backs. The write back minimization decisions on a way has
been made depending on the write back avoidance distance corresponds to a way, when that way has the
maximum stack distance. The replacement policy is LRU as described above with some additions such as
implementation of a write queues balancing technique in order to distribute the write backs evenly across
the queues to avoid the delay in removing a clean line or dirty line. WCP incurs some hardware overhead
due to storage of utility and weights.

Considering the static and dynamic energy minimization as the prime motive, a cache partitioning
scheme is proposed in[13] by karthik soundarrajan et al. that performs way alignment of data belonging to
each core across all sets. The cooperation between cores is employed to migrate ways after partitioning .
Whenever the way is unused by any core, it can be turned off to save energy similar to that in[16]. The
scheme needs an extra circuitry in terms of registers for controlling the access to the ways by different cores
that consumes more power than a regular cache and transferring ways across the cores creates performance
overhead. A mix of static and dynamic Cache partitioning scheme, is proposed by Henry Cook et.al in[18]
for improving the utilization of application responsiveness by co scheduling both foreground applications
and background applications. The static partitioning is beneficial for foreground processes that achieve
performance improvement and energy efficiency, while the dynamic cache capacity allocation framework
based on utility is beneficial for background applications by detecting and responding the phase changes of
the applications. More cache space is allocated when an application changes its phase until negative
performance is seen. The data is not flushed when performing reallocation. If the cache size is close to the
working set size excessive interference is taking place.

A tight bound on partitioning is provided in[19] called imbalanced partitioning that divides the cache
set into preferred and non preferred segments whereas Flexi Way[20] divides into modules and the ways
inside each modules, called subways are also considered for allocation and reconfiguration. Each core in
[19] is prioritized to get the partitions for its application based on the minimum miss rate. This scheme
lacks scalability and solution space. The unused ways in modules can be turned off, like in [13, 16].

Table 1
Static Partitioning Schemes

Technique Approach Memory Replacement Simulation Performance Merits Demerits
Type Policy Tool

DCR+CP[5] Static profiling Uniform NA M5 Improvements Reduce inter- Only static
and partitioning shared in energy task inter- energy can be
ways equally memory saving ferences, and determined
amongst the improves
cores energy

Make-span[15] Partition a Uniform NA NA Better Shorter Ensures all the Applicable to
shared cache to shared memory schedules threads com- one thread/
Minimize the pletes at the core with
makespan of a same time known miss
set of threads. rate

236 Jobin Jose and N. Ramasubramanian

Dynamically repartitionable static non uniform cache access, DR-SNUCA based partitioning method is
proposed in [21] in order to avoid excessive tag matching and interference in Dynamic NUCA. This employs
a tag duplication and indirect cache addressing for efficient utilization. The indirect cache addressing can
be achieved by employing separate tag array and data array for the cache. The tag duplication is used to
provide uninterrupted execution during reconfiguration. FLexTCP[22], partitions the distributed shared
LLC into clusters and the flexible capacity partitioning is done across the clusters, meant for tiled CMPs.
Clusters consists of cache slices, in high cache demanded applications can steal capacity from other clusters
if they are utilized much and the cache blocks are distributed across all L2 slices based on set-duelling
approach. Cache sensitive applications can flush their replaced blocks into victim tiles. It reduces the
average on chip cache access latency and incurs minimal dynamic repartitioning cost and takes more time
for table lookup for mapping block to tiles in the cluster.

3.2. Page Coloring Based Partitioning

The software based approach requires the support of Operating system for making and effective
implementation. Some of the methods are described below. COLORIS[28], a page coloring based partitioning
mechanism that can be applied to the environment where there is more executable threads having varying
memory requirements, than processor cores. This consists of a framework for management of memory that
involves both static and dynamic partitioning. The distinct coloring can be applied to each cache partitions,
whose numbers depends on the number of cores which are applied to each cores as local cache and thus
provides cache isolation between processes. Where as, in light weight dynamic partitioning[29], coloring
is done only on the dynamically allotted pages to the applications with the help of malloc allocator. Different
applications allocate pages in different color in the color set, hence their accessed region in shared cache is
partitioned based on the partition policy. The color set is changed adaptively with the change in application
type whose categorization is based on the sensitivity to the cache memory. A slightly modified scheme is
used in CAP [30] that allocates tasks to cores by considering the access patterns of the cache. The tasks
having the same color can be grouped together and assigned to a processor core not individual task thereby
reducing the interference due to self evictions and pre-emption delay. The scheduling of tasks is done based
on various heuristics. The colors can be reclaimed in [10] or cache can be repartitioned if some colors are
not needed or some are not sufficient, based on the cache utilization monitor. The reallocation of pages to
the processes is done by determining the degree of hotness of a particular page and various policies. But in
[11], changing the partition is done by changing the color-set of each allocated page for the application.
Frequently allocated pages are assigned in a different color.

A scalable software defined cache called jigsaw is proposed by Nathan Beckmann et.al in[23].The
scheme considers the LLC as a set of distributed banks similar to NUCA, that are logically partitioned as
bank partitions or shares and lets the software to collect these shares and allocate data to it based on its
classification. Dynamic reconfiguration of shares in terms of sizing in jigsaw based on the application
demand, and this requires the UCP algorithm for monitoring the usage. It reduces latency and maximizes
the hits by controlling the capacity of the cache. As far as longer cycles are concerned, the reconfigurations
degrade the performance.

3.3. Hybrid Memory Based Partitioning

Majority of partitioning techniques on LLC focused on energy minimization. The hybrid memory technology
based partitioning techniques are proposed in [32],[33]and [34] that aims to minimize the energy. The[32] and
[34] uses STT-RAM and SRAM mix as hybrid last level cache(LLC) based on NUCA architecture, whereas the
[33] uses DRAM along with NVM as the hybrid main memory. The selection of the partition is based on the
utility. This uses way based partitioning, in which majority of ways are allocated to the STT-RAM and a very few
to SRAM. The cache tags are of SRAM tags only. A Block is placed either in STTRAM or SRAM on read miss

A Survey on Last level Cache Partitioning Techniques in Chip Multi-Processors 237

Table 2
Dynamic Partitioning Schemes

Technique Approach Memory Replacement Simulation Performance Merits Demerits
Type Policy Tool

Cache partiti- Equal L2 Direct or Fully NA ARM11 Reduction in No cache Dependencies
oning with partitions and associative architecture WCET interference. between tasks
locking and task assign with abSInt Minimal are not
task partition- ment is based tool capacity, considered
ing[6] on execution conflict and

time, that can Inter-core
adjusts size cache misses
after assign-
ment with
locking

NuCache[7] Partitioned into Shared set PC based M5 Speed up of Hardware Multi
deliways and associative around 33% for complexity threaded work
Mainways. memory 8 core pro- doesnot loads are not
access by all cessors increases with considered.
lines in increase in
Mainways cores and size

Vantage[8] Partition into Z cache Or set Time stamp x86-64 Efficient parti- Avoids inter- Restricts the
managed and associiative based LRU simulator based tioning of ference and size of
unmanged cache on Pin unmanged thus scalable. partitions
regions based regions. Good Good isolation
on line. replacement.

Dynamic Partitioning Shared set LRU Multi2Sim Reduced miss Improveslo- Hardware
Partitioning[9] based on associative rate cality of overhead.

bloom filter cache reference Consumes
with updated more software
replacement resources.
policy

Fairness of Entire cache is – Set Associative Simics Balanced Increase the Improved
shared caches partitioned per cache execution in fairness of con- fairness will
[10] thread and a threads. The currently exe- cause

fairnees value performance cuting multi- overhead in
is assigned per improvement in threads efficiency
partition terms fairness

or write miss with the assumption that the former is read efficient and the latter is write efficient. The selection of
victims on replacement is done based on LRU policy in [32,33,34]. This employs read-write aware cache
architecture [31] which produces reduction in miss rate and energy of about 3.8% and 11% respectively. The [34]
minimizes the high write pressure on STTRAM by providing two access aware policies, and thus improves the
write utilization. The [33] is a hybrid memory aware partitioning (HAP) technique that splits the LLC into
DRAM lines and low latency NVM lines depending on the source of data from the main memory based on the
technology used.HAP sets appropriate bits either 1 or 0 in each line depending upon whether the data is from
DRAM or NVM.HAP will be able to adjust the partition size dynamically.

4. COMPARISON BETWEEN VARIOUS PARTITIONING SCHEMES

The tables 1, 2 3 and 4 shows an analysis of various partitioning schemes based on their characteristics,
memory type replacement policy performance, merits and demerits. From the review we can say that most
of the partitioning techniques works on simulated environment of set-associative cache with LRU based
replacement policy with the exception in[1],[14],[15] and [18]. Some partitioning schemes in [28-30],
works on page level and that needs operating system support for allocation and replacement. By employing
these methods on the LLC, the utilization is improved considerably and thus achieves reduction in energy.

(contd...)

238 Jobin Jose and N. Ramasubramanian

PRETI[11] Splits the cache Set Associative LRU NA Achieves Enables high Extra logic is
space as private schedulability performance needed for the
and shared and tighter on all the tasks, selection of
caches based WCET esti- the replaced
on the tasks mates block
accessibility

WCP[12] Based on write Set associative LRU Simics Improves Reduced Hardware
back aware shared L3 throughout by number of overhead due
policy that cache 21% write write backs to storage of u
distributes the reduction on and misses. tility and
write band PCM by 49% weights
width evenly
across
applications

Cooperative Co-operative Fully Asso- Modified LRU Mars-x86Cacti Dynamic and High Consumes
Partitioning migration of ciative staticenergy performance. more power
[13] ways after savings Faster trans- as it needs

partitioning ferring of ways extra circuitry.
into managed
and unman-
aged partitions.

Drowsy cache First partition Set associative MRU Multi2sim with Average Dynamically Extra latency
partitioning is in high cache CACTi dynamic change the due to
[14] voltage and is energy savings ways between partitioning

accessed first, 20% Leakage caches.High
and the second energy 45% temporal
partition is in locality
drowsy mode
and is accessed
when the data
is not found in
the first one

RECAP[16] Partitions the NUCA LRU gem5 and Achieves No inter- Consumes
data within the CACTi dynamic and ference. more power
cache into static energy Reduced Cache because of the
shared and savings. contention. extra circuitry
private regions. Energy mini- for moni-

mization toring and
partitioning.
Extra latency
for cache
accesses.

CaPPS[17] Cache to be Set associative LRU Gem5 Reduces the Low hardware No mech-
organized as average LLC overhead for anism to
private to a miss rates by CMPs handle unused
particular core 25% and 17% ways
and shared as compared to
partially by baseline con-
other cores figurations and

private partiti-
oning

Phase change Static and Set Associative Phase change Proto typed on Average energy Improves the Adding more
detection dynamic parti- cache based replace- Intel’s Sandy improvements utilization. applications
based partiti- tioning appro- ment Bridge 12% and thro- Preserves the increases the
oning[18] aches to co- ughput improv- responsiveness contention for

schedule both ements 60% cache and

(Table 2 contd...)

Technique Approach Memory Replacement Simulation Performance Merits Demerits
Type Policy Tool

(contd...)

A Survey on Last level Cache Partitioning Techniques in Chip Multi-Processors 239

foreground bandwidth
applications
and back
ground
applications.

Imbalanced Way Partiti- Set associative LRU Simics GEMS 17% drop in Prioritize each Scalability,
Cache Partiti- oning shared cache miss rate8% thread. Limited
oning[19] LLC for drop in exploration of

balanced data execution time solution space
–parallel
applications.

Flexi Way[20] Logically Shared L2 LRU Sniper Average No unfair slow Some valid
divides the energy saving downs. Fine blocks may
cache set into of 22.4 % on grained cache lost due to
modules. quad-core reconfiguration turning off

machine

DR-SNUCA Dynamic Set asoociative LRU PTLsim with Reduced Energy Penaltyis due
[21] repartitionable NUCA DRAMSim average L2 efficiency and to indirect

shared cache energy high cache cache
with indirect Consumption. utilization and addressing.
addressing and reource
set partitioning. guarantees.

FLexTCP[22] Partitioning for Fully Victim tile Simics Full Improvements Reduce the Randomly
clustered Tiled associative lookup and tile system simu- in Weighted average on- selects the
CMPs that cache migration lator Speedup chip cache processes for
partitions and access atency allocating the
resizes the minimal cache space.
cache based dynamic re- More time for
on the demand. partitioning table lookup

cost.

Futility Partition the Set associative, Time stamp Sniper FS improves Improves the Storage
scaling[24] whole cache NUCA based LRU simulator performance utility of cache overhead

while main- from 6.0% - capacity.
taining high 13.7% Precise size of
associativity the partitions
even with a can be
large number maintained.
of partitions.
Adjust the
evictions of
different
partitions

RWP[25] Employing Shared Cache LRU CMPSim Provides Does not Extra storage
read-write 5.1%-6.2% of require any overhead in
policy that speedup information storing the
makes the compared to from pro- predictor
cache into baseline cessors or
clean(read) and scheme. higher level
dirty(write caches
only) partitions

Automatic Dynamic way- Unified cache FIFO Altera DE5 On anaverage Reduces cache Extra
Partitioning based cache board with reduce 14.93% misses.Task Circuitry is
[26] partitioning at Statrix V and 12.56% level portioning needed for

hardware level, FPGA cache miss on of caches is cache and its
building task- 2-core and 4- done auto- way
level time- core architec matically. management

(Table 2 contd...)

Technique Approach Memory Replacement Simulation Performance Merits Demerits
Type Policy Tool

(contd...)

240 Jobin Jose and N. Ramasubramanian

triggered tures
reconfigurable
cache MPSoCs

Heterogeneous The shared Unified fully LRU with Storage cache Average Fair allocation Throughput is
–aware cache cache associative fairness simulator fairness and of cache space less as the
partitioning partitioning together with performance among hete- reuse distance
[27] adjusts the size Disksim improvements. rogeneous is uniform

based on applications.
utility on both
fairness and
performance

(Table 2 contd...)

Technique Approach Memory Replacement Simulation Performance Merits Demerits
Type Policy Tool

Table 3
Page Coloring Based Partitioning

Technique Approach Memory Replacement Simulation Performance Merits Demerits
Type Policy Tool

COLORIS Assign differ- Set a ssociative Lazy recoloring Prototyped Reduces the Eliminate cache Page
[28] ent color for L3 cache system interference in conflict migration re

different co-running misses coloring
partitions. workload overherad.

Restricts
memory
space.

LightWeight Malloc Set associative Minimum Operates n Improves Reduces the Page copying
dynamic allocator based distance page linux kernel performance of overhead in strategy only
partitioning dynamic cache copying 2.6.32 applications by recoloring. works with
[29] partitioning 14.28% recol- application of

with page oring cost is larger data set
coloring reduced by and shorter

55% reuse
distance.

CAP[30] Assigns tasks Shared L3 – Done on EPOS It produces Can avoid Requires OS
to cores by cache RTOS only 20% on deadline misses support at a
considering deadline misses higher level
their usage of for HRT pre-emption
cache partitions delay

Table 4
Hybrid Memory Based Partitioning

Technique Approach Memory Replacement Simulation Performance Merits Demerits
Type Policy Tool

Energy efficient Assigns cache SRAM+ – Gem5 Energy savings Improves the The write
hybrid cache blocks to a STTRAM of hybrid cache performance of delay and
partitioning[32] specific region (NUCA) is 11.0%, the multi-core eviction on

of a cache system miss are not
based on addressed
region-based
hybrid cache
architecture

HAP[33] Logically DRAM+NVM LRU Gem5 Improves the Reduces Cost of a miss
divides the (NUCA) performance memory Cost of a miss
cachespace over LRU by references in NVM is

(contd...)

A Survey on Last level Cache Partitioning Techniques in Chip Multi-Processors 241

(Table 2 contd...)

Technique Approach Memory Replacement Simulation Performance Merits Demerits
Type Policy Tool

into two 54.3% higher.
partitions for Storage
DRAM and overhead
NVM lines.

High endurance Wear out- SRAM+ – Gem5 89 times Handles write Selection of
Hybrid cache aware dynamic STTRAM improvement pressure replacement
[34] cache partiti- (NUCA) incache lifetime on a miss is

oning scheme over SRAM. not taken
Reduced care.
energy
consumption
of 58%

5. CONCLUSION

This paper has presented an overview of various cache partitioning techniques, particularly in the area of
chip multiprocessors. Many of these techniques attempt to reduce one or more issues related to caches,
such as utilization, energy minimization, isolation, interference, fairness and worst case execution time by
compromising some others. Most of these techniques are tested for its correctness based on different
simulators. Among all these partitioning techniques the dynamic way partitioning techniques perform better,
when compared to other. The page coloring based techniques requires operating system support to allocate
the cache blocks and it restricts memory sizes and very complicated also. The dynamic partitioning methods
is a promising approach for reducing the energy and life time of currently emerging hybrid memory paradigm.
As the future research directions are for many core CMPs and GPUs to reduce the energy and to improve
the utilization, these techniques will throw some insights into the development of an efficient cache system
which maintains dynamic non uniform access and non volatility.

REFERENCES
[1] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, Kunyung Chang, “The Case for a Single-Chip

Multiprocessor”, In Procedings of seventh International Symposium on Architectural Support for Programming Languages
and Operating System,1996.

[2] Hemant Salwan, “Eliminating Conflicts in Multi level CacheUisng XOR-Based Placement Techniques”, In Procedings
of 2013, Internationa Conference onHigh Performance Computing &Communications, pp. 198-203.

[3] Chih Yung Chang, Jang Ping Sheu, Hsi Chiuen Chen, “Reducing Cache Conflicts by Multi Level Cache Partitioning and
Array Elements apping”The Journal of Supercomputing, 22, 2002, pp.,197,219.

[4] Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging the Gap between Simulation and Real Systems,”
In Procedings of the 14th IEEE International Conference on Hight Performance Computer Architecture(HPCA), 2008.pp.
367-378

[5] Weixun Wang, Prabhat Mishra and Sanjay Ranka, “Dynamic Cache Reconfiguration and Partitioning for Energy
Optimization in Real-Time Multicore Systems”, In Procedings of the 48th ACM Internatinal Conference on Design
Automation (DAC) 2011, pp. 948-953

[6] Tiatian Liu, Yingcho Zhao, Minming Li, Chun Jason Xue, “Joint task assignment and cache partitioning with cache
locking for wcet minimization on MPSoC”, Journal on Parallel and Distributed computing,71, 2011, pp. 1473-1483.

[7] R.Manikantan. Kaushik Rajan, R.Govindarajan, “Nucache: An Efficient Multicore Cache Organization Based on Next-
Use Distance”, In Procedings of the 17th International Conference on High performance Computer
Architetcure(HPCA),2011, pp. 243-253

[8] Daniel Sanchez, Christos Kozyrakis, “Vantage: Scalable and Efficient Fine-Grain Cache Partitioning”, In Procedings of
the 38th annual international symposium on Computer architecture (ISCA’11), pp. 57-68,2011,

[9] Yang Zhang “Dynamic Cache Partitioning for Multi-core Systems”, MS thesis,2011

242 Jobin Jose and N. Ramasubramanian

[10] Fang Juan, Pu Jiang, “Fairness of Shared Cache Dynamic Partitioning in CMP”, International Journal of Advancements
in Computing Technology July 2012, Vol4, Issue2, pp. 44.

[11] Benjamin Lesage, Isabelle Puaut, André Seznec, “PRETI: Partitioned REal-TIme shared cache for mixed-criticality real-
time systems”, In Procedings of the 20th International Conference on Real-Time and Network Systems RTNS2012.pp.
171-180.

[12] Miao Zhou, Yu Du, Bruce Childers, Rami Melhem, and Daniel Mosse “Writeback-Aware Partitioning and Replacement
for Last-Level Caches in Phase Change Main Memory Systems”, ACM Transactions on Architecture and Code
Optimization, Vol. 8, No. 4, Article 53, 2012, Pp. 53.1-53.21.

[13] Karthik T. Sundararajan, asileios Porpodas, Timothy M. Jones, Nigel P. Topham, Bj¨orn Franke, “Cooperative Partitioning:
Energy-Efficient Cache Partitioning for High-Performance CMPs”, In Procedings of the IEEE 18th International
Symposium on High Performance Computer Architecture (HPCA), 2012, pp. 1-12.

[14] B. Fitzgerald, S. Lopez, and J. Sahuquillo, “Drowsy Cache Partitioning for Reduced Static and Dynamic Energy in the
Cache Hierarchy”, In Procedings of the IEEE International Conference on Green Computing(GCC), 2013, pp. 1-6.

[15] Pan Lai, Rui Fan, “Makespan-Optimal Cache Partitioning”, In Procedings of the 21st International Symposium on Modelling,
Analysis and Simulation of Computer and Telecommunicatin Systems,2013, pp. 202-211.

[16] Karthik T Sundararajan, Timothy M Jones, Nigel P Topham, “RECAP:Region-Aware Cache Partitioning”, In proceedings
of the IEEE 31st International Conference on Computer Design (ICCD 2013),2013, pp. 291-304

[17] Wei Zang and Ann Gordon-Ross, “Analytical Modelling of Partially Shared Caches in Embedded CMPs”, In Procedings of
the 7th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies(UBICOMM) 2013.

[18] Henry Cook, Miquel Moreto, Sara Bird, Khanh Dao, David A Patterson, Krste Asanovic, “A Hardware Evaluation of
Cache Partitioning to Improve Utilization and Energy- Efficiency while Preserving Resonsiveness”, In Procedings of the
40th Annual International Symposium on Computer Architecture(ISCA’13).2013, pp. 308-319.

[19] Abhishek Pan, Vijay S Pai, “Imbalnced Cache Partitioning for Balanced Data-Parallel Programs”, In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture(MICRO’46),2013, pp. 297-309.

[20] Sparsh Mittal, Zhao Zang, Jeffrey S.Vetter, “FlexiWay:A cache energy saving technique using fine grained cache
reconfiguration”, In Procedings of the 31st International conference on Computer Design(ICCD)2013, pp. 100-107.

[21] Ansuman Gupta, Jack Sampson, Michael Beford Taylor, “DR-SNUCA: An Energy-Scalable Dynamically Partitioned
Cache”, In Procedings of the IEEE 31st International Conference on Computer Design(ICCD),2013, pp. 515-518.

[22] Ahmad Samih, Xiaowei Jiang, Liang Han, and Yan Solihin, “Flexible Capacity Partitioning in Many-Core Tiled CMPs”, In
Procedings of the 16th International symposium on Cluster, Cloud, and Grid Computing(CCGRID’2013), pp. 490-497.

[23] Nathan Beckmann and Daniel Sanchez, “Jigsaw: Scalable Software-Defined Caches”, In Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques (PACT’13), pp. 213-224.

[24] Ruisheng Wang, Lizhong Chen, “Futility Scaling:High-Associativity Cache Partitioning”, In Proceedings of the 47th

IEEE./ACM International Symposium on Microarchitecture,2014, pp. 356-367.

[25] Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutluy “Improving Cache Performance Using Read-Write
Partitioning”, In Procesings of the IEEE 20th International Symposium on High Performance Computer Architecture
(HPCA), 2014 pp. 452 – 463

[26] Gang Chen, Biao Hu, Kai Huang, Alois Knoll, Di, Liu, Todor Stefanov, “Automatic cache partitioning and Time-Triggered
scheduling for Real-time MPSoCs”, In proceedings of the IEEE International Conference on Reconfigurable Computing
and FPGAs(ReConFig),2014.pp. 1-8

[27] Yong Li, Dan Feng, Zhan Shi, “Heterogeneous –aware cache partitioning:Improving the fairness of shared storage cache”
Elsevier Journal on Parallel Computing, 2014, pp. 710-721.

[28] Ying Ye, Richard West, Zhuoqun Cheng and Ye Li, “COLORIS: A Dynamic Cache Partitioning System Using Page
Coloring”, In proceedings of the 23rd international conference on Parallel architectures and Compilation (PACT’14),
2014, pp..381-392.

[29] Luden Zhang, Yi Liu, Rui Wang, Depei Qian, “Lightweight dynamic partitioning for last –level cache of multicore
processor on real system”, Journel of Supercomputer, Springer, 2014, pp. 547-56.

[30] Giovani Gracioli, Antonio Augusto Frohlich, “CAP: Color-Aware Task Partitioning for Multicore Real-Time Applications”
In proceedings of the IEEE International Conference on Emerging Technology and Factory Automation (ETFA), 2014,
pp. 16-19

[31] Anthony Gutierrez, Ronald G. Dreslinski, Trevor Mudge, “Evaluating Private vs. Shared Last-Level Caches for Energy
Efficiency in Asymmetric Multi-Cores”, In Procedins of 2014 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XIV),2014, pp. 191-198.

A Survey on Last level Cache Partitioning Techniques in Chip Multi-Processors 243

[32] Dongwoo Lee and Kiyoung Choi, “Energy-Efficient Partitioning of Hybrid Caches in Multi-Core”In the Procedings of
the 22nd International Conference on Very Large Scale Integration(VLSI-SoC) 2014, pp. 6-8.

[33] Wei Wei, Dejun Jiang, Jin Xiong, Mingyu Chen, “HAP: Hybrid-memory-Aware Partition in Shared Last-Level Cache”In
Procedings of the 32nd International Conferenece on Computer Design(ICCD)2014, pp. 28-35.

[34] Ing-Chao Lin, Jeng-Nian Chiou, “High-Endurance Hybrid Cache Design in CMP Architecture With Cache Partitioning
and Access-Aware Policies”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 23, Issue.10,
Oct.2015, pp. 2149-2161.

