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Abstract: It is emphasized that the concept of weighted information has been proved 
to be very constructive because of its significance in goal oriented experiments. 
On the other hand, weighted mean has its own importance in the field of Statistics. 
The present communication is a step in the direction of the study of maximum 
entropy principle when weighted mean is prescribed. With the help of maximum 
entropy principle, we have made the study of optimizational problem related with 
generalized parametric measure of entropy. 
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1. INTRODUCTION
This is known fact in the literature information theoretic entropy that the uncertainty 
is maximum when the outcomes are equally likely. The uniform distribution 
maximizes the entropy, that is, the uniform distribution contains the largest amount 
of uncertainty, but this is just Laplace’s principle of insufficient reasoning, according 
to which if there is no reason to discriminate between two or several events, the 
best strategy is to consider them as equally likely. Jaynes [4] gave a very natural 
criterion of choice by introducing the principle of maximum entropy. From the set 
of all probability distributions compatible with one or several mean values of one 
or several random variables, choose the one that maximizes Shannon’s [14] entropy. 
Optimization includes maximization and minimization as well as simultaneous 
maximization of one function and minimization of another function. 

A very natural question arises that why do we optimize entropy? We may make 
reduction in uncertainty by obtaining more and more information. Suppose we have 
a die and do not even know the number of faces it has. In this case, we may have a 
great deal of uncertainty and we may have many probability distributions 

Further, we are given the information that the die has six faces. The uncertainty 
is reduced. We are now only limited to probability distribution , with (1.1) being 
satisfied. If, in addition, we are also given the mean number of points on the die, 
that is, we are given that
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1 2 3 4 5 61 2 3 4 5 6 4.5p p p p p p                   (1.2) 

Our choice of distribution is now restricted to those satisfying (1.1) and (1.2), 
and the uncertainty has been further reduced. If we are given the further 
information that 

2 2 2 2 2 2
1 2 3 4 5 61 2 3 4 5 6 15p p p p p p      ,                  (1.3) 

then choice of distributions is further restricted and uncertainty is further 
reduced. We may go on getting more and more information and, accordingly, our 
uncertainty goes on decreasing. If we get in three stages three more independent 
linear constraints consistent with the equations (1.1), (1.2) and (1.3), we may get a 
unique set of values of p1 through p6. The uncertainty about these values is 
completely removed. At any stage, we may have infinity of probability 
distributions consistent with the given constraints, say, 

  
1

1 1
1, , 1,2,..., , 1 0,..., 0

n n

i i ri r n
i i

p p g a r m m n p p
 

                (1.4) 

Out of these distributions, one has maximum uncertainty Smax and the 
uncertainty S of any other distribution is less than Smax. Now uncertainty can be 

reduced by given additional information. Thus, the use of any distribution other 
than the maximum uncertainty distribution implies the use of some information in 
addition to that given by equation (1.4). 

Kapur and Kesavan [9] has remarked that we should use all the information 
given to us and should avoid using any information not given to us. It is also the 
principle of scientific objectivity and honesty. According to the first part of the 
principle, we should use only distributions consistent with (1.4), but there may be 
infinity of such distributions. The second part of the principle now enables us to 
choose one out of these and we choose that which has the maximum uncertainty, 
Smax. Some other applications of measures of entropy for the study of maximum 
entropy principle have been provided by Kapur [8] whereas Parkash and Mukesh 
[10] have developed optimizational principle in the study of portfolio analysis. 

It is to be noted that in the literature of information measures, there exist many 
probabilistic models of entropy or uncertainty.  With the help of certain very 
plausible postulates which the uncertainty measure should possess, Shannon [14] 
investigated and characterized the first and foremost measure of entropy given by  

  



n

i
ii ppPH

1
log                                       (1.5) 

The above result (1.5) holds good with the convention 0log0 : 0 . Unless 
otherwise specified, it is to be noted that the base of logarithm is assumed to be 2. 
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Hence, for the first time, Renyi [13] presented the parametric group of entropies 
additive in nature as a mathematical generalization of Shannon’s entropy, given by 

 
1

1 log , 1 , 0
1

n

i
i

H P p
  

 

      
                        (1.6) 

As 1 , Renyi’s entropy tends to Shannon’s [14] entropy and is 
substantially more adaptable because of the parameter  , empowering several 
measurements of uncertainty within a given distribution. After Renyi’s work, 
Havrda and Charvat [2] introduced the first non-additive entropy measure, given 
by  
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                           (1.7)  

Tsallis [17] reinvented Havrda and Charvat’s [2] entropy and specified it in 
the form  

1

1( ) 1 , 1, 0
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                         (1.8) 

Some other well known measures of entropy investigated with the deep insight 
are explained below:  
Kapur’s [5, 6] entropies 

1

1
,

1

1( ) log , 1,  0, 0 1
1

, 0

n

i
i

n

i
i

p
H P

p

 

 


   


 





 
 
  
 
 

 







 



         (1.9) 
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b i i i i
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      (1.11) 

The measure (1.9) reduces to Renyi’s [13] measure when 1 , to Shannon’s 
[14] measure when 1 , 1 . 
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BURG’S [1] ENTROPY 

 
1

log
n

i
i

S P p

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SHARMA AND TANEJA’S [16] ENTROPIES 

1
1

1
log( ) 2 , 0

n
r
i i

r

i
pP p r



                                (1.13) 

and 
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
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SHARMA AND MITTAL’S [15] ENTROPY 
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Recently, Parkash and Mukesh [11, 12] developed the following entropy 
measures and provided their applications to Operation Research and Statistics: 
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Many other measures of entropy have been discussed and investigated by 
Kapur [7], Herremoes [3], Sharma and Taneja [16], Parkash and Mukesh [11] etc. 

       In section 2, we have used Havrada-Charvat’s [2] measure of order  and 
studied the principle of maximum entropy when weighted mean is prescribed.  

2. MAXIMUM ENTROPY PRINCIPLE WHEN WEIGHTED MEAN IS 
PRESCRIBED 

Let the random variable X  takes the values 1,2,3,...,n and the corresponding 
probabilities be 1 2, ,..., np p p . Let  1 2, ,..., nw w w  be the weighted distribution. 
Then we want to find maximum entropy probability distribution when the 
weighted mean is prescribed to be m, where 1 m n  . Such principle can be 
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made applicable for any standard entropy and in the literature there are many such 
entropies already discussed above. But in the present problem, we make the study 
of Maximum Entropy Principle by using Havrada- Charvat’s [1] entropy of second 
order. We find that when the weighted mean is prescribed as m, then for some 
value of m, the maximizing probabilities come out to be negative if we use the 
simple Lagrange’s method of constrained optimization. This means that we have 
to take non-negativity constraints into account explicitly. Next, we do so and get 
the optimizing probability distribution. 

        Let a random variable takes values1,  2,  3,...,n . We want to find MEPD 
when Havrada Charvat’s [2] measure of order 2 is maximized, subject to the 
weighted mean being prescribed as ,  1    m m n  .  

Now Havrada-Charvat’s [2] measure of order   is given by  
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For 2 , we have 
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
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We want to maximize (2.2) subject to the constraints 

1 2
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1, , , ,...., 0
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i i i n
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The corresponding Lagrangian is given by 

2

1 1 1

1 2 1 2
n n n

i i i i
i i i

L p p w p m 
  

           
   

    

Now 

2 2 2i i
i

L p w
p

 
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
                                    (2.4) 

For maxima, we equate (2.4) to zero and get 

; 1,2,...,i ip w i n                                      (2.5) 
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Equations (2.3) and (2.5) give 

 
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i
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
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1

n
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i
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                      (2.6) 

Under the weighted distribution    1 2 3, , ,..., 1,2,3,...,nW w w w w n  , 
equation (2.6)  becomes 

 1
1

2
n n

n 


                                         (2.7) 

and 

       2 2 3 3 ... n n m                 

that is, 

   2 2 2 21 2 3 ... 1 2 3 ...n n m            

that is, 

    1 1 2 1
2 6

n n n n n
m 

  
                             (2.8) 

From equation (2.4), we have 

1p     and np n                                 (2.9) 

where  and  can be calculated from (2.7) and (2.8). 

Now from equation (2.7), we have 
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2
n

n
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Using this value of   in sequation (2.8), we get 
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This further gives 
 
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Using these values of  and  in equation (2.9), we get  

1p     
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= 2 32
1

m
n n
   

 

Similarly, using the values of  and , equation (2.9) gives 

2 3 1
1n

mp
n n
    

 

Now these values of probabilities will be –ve if 
2 32

1
m

n n
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< 0 or 2 3 1
1

m
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   

 < 0 

that is, if 
 1

3
n

m


  or 
 2 1

3
n

m


  

Thus, Lagrange’s method will be successful for this measure of entropy only when 
m  has the following range: 

 2 11
3 3

nn m


                                  (2.10) 

If 1
3

nm 
  or  2 1

3
n

m


 , this method fails. 

Now if
1

3
nm 

 , we find that 0np   and so we set 0np   and then choose 

1 2 1, ,...., np p p   by using the principle of maximum entropy, we get 
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2 3 1

1n
mp

n n
     

                (2.11) 

From the above representation, we conclude that: 

(i) If 
1

3 3
n nm 
  , we get the MEPD in which only 0np   

(ii) If
1 1

3 3
n nm 

  , we get the MEPD in which only 1np   and np are 

zero. 

(iii) If
2 1

3 3
n nm 

  , we get the MEPD in which only 2np  , 1np  , np are 

zero and so on. 

On the other hand, if
 2 1

3
n

m


 , but
 2 2

3
n

m


 , the MEPD will have only

1 0p  . 

If 
   2 1 2 3

3 3
n n

m
 

  , the MEPD will have only 1p and 2p  equal to 

zero. 

If m n , then 1 2 1, ,...., np p p   are all zero. 

NUMERICAL EXAMPLE: We illustrate the above method for 8n  . As 
discussed above, the method fails for 3m   and 6m  . 

We have       

16
1 21

1

nm

n n


        
 

  

 and     2

112
2
1

nm

n n


  
 


 

For   3m  , we have = 0.2857 and  = -0.0357 

Then 1 0.2500p         2 2 0.2143p        3 3 0.1786p        

       4 4 0.1429p       5 5 0.1072p        6 6 0.0715p      

      7 7 0.0358p        8 8 0.000p      
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Obviously,  
8

1
1.0003 1i

i
p



   

Similarly, we have made the calculations of probabilities for
3.5,  4.0,  4.5,  5.0,  5.5 6.0m and . The computations have been displayed in 

Table-2.1. 
Table-2.1 

 m    P1    p2     P3     p4    P5    p6   p7    P8 2Hmax 
 

3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 

0.2500 
0.2083 
0.1667 
0.1250 
0.0833 
0.0142 
0.0007 

0.2143 
0.1845 
0.1548 
0.1250 
0.0952 
0.0655 
0.0364 

0.1786 
0.1607 
0.1429 
0.1250 
0.1071 
0.0893 
0.0721 

0.1429 
0.1369 
0.1310 
0.1250 
0.1190 
0.1131 
0.1078 

0.1072 
0.1131 
0.1191 
0.1250 
0.1309 
0.1369 
0.1435 

0.0715 
0.0893 
0.1072 
0.1250 
0.1428 
0.1607 
0.1792 

0.0358 
0.0655 
0.0953 
0.1250 
0.1547 
0.1845 
0.2149 

0.0000 
0.0417 
0.0834 
0.1250 
0.1666 
0.2083 
0.2506 

0.8213 
0.8512 
0.8689 
0.8750 
0.8691 
0.8527 
0.8201 
 

Thus we see that 2 max ( ) H P  is a concave function and it assumes its 
maximum value at   4.5 m   as shown in Fig.-2.1. 
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Thus, from the above Fig.-2.1, we make the conclusion that when m = 4.5, the 
maximum entropy distribution is most uniform. 
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