A STOCHASTIC INTEGRAL BY A NEAR-MARTINGALE

SHINYA HIBINO, HUI-HSIUNG KUO, AND KIMIAKI SAITÔ*

Abstract

In this paper we discuss the new stochastic integral in [1] in terms of the Itô isometry. We prove the Doob-Meyer decomposition theorem for near-submartingales in the classes (D) and $(D L)$. Moreover, we introduce a stochastic integral by a near-martingale as an application of the decomposition theorem.

1. Introduction

A new stochastic integral was introduced in [1]. The Itô isometry based on the new integral for special processes was discussed in [10]. The Doob-Meyer decomposition theorem for continuous near-submartingales was also discussed in [3]. This stochastic integral has been studied from different points of view [2, 4, 7, 8, 9] and references cited therein.

Let $\left(\Omega, \mathcal{F}, P ; \mathcal{F}_{t}\right)_{a \leq t \leq b}$ be a basic probability space with a filtration $\left\{\mathcal{F}_{t}\right\}_{a \leq t \leq b}$, and $B=\{B(t) ; a \leq t \leq b\}$ a $\left\{\mathcal{F}_{t}\right\}$-Brownian motion on (Ω, \mathcal{F}, P). A stochastic process $g=\{g(t) ; a \leq t \leq b\}$ is called to be instantly independent of $\left\{\mathcal{F}_{t}\right\}$ if $g(t)$ is independent of \mathcal{F}_{t} for all $t \in[a, b]$. A stochastic process $g=\{g(t) ; a \leq t \leq b\}$ is called to be in $L_{\text {ind }}^{2}([a, b] \times \Omega)$ if the process satisfies the following conditions:
(1) $g=\{g(t) ; a \leq t \leq b\}$ is instantly independent of $\left\{\mathcal{F}_{t}\right\}$.
(2) $\int_{a}^{b} E\left[|g(t)|^{2}\right] d t<\infty$.
(3) g is right-continuous in t.

A stochastic process $g=\{g(t) ; a \leq t \leq b\}$ is called to be in $\mathcal{L}_{\text {ind }}\left(\Omega, L^{2}[a, b]\right)$ if the process satisfies the following conditions:
(1) $g=\{g(t) ; a \leq t \leq b\}$ is instantly independent of $\left\{\mathcal{F}_{t}\right\}$.
(2) $\quad \int_{a}^{b}|g(t)|^{2} d t<\infty, \quad$ a. e.

In this article we discuss the new stochastic integral through the Itô isometry. In Section 2 we discuss the stochastic integral by the Brownian motion B for processes in $L_{\text {ind }}^{2}([a, b] \times \Omega)$ through the Itô isometry with its properties. In Section 3 we extend the stochastic integral to that on a class $\mathcal{L}_{\text {ind }}\left(\Omega, L^{2}[a, b]\right)$ which is larger than the space in Section 2. In Section 4 we give the proof of the Doob-Meyer decomposition theorem for near-submartingales in the classes (D) and $(D L)$. This theorem is important to discuss the new integral in [1] for its extension. In the last

[^0]section we introduce a stochastic integral by a near-martingale as an application of the decomposition theorem. This is a formulation of the new integral in [1] from the point of view of the stochastic integral by the near-martingale.

2. Stochastic Integrals on $L_{\text {ind }}^{2}([a, b] \times \Omega)$

Let g be in $L_{\text {ind }}^{2}([a, b] \times \Omega)$. Then g is called to be an instantly independent step process if there exist a partition $a=t_{0}<t_{1}<\cdots<t_{n}=b$ and instantly independent random variables $\eta_{i}, i=1,2, \ldots, n$ with $E\left[\eta_{i}^{2}\right]<\infty$ such that

$$
\begin{equation*}
g(t, \omega)=\sum_{i=1}^{n} \eta_{i}(\omega) 1_{\left[t_{i-1}, t_{i}\right)}(t), \quad \omega \in \Omega, t \in[a, b] \tag{2.1}
\end{equation*}
$$

We denote the set of all instantly independent step processes by $\operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$.
For any $g \in \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ given as (2.1), we define $\mathcal{J}(g)$ by

$$
\mathcal{J}(g):=\sum_{i=1}^{n} \eta_{i}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)
$$

Then we have the following.
Lemma 2.1. For any $g, h \in \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ and $a, b \in \mathbb{R}$, it holds that

$$
\mathcal{J}(a g+b h)=a J(g)+b J(h)
$$

Lemma 2.2. For any $g \in \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$, the following equalities hold.
(1) $E[\mathcal{J}(g)]=0$.
(2) $E\left[|\mathcal{J}(g)|^{2}\right]=\int_{a}^{b} E\left[|g(t)|^{2}\right] d t$.

Proof. Let g be a function in $\operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ given as (2.1).
(1): \quad Since, for any $1 \leq i \leq n, \eta_{i}$ is independent to $B\left(t_{i}\right)-B\left(t_{i-1}\right)$, we have

$$
E\left[\eta_{i}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)\right]=E\left[\eta_{i}\right] E\left[B\left(t_{i}\right)-B\left(t_{i-1}\right)\right]=0
$$

Therefore, $E[\mathcal{J}(g)]=0$.
(2): If $i<j$, we have

$$
\begin{aligned}
& E\left[\eta_{i} \eta_{j}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)\left(B\left(t_{j}\right)-B\left(t_{j-1}\right)\right)\right] \\
& =E\left[\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)\right] E\left[\eta_{i} \eta_{j}\left(B\left(t_{j}\right)-B\left(t_{j-1}\right)\right)\right]=0 .
\end{aligned}
$$

If $i=j$, we have

$$
\begin{aligned}
E\left[\eta_{i}^{2}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}\right] & =E\left[\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}\right] E\left[\eta_{i}^{2}\right] \\
& =\left(t_{i}-t_{i-1}\right) E\left[\eta_{i}^{2}\right]
\end{aligned}
$$

Therefore, we obtain

$$
E\left[|\mathcal{J}(g)|^{2}\right]=\sum_{i, j=1}^{n} E\left[\eta_{i} \eta_{j}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)\left(B\left(t_{j}\right)-B\left(t_{j-1}\right)\right)\right]=\int_{a}^{b} E\left[|g(t)|^{2}\right] d t
$$

Lemma 2.3. For any $g \in L_{\mathrm{ind}}^{2}([a, b] \times \Omega)$, there exists $\left\{g_{n}\right\}_{n=1}^{\infty} \subset \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} E\left[\left|g(t)-g_{n}(t)\right|^{2}\right] d t=0
$$

holds.
Let $g \in L_{\text {ind }}^{2}([a, b] \times \Omega)$. Then there exists $\left\{g_{n}\right\}_{n=1}^{\infty} \subset \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} E\left[\left|g(t)-g_{n}(t)\right|^{2}\right] d t=0
$$

By Lemmas 2.1, 2.2 and 2.3, we have

$$
E\left[\left|\mathcal{J}\left(g_{n}\right)-\mathcal{J}\left(g_{m}\right)\right|^{2}\right]=\int_{a}^{b} E\left[\left|g_{n}(t)-g_{m}(t)\right|^{2}\right] d t \underset{n, m \rightarrow \infty}{ } 0
$$

Therefore, $\left\{\mathcal{J}\left(g_{n}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^{2}(\Omega)$. By the completeness of $L^{2}(\Omega)$, there exists $\mathcal{J}(g) \in L^{2}(\Omega)$ such that

$$
\mathcal{J}(g)=\lim _{n \rightarrow \infty} \mathcal{J}\left(g_{n}\right), \quad \text { in } L^{2}(\Omega)
$$

Thus we can define the stochastic integral $\int_{a}^{b} g(t) d B(t)$ by

$$
\int_{a}^{b} g(t) d B(t):=\mathcal{J}(g)
$$

as an element of $L^{2}(\Omega)$. This is well-defined. In fact, assume that there exist $\left\{g_{n}(t)\right\}_{n=0}^{\infty},\left\{h_{n}(t)\right\}_{n=0}^{\infty} \subset \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} E\left[\left|g(t)-g_{n}(t)\right|^{2}\right] d t=0, \lim _{n \rightarrow \infty} \int_{a}^{b} E\left[\left|g(t)-h_{n}(t)\right|^{2}\right] d t=0
$$

Then we can see that

$$
\begin{aligned}
E\left[\left|\mathcal{J}\left(g_{n}\right)-\mathcal{J}\left(h_{n}\right)\right|^{2}\right] & =\int_{a}^{b} E\left[\left|g_{n}(t)-h_{n}(t)\right|^{2}\right] d t \\
& =\int_{a}^{b} E\left[\left|g(t)-g_{n}(t)\right|^{2}\right] d t+\int_{a}^{b} E\left[\left|g(t)-h_{n}(t)\right|^{2}\right] d t \\
& \xrightarrow[n \rightarrow \infty]{ } 0
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} \mathcal{J}\left(g_{n}\right)=\lim _{n \rightarrow \infty} \mathcal{J}\left(h_{n}\right)$ in $L^{2}(\Omega)$.
Theorem 2.4. For any $g \in L_{\text {ind }}^{2}([a, b] \times \Omega), \mathcal{J}(g)$ has the following properties:
(1) $E[\mathcal{J}(g)]=0$.
(2) $E\left[|\mathcal{J}(g)|^{2}\right]=\int_{a}^{b} E\left[|g(t)|^{2}\right] d t$.

Proof. (1) follows from $E[\mathcal{J}(g)]=\lim _{n \rightarrow \infty} E\left[\mathcal{J}\left(g_{n}\right)\right]=0$. (2) follows from

$$
E\left[|\mathcal{J}(g)|^{2}\right]=\lim _{n \rightarrow \infty} E\left[\left|\mathcal{J}\left(g_{n}\right)\right|^{2}\right]=\lim _{n \rightarrow \infty} \int_{a}^{b} E\left[\left|g_{n}(t)\right|^{2}\right] d t=\int_{a}^{b} E\left[|g(t)|^{2}\right] d t
$$

Corollary 2.5. For any $g, h \in L_{\text {ind }}^{2}([a, b] \times \Omega)$, the equality

$$
E\left[\int_{a}^{b} g(t) d B(t) \int_{a}^{b} h(t) d B(t)\right]=\int_{a}^{b} E[g(t) h(t)] d t
$$

holds.
Proof. By Theorem 2.4, we have

$$
E\left[\left|\int_{a}^{b} g(t) d B(t)+\int_{a}^{b} h(t) d B(t)\right|^{2}\right]=\int_{a}^{b} E\left[|g(t)+h(t)|^{2}\right] d t
$$

Then we can see that

$$
\begin{aligned}
E & {\left[\left|\int_{a}^{b} g(t) d B(t)+\int_{a}^{b} h(t) d B(t)\right|^{2}\right] } \\
= & E\left[\left(\int_{a}^{b} g(t) d B(t)\right)^{2}\right. \\
& \left.+2\left(\int_{a}^{b} g(t) d B(t)\right)\left(\int_{a}^{b} h(t) d B(t)\right)+\left(\int_{a}^{b} h(t) d B(t)\right)^{2}\right] \\
= & \int_{a}^{b} E\left[|g(t)|^{2}\right] d B(t) \\
& +2 E\left[\int_{a}^{b} g(t) d B(t) \int_{a}^{b} h(t) d B(t)\right]+\int_{a}^{b} E\left[|h(t)|^{2}\right] d B(t)
\end{aligned}
$$

On the other hand, we get

$$
\begin{aligned}
& \int_{a}^{b} E\left[|g(t)+h(t)|^{2}\right] d t \\
& =\int_{a}^{b} E\left[|g(t)|^{2}\right] d B(t)+2 \int_{a}^{b} E[g(t) h(t)] d t+\int_{a}^{b} E\left[|h(t)|^{2}\right] d B(t) .
\end{aligned}
$$

Consequently, we obtain

$$
E\left[\int_{a}^{b} g(t) d B(t) \int_{a}^{b} h(t) d B(t)\right]=\int_{a}^{b} E[f(t) g(t)] d t
$$

Example 2.6. For any $g \in L_{\text {ind }}^{2}([a, b] \times \Omega)$, the stochastic process

$$
\left\{\int_{t}^{b} g(s) d B(s) ; a \leq t \leq b\right\}
$$

is an instantly independent process of $\left\{\mathcal{F}_{t}\right\}$.

3. Stochastic Integrals on $\mathcal{L}_{\text {ind }}\left(\Omega, L^{2}[a, b]\right)$

Lemma 3.1. For any $g \in \mathcal{L}_{\text {ind }}\left(\Omega, L^{2}[a, b]\right)$, there exists a sequence $\left\{g_{n}\right\}_{n=0}^{\infty} \subset$ $L_{\text {ind }}^{2}([a, b] \times \Omega)$ such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t=0, \quad \text { a. e. }
$$

Proof. For any $n \in \mathbb{N}$, we set

$$
g_{n}(t, \omega)= \begin{cases}g(t, \omega), & \int_{t}^{b}|g(s, \omega)|^{2} d s \leq n \\ 0, & \int_{t}^{b}|g(s, \omega)|^{2} d s>n\end{cases}
$$

Then $\left\{g_{n}(t) ; a \leq t \leq b\right\}$ is instantly independent of $\left\{\mathcal{F}_{t}\right\}$ and

$$
\int_{a}^{b}\left|g_{n}(t, \omega)\right|^{2} d t=\int_{\tau_{n}(\omega)}^{b}|g(t, \omega)|^{2} d t, \quad \text { a. e. } \omega
$$

holds, where $\tau_{n}(\omega)=\inf \left\{t ; \int_{t}^{b}|g(s, \omega)|^{2} d s \leq n\right\}$. Therefore, we have

$$
\int_{a}^{b}\left|g_{n}(t)\right|^{2} d t \leq n, \quad \text { a. e. } \omega
$$

Since $\int_{a}^{b} E\left[\left|g_{n}(t)\right|^{2}\right] d t \leq n$ and $g \in \mathcal{L}_{\text {ind }}\left(\Omega, L^{2}[a, b]\right)$, it holds that

$$
\int_{a}^{b}|g(t, \omega)|^{2} d t \leq n, \quad \text { a. e. } \omega \in \Omega
$$

for a large n. Then we have $g(t, \omega)=g_{n}(t, \omega)$ for all $t \in[a, b]$. Consequently, we obtain

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|g_{n}(t, \omega)-g(t, \omega)\right|^{2} d t=0, \quad \text { a. e. } \omega
$$

Lemma 3.2. Let $g \in \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$. Then for any $\epsilon>0$, there exists $c>0$ such that

$$
P\left(\left|\int_{a}^{b} g(t) d B(t)\right|>\epsilon\right) \leq \frac{c}{\epsilon^{2}}+P\left(\int_{a}^{b}|g(t)|^{2} d t>c\right)
$$

Proof. For any $c>0$, we define $g_{c}(t, \omega)$ by

$$
g_{c}(t, \omega)= \begin{cases}g(t, \omega), & \int_{t}^{b}|g(s, \omega)|^{2} d s \leq c \\ 0, & \int_{t}^{b}|g(s, \omega)|^{2} d s>c\end{cases}
$$

Since

$$
\begin{aligned}
& \left\{\left|\int_{a}^{b} g(t) d B(t)\right|>\varepsilon\right\} \\
& \subset\left\{\left|\int_{a}^{b} g_{c}(t) d B(t)\right|>\varepsilon\right\} \cup\left\{\int_{a}^{b} g(t) d B(t) \neq \int_{a}^{b} g_{c}(t) d B(t)\right\}
\end{aligned}
$$

for any $\epsilon>0$ and $c>0$, we have

$$
\begin{aligned}
& P\left(\left|\int_{a}^{b} g(t) d B(t)\right|>\varepsilon\right) \\
& \leq P\left(\left|\int_{a}^{b} g_{c}(t) d B(t)\right|>\varepsilon\right)+P\left(\int_{a}^{b} g(t) d B(t) \neq \int_{a}^{b} g_{c}(t) d B(t)\right)
\end{aligned}
$$

Then since $g \in \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$, we have

$$
\left\{\int_{a}^{b} g(t) d B(t) \neq \int_{a}^{b} g_{c}(t) d B(t)\right\} \subset\left\{\int_{a}^{b}|g(t)|^{2} d t>c\right\}
$$

Therefore,

$$
P\left(\left|\int_{a}^{b} g(t) d B(t)\right|>\varepsilon\right) \leq P\left(\left|\int_{a}^{b} g_{c}(t) d B(t)\right|>\varepsilon\right)+P\left(\int_{a}^{b}|g(t)|^{2} d t>c\right)
$$

By the Chebyshev inequality, we obtain

$$
\begin{aligned}
& P\left(\left|\int_{a}^{b} g(t) d B(t)\right|>\varepsilon\right) \leq \frac{1}{\varepsilon^{2}} E\left[\left|\int_{a}^{b} g_{c}(t) d B(t)\right|^{2}\right]+P\left(\int_{a}^{b}|g(t)|^{2} d t>c\right) \\
& =\frac{1}{\varepsilon^{2}} \int_{a}^{b} E\left[\left|g_{c}(t)\right|^{2}\right] d t+P\left(\int_{a}^{b}|g(t)|^{2} d t>c\right) \\
& \leq \frac{c}{\varepsilon^{2}}+P\left(\int_{a}^{b}|g(t)|^{2} d t>c\right) .
\end{aligned}
$$

Lemma 3.3. For any $g \in \mathcal{L}_{\text {ind }}\left(\Omega, L^{2}[a, b]\right)$, there exists a sequence $\left\{g_{n}\right\}_{n=1}^{\infty} \subset$ Step $_{\text {ind }}([a, b] \times \Omega)$ such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t=0, \quad \text { in probability }
$$

Proof. By Lemma 3.1, for any $g \in \mathcal{L}_{\text {ind }}\left(\Omega, L^{2}[a, b]\right)$, we can take $\left\{h_{n}\right\}_{n=1}^{\infty} \subset$ $L_{\text {ind }}^{2}([a, b] \times \Omega)$ such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|h_{n}(t)-g(t)\right|^{2} d t=0, \quad \text { in probability }
$$

For any n, applying Lemma 2.3 to h_{n}, there exists $\left\{g_{n}\right\}_{n=1}^{\infty} \subset \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ such that

$$
E\left[\int_{a}^{b}\left|g_{n}(t)-h_{n}(t)\right|^{2} d t\right]<\frac{1}{n}
$$

Then we have

$$
\begin{aligned}
& \left\{\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\varepsilon\right\} \\
& \subset\left\{\int_{a}^{b}\left|g_{n}(t)-h_{n}(t)\right|^{2} d t>\frac{\varepsilon}{4}\right\} \cup\left\{\int_{a}^{b}\left|h_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon}{4}\right\}
\end{aligned}
$$

for all $\varepsilon>0$. Hence, for all $\varepsilon>0$,

$$
\begin{aligned}
& P\left(\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\varepsilon\right) \\
& \leq P\left(\int_{a}^{b}\left|g_{n}(t)-h_{n}(t)\right|^{2} d t>\frac{\varepsilon}{4}\right)+P\left(\int_{a}^{b}\left|h_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon}{4}\right)
\end{aligned}
$$

Therefore, by the Chebyshev inequality,

$$
\begin{aligned}
& P\left(\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\varepsilon\right) \\
& \leq \frac{4}{\varepsilon} E\left[\int_{a}^{b}\left|g_{n}(t)-h_{n}(t)\right|^{2} d t\right]+P\left(\int_{a}^{b}\left|h_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon}{4}\right) \\
& \leq \frac{4}{n \varepsilon}+P\left(\int_{a}^{b}\left|h_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon}{4}\right)
\end{aligned}
$$

for all $\varepsilon>0$. Consequently, we obtain

$$
\lim _{n \rightarrow \infty} P\left(\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\varepsilon\right)=0
$$

for all $\varepsilon>0$. This means the assertion:

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t=0, \quad \text { in probability }
$$

By Lemma 3.3, for any $g \in \mathcal{L}_{\text {ind }}\left(\Omega, L^{2}[a, b]\right)$, there exists $\left\{g_{n}\right\}_{n=1}^{\infty} \subset \operatorname{Step}_{\text {ind }}([a, b] \times$ Ω) such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t=0, \quad \text { in probability }
$$

Then by Lemma 3.2, for any $\varepsilon>0$,

$$
P\left(\left|\mathcal{J}\left(g_{n}\right)-\mathcal{J}\left(g_{m}\right)\right|>\varepsilon\right) \leq \frac{\varepsilon}{2}+P\left(\int_{a}^{b}\left|g_{n}(t)-g_{m}(t)\right|^{2} d t>\frac{\varepsilon^{3}}{2}\right)
$$

Since

$$
\begin{aligned}
& \left\{\int_{a}^{b}\left|g_{n}(t)-g_{m}(t)\right|^{2} d t>\frac{\varepsilon^{3}}{2}\right\} \\
& \subset\left\{\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right\} \cup\left\{\int_{a}^{b}\left|g_{m}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right\}
\end{aligned}
$$

we have

$$
\begin{aligned}
& P\left(\int_{a}^{b}\left|g_{n}(t)-g_{m}(t)\right|^{2} d t>\frac{\varepsilon^{3}}{2}\right) \\
& \leq P\left(\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right)+P\left(\int_{a}^{b}\left|g_{m}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right)
\end{aligned}
$$

Hence, since there exists $N \in \mathbb{N}$ such that

$$
P\left(\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right)<\frac{\varepsilon}{4}
$$

for all $n \geq N$ by Lemma 3.3, it holds that

$$
P\left(\int_{a}^{b}\left|g_{n}(t)-g_{m}(t)\right|^{2} d t>\frac{\varepsilon^{3}}{2}\right)<\frac{\varepsilon}{2}
$$

for all $n, m \geq N$. Consequently, for any $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
P\left(\left|\mathcal{J}\left(g_{n}\right)-\mathcal{J}\left(g_{m}\right)\right|>\varepsilon\right)<\varepsilon
$$

for all $n, m \geq N$. This implies that $\left\{\mathcal{J}\left(g_{n}\right)\right\}$ converges in probability. Thus we define the stochastic integral $\int_{a}^{b} g(t) d B(t)$ by

$$
\int_{a}^{b} g(t) d B(t)=\lim _{n \rightarrow \infty} \mathcal{J}\left(g_{n}\right), \quad \text { in probability }
$$

This is well-defined. In fact, suppose that there exist sequences $\left\{g_{n}(t)\right\}_{n=0}^{\infty}$ and $\left\{h_{n}(t)\right\}_{n=0}^{\infty} \subset \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ such that

$$
\lim _{n \rightarrow \infty} \int_{a}^{b}\left|g(t)-g_{n}(t)\right|^{2} d t=0, \lim _{n \rightarrow \infty} \int_{a}^{b}\left|g(t)-h_{n}(t)\right|^{2} d t=0 \quad \text { in probability. }
$$

Then by Lemma 3.2, for any $\varepsilon>0$, we have

$$
P\left(\left|\mathcal{J}\left(g_{n}\right)-\mathcal{J}\left(h_{n}\right)\right|>\varepsilon\right) \leq \frac{\varepsilon}{2}+P\left(\int_{a}^{b}\left|g_{n}(t)-h_{n}(t)\right|^{2} d t>\frac{\varepsilon^{3}}{2}\right)
$$

Since

$$
\begin{aligned}
& \left\{\int_{a}^{b}\left|g_{n}(t)-h_{n}(t)\right|^{2} d t>\frac{\varepsilon^{3}}{2}\right\} \\
& \subset\left\{\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right\} \cup\left\{\int_{a}^{b}\left|h_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right\}
\end{aligned}
$$

we have

$$
\begin{aligned}
& P\left(\int_{a}^{b}\left|g_{n}(t)-h_{n}(t)\right|^{2} d t>\frac{\varepsilon^{3}}{2}\right) \\
& \leq P\left(\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right)+P\left(\int_{a}^{b}\left|h_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right)
\end{aligned}
$$

By Lemma 3.3, for any $\epsilon>0$, there exist $N_{1} \in \mathbb{N}$ and $N_{2} \in \mathbb{N}$ such that

$$
P\left(\int_{a}^{b}\left|g_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right)<\frac{\varepsilon}{4}, \quad \text { for all } n \geq N_{1}
$$

and

$$
P\left(\int_{a}^{b}\left|h_{n}(t)-g(t)\right|^{2} d t>\frac{\varepsilon^{3}}{8}\right)<\frac{\varepsilon}{4}, \quad \text { for all } n \geq N_{2}
$$

Therefore, putting $N=\max \left\{N_{1}, N_{2}\right\}$, we have

$$
P\left(\int_{a}^{b}\left|g_{n}(t)-h_{n}(t)\right|^{2} d t>\frac{\varepsilon^{3}}{2}\right)<\frac{\varepsilon}{2}
$$

for all $n, m \geq N$. Consequently,

$$
P\left(\left|\mathcal{J}\left(g_{n}\right)-\mathcal{J}\left(h_{n}\right)\right|>\varepsilon\right)<\varepsilon
$$

holds for all $n \geq N$. Thus, we obtain $\lim _{n \rightarrow \infty} \mathcal{J}\left(g_{n}\right)=\lim _{n \rightarrow \infty} \mathcal{J}\left(h_{n}\right)$ in probability.

4. The Doob-Meyer Deomposition by the Near-martingale

Let $\left(\Omega, \mathcal{F}, P ; \mathcal{F}_{t}\right)_{a \leq t \leq b}$ be a basic probability space with a filtration $\left\{\mathcal{F}_{t}\right\}_{a \leq t \leq b}$. A stochastic process $\{X(t) ; a \leq t \leq b\}$ is called to be the near-martingale with filtration $\left\{\mathcal{F}_{t}\right\}_{a \leq t \leq b}$ if it satisfies the following conditions:
(1) $E[|X(t)|]<\infty$ for all $a \leq t \leq b$,
(2) $E\left[X(t) \mid \mathcal{F}_{s}\right]=E\left[X(s) \mid \mathcal{F}_{s}\right]$ for all $s<t$.

If the condition
(3) $E\left[X(t) \mid \mathcal{F}_{s}\right] \geq E\left[X(s) \mid \mathcal{F}_{s}\right]$ for all $s<t$
holds instead of the condition (2), the stochastic process $\{X(t) ; a \leq t \leq b\}$ is called to be the near-submartingale with the filtration $\left\{\mathcal{F}_{t}\right\}_{a \leq t \leq b}$.
Theorem 4.1. ([5]) Let $X=\{X(t) ; n \in \mathbb{N}\}$ be a near-submaritngale. Then, there exist a near-martingale $N=\{N(n) ; n \in \mathbb{N}\}$ and an increasing process $A=\{A(n) ; n \in \mathbb{N}\}$ such that

$$
X(n)=N(n)+A(n), n \in \mathbb{N}
$$

where A is called to be the increasing process if it satisfies the following conditions:
(1) $A(1)=0$,
(2) for each $n \geq 2, A(n)$ is \mathcal{F}_{n-1}-measurable,
(3) for any $m \leq n, A(m) \leq A(n)$, a. e.

Theorem 4.2. Let $X(t)=\int_{t}^{b} g(s) d B(s)$ for any $a \leq t \leq b$ and $g \in L_{\mathrm{ind}}^{2}([a, b] \times \Omega)$. Then the stochastic process $\{X(t) ; a \leq t \leq b\}$ is a near-martingale with $\left\{\mathcal{F}_{t}\right\}_{a \leq t \leq b}$.

Proof. Let $g \in \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$. Then g has the form

$$
g(u, \omega)=\sum_{i=1}^{n} \eta_{i}(\omega) 1_{\left[t_{i-1}, t_{i}\right)}(u), s=t_{0}<t_{1}<\cdots<t_{j}=t<\cdots<t_{n}=b
$$

where $\eta_{i}, i=0,1,2, \cdots, n$, are random variables which independent to $\mathcal{F}_{t_{i}}$ safisfying $E\left[\eta_{i}^{2}\right]<\infty$. Then we obtain

$$
\begin{aligned}
& E\left[\int_{t}^{b} g(u) d B(u) \mid \mathcal{F}_{s}\right] \\
& =E\left[\sum_{i=j+1}^{n} \eta_{i}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) \mid \mathcal{F}_{s}\right] \\
& =E\left[\sum_{i=j+1}^{n} \eta_{i}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) \mid \mathcal{F}_{s}\right]+\sum_{i=1}^{j} E\left[\eta_{i}\right] E\left[\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)\right] \\
& =E\left[\sum_{i=j+1}^{n} \eta_{i}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) \mid \mathcal{F}_{s}\right]+E\left[\sum_{i=1}^{j} \eta_{i}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) \mid \mathcal{F}_{s}\right] \\
& =E\left[\int_{s}^{b} g(u) d B(u) \mid \mathcal{F}_{s}\right] .
\end{aligned}
$$

Next we prove the theorem in the case of $g \in L_{\text {ind }}^{2}([a, b] \times \Omega)$. By Lemma 2.3, there exists $\left\{g_{n}\right\}_{n=1}^{\infty} \subset \operatorname{Step}_{\text {ind }}([a, b] \times \Omega)$ such that $\lim _{n \rightarrow \infty} \int_{a}^{b} E\left[\left|g(t)-g_{n}(t)\right|^{2}\right] d t=0$. Let

$$
X^{(n)}(t)=\int_{t}^{b} g_{n}(u) d B(u), n \in \mathbb{N}
$$

Then $\left\{X^{(n)}(t) ; a \leq t \leq b\right\}$ is a near-martingale for each $n \in \mathbb{N}$ from above argument. For any $s<t$, we have

$$
E\left[X(t)-X(s) \mid \mathcal{F}_{s}\right]=E\left[X(t)-X^{(n)}(t) \mid \mathcal{F}_{s}\right]+E\left[X^{(n)}(s)-X(s) \mid \mathcal{F}_{s}\right]
$$

Since

$$
\begin{aligned}
E\left[\left|E\left[X(t)-X^{(n)}(t) \mid \mathcal{F}_{s}\right]\right|^{2}\right] & \leq E\left[E\left[\left|X(t)-X^{(n)}(t)\right|^{2} \mid \mathcal{F}_{s}\right]\right] \\
& =E\left[\left|X(t)-X^{(n)}(t)\right|^{2}\right] \\
& =\int_{t}^{b} E\left[\left|g(u)-g_{n}(u)\right|^{2}\right] d u \\
& \leq \int_{a}^{b} E\left[\left|g(u)-g_{n}(u)\right|^{2}\right] d u \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

and by taking subsequence of $\left\{X^{(n)}(t)\right\}$, we get

$$
E\left[X(t)-X^{(n)}(t) \mid \mathcal{F}_{s}\right] \xrightarrow[n \rightarrow \infty]{ } 0, \quad \text { a. e. }
$$

Similarly, we have

$$
E\left[X(s)-X^{(n)}(s) \mid \mathcal{F}_{s}\right] \xrightarrow[n \rightarrow \infty]{ } 0, \quad \text { a. e. }
$$

Consequently, we obtain

$$
E\left[X(t)-X(s) \mid \mathcal{F}_{s}\right]=0, \quad \text { a. e. }
$$

This implies

$$
E\left[X(t) \mid \mathcal{F}_{s}\right]=E\left[X(s) \mid \mathcal{F}_{s}\right], \quad \text { a. e. }
$$

From now on, we assume that the submartingale and the near-submartingale are right-continuous. Let $\left\{\mathcal{F}_{t} ; t \geq 0\right\}$ be a right-continuous filtration and set

$$
\mathcal{F}_{\infty}=\bigvee_{t \geq 0} \mathcal{F}_{t}
$$

The Doob decomposition theorem for the near-submartingale is proved in [11]. In [3] the Doob-Meyer decomposition theorem is proved for the continuous nearsubmartingale. In this section we prove the Doob-Meyer decomposition theorem for the right-continuous near-submartingale.

Definition 4.3. Let $X=\left\{X(t), t \in \mathbb{R}_{+}\right\}$be a near-submartingale (respectively, near-martingale). Suppose there exists an \mathcal{F}_{∞}-measurable and integrable random variable $X(\infty)$ such that

$$
E\left[X(t) \mid \mathcal{F}_{t}\right] \leq E\left[X(\infty) \mid \mathcal{F}_{t}\right], \quad\left(\text { respectively }, E\left[X(t) \mid \mathcal{F}_{t}\right]=E\left[X(\infty) \mid \mathcal{F}_{t}\right]\right)
$$

for all $t \in \mathbb{R}_{+}(\equiv[0, \infty))$. Then we call $\left\{X(t), t \in \overline{\mathbb{R}}_{+}(\equiv[0, \infty])\right\}$ a closed nearsubmartingale (respectively, closed near-martingale).

Definition 4.4. An $\left(\mathcal{F}_{t}\right)$-adapted right-continuous process $A=\left\{A(t) ; t \in \mathbb{R}_{+}\right\}$ is called an increasing process if $A(t)$ is an increasing function in t and $A(0)=0$ almost surely.

Definition 4.5. An integrable increasing process A is called a natural increasing process if it satisfies the equality

$$
E\left[\int_{0}^{t} X(s) d A(s)\right]=E\left[\int_{0}^{t} X(s-) d A(s)\right], \quad \forall t \in \mathbb{R}_{+}
$$

for all bounded martingales X.
Let $X=\{X(\lambda) ; \lambda \in \Lambda\}$ be a system of integrable random variables on a probability space (Ω, \mathcal{F}, P). If X satisfies

$$
\sup _{\lambda \in \Lambda} \int_{|X(\lambda)|>c}|X(\lambda)| d P \underset{c \rightarrow \infty}{ } 0
$$

then X is called to be uniformly integrable. A near-submartingale $X=\{X(t), t \in$ $\left.\mathbb{R}_{+}\right\}$is called to have the Doob-Meyer decomposition if X is expressed in the form

$$
X(t)=N(t)+A(t), \forall t \in \mathbb{R}_{+}
$$

for some near-martingale N and natural increasing process A.

Lemma 4.6. Let A, B be natual increasing processes. Then, if $A-B$ is a nearmartingale, for any bounded $\left(\mathcal{F}_{t}\right)$-adapted process $f=\{f(t) ; t \geq 0\}$, the equality

$$
E\left[\int_{0}^{t} f(s) d A(s)\right]=E\left[\int_{0}^{t} f(s) d B(s)\right]
$$

holds.
Proof. Let $N(t)=A(t)-B(t)$ for all $t \in \mathbb{R}_{+}$. Take a partition of $[0, t]$:

$$
\delta:=\left\{0=t_{0}<\cdots<t_{n}=t\right\} .
$$

Then since N is a near-martingale, we get

$$
\begin{aligned}
& E\left[\sum_{k=1}^{n} f\left(t_{k-1}\right)\left(N\left(t_{k}\right)-N\left(t_{k-1}\right)\right)\right] \\
& =E\left[\sum_{k=1}^{n} E\left[f\left(t_{k-1}\right)\left(N\left(t_{k}\right)-N\left(t_{k-1}\right)\right) \mid \mathcal{F}_{t_{k-1}}\right]\right] \\
& =E\left[\sum_{k=1}^{n} f\left(t_{k-1}\right)\left(E\left[N\left(t_{k}\right) \mid \mathcal{F}_{t_{k-1}}\right]-E\left[N\left(t_{k-1}\right) \mid \mathcal{F}_{t_{k-1}}\right]\right)\right]=0 .
\end{aligned}
$$

Therefore,

$$
E\left[\sum_{k=1}^{n} f\left(t_{k-1}\right)\left(A\left(t_{k}\right)-A\left(t_{k-1}\right)\right)\right]=E\left[\sum_{k=1}^{n} f\left(t_{k-1}\right)\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right)\right]
$$

holds. Here, setting $f^{\delta}(s)=f\left(t_{k}\right), t_{k}<s \leq t_{k+1} ; k=0,1, \ldots, n-1$, we have

$$
E\left[\int_{0}^{t} f^{\delta}(s) d A(s)\right]=E\left[\int_{0}^{t} f^{\delta}(s) d B(s)\right]
$$

Consequently, by $|\delta| \rightarrow 0$ and the left-continuity, we obtain

$$
E\left[\int_{0}^{t} f(s) d A(s)\right]=E\left[\int_{0}^{t} f(s) d B(s)\right]
$$

Lemma 4.7. (cf.[5]) Let A be an integrable increasing process. Then A is natural if and only if

$$
E[X(t) A(t)]=E\left[\int_{0}^{t} X(s-) d A(s)\right]
$$

holds for any bounded martingale X.
Theorem 4.8. The Doob-Meyer decomposition of a near-submartingale is uniquely determined if it exists.
Proof. Let $X=\left\{X(t), t \in \mathbb{R}_{+}\right\}$be a near-submartingale. Suppose that both of $X=M+A$ and $X=N+B$ are the Doob-Meyer decompositions. Then since $A-B$ is a near-martingale and by Lemma 4.6, for any bounded martingale $\left\{Y(t) ; t \in \mathbb{R}_{+}\right\}$, we have

$$
E\left[\int_{0}^{t} Y(s-) d A(s)\right]=E\left[\int_{0}^{t} Y(s-) d B(s)\right]
$$

Since A, B is natural increasing and by Lemma 4.7, we have

$$
E[Y(t) A(t)]=E[Y(t) B(t)]
$$

For any bounded random variable Y, we define $\mathbf{Y}=\left\{Y(t) ; t \in \mathbb{R}_{+}\right\}$by $Y(t):=$ $E\left[Y \mid \mathcal{F}_{t}\right]$ for all $t \in \mathbb{R}_{+}$. Then, \mathbf{Y} is a $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}-\text {martingale, and therefore, we have }}$

$$
\begin{aligned}
& E[Y A(t)]=E\left[E\left[Y A(t) \mid \mathcal{F}_{t}\right]\right]=E[Y(t) A(t)] \\
& =E[Y(t) B(t)]=E\left[E\left[Y B(t) \mid \mathcal{F}_{t}\right]\right]=E[Y B(t)]
\end{aligned}
$$

Consequently, putting $Y=1_{\Lambda}$ for all $\Lambda \in \mathcal{F}$, we obtain $P(A(t)=B(t))=1$ for each $t \in \mathbb{R}_{+}$. This implies

$$
P\left(\forall t \in \mathbb{R}_{+} ; A(t)=B(t)\right)=1
$$

by the right-continuity of $A(t)$ and $B(t)$.
Let \mathcal{T} be the set of stopping times and set $\mathcal{T}_{a}:=\{\tau \in \mathcal{T} ; \tau(\omega) \leq a, \quad \forall \omega \in \Omega\}$. A closed near-submartingale $X=\left\{X(t), t \in \overline{\mathbb{R}}_{+}\right\}$is called to be in the class (D) if $X(\tau)$ is uniformly integrable for any $\tau \in \mathcal{T}$. A near-submartingale $X=\{X(t), t \in$ $\left.\mathbb{R}_{+}\right\}$is called to be in the class $(D L)$ if $X(\tau)$ is uniformly integrable for any $a>0$ and $\tau \in \mathcal{T}_{a}$.

Lemma 4.9. (cf. [5]) $\left\{A_{\infty}^{n} ; n \in \mathbb{N}\right\}$ is uniformly integrable.
Theorem 4.10. Let X be a near-submartingle in the class $(D L)$. If $X(t) \rightarrow$ $X(\infty)$ a. e. and there exists an integrable random variable Y such that $\left|X_{t}\right| \leq Y$ for all $t \geq 0$, then X has the Doob-Meyer decomposition $X=N+A$. Moreover, if X is in the class (D), then N and A in the decomposition of X are uniformly integrable.

Proof. It is enough to prove the theorem in the case of a near-submartingale $X=\left\{X(t), t \in \mathbb{R}_{+}\right\}$in the class (D). Let $Y(t)$ be $Y(t)=X(t)-E\left[X(\infty) \mid \mathcal{F}_{t}\right]$ for all $t \in \mathbb{R}_{+}$. Then, $\left\{Y(t), t \in \mathbb{R}_{+}\right\}$is a near-submartingale, and hence $\lim _{t \rightarrow \infty} Y(t)=$ 0 , a. e. Let $\left\{X(t), t \in \mathbb{R}_{+}\right\}$be a near-submartingale satisfying $\lim _{t \rightarrow \infty} X(t)=0$, a. e.
Take a sequence $\delta_{n}=\left\{t_{j}^{(n)}=\frac{j}{2^{n}}, j \in \mathbb{N}\right\}, n=1,2,3, \ldots$ of partitions of $[0, \infty)$. For an arbitrarily fixed δ_{n}, we denote $t_{j}^{(n)}$ by t_{j} simply. For each n, we define an increasing process $A^{n}(t), t \in \delta_{n}$ by

$$
A^{n}\left(t_{k}\right)=\sum_{i=1}^{k-1}\left\{E\left[X\left(t_{j+1}\right) \mid \mathcal{F}_{t_{j}}\right]-E\left[X\left(t_{j}\right) \mid \mathcal{F}_{t_{j}}\right]\right\}, \quad t_{j} \in \delta_{n}
$$

Then by Lemma 4.9, $A^{n}(\infty)$ is uniformly integrable. Therefore, there exist some subsequence $A^{n_{\ell}}(\infty), \ell=1,2, \cdots$ and an integrable random variable $A(\infty)$ such that $A^{n_{l}}(\infty) \rightarrow A(\infty)$ in L^{1}. For any $t \in \mathbb{R}_{+}$, we define $A(t)$ by

$$
\begin{equation*}
A(t)=E\left[X(t) \mid \mathcal{F}_{t}\right]+E\left[A(\infty) \mid \mathcal{F}_{t}\right] \tag{4.1}
\end{equation*}
$$

Then A is a $\left(\mathcal{F}_{t}\right)$-adapted process. Since

$$
\begin{aligned}
E\left[A^{n_{\ell}}(\infty) \mid \mathcal{F}_{0}\right] & =\lim _{k \rightarrow \infty} E\left[\sum_{j=0}^{k-1}\left\{E\left[X\left(t_{j+1}\right) \mid \mathcal{F}_{t_{j}}\right]-E\left[X\left(t_{j}\right) \mid \mathcal{F}_{t_{j}}\right]\right\} \mid \mathcal{F}_{0}\right] \\
& =\lim _{k \rightarrow \infty}\left\{E\left[X\left(t_{k}\right) \mid \mathcal{F}_{0}\right]-E\left[X(0) \mid \mathcal{F}_{0}\right]\right\} \\
& =-E\left[X(0) \mid \mathcal{F}_{0}\right], t_{k} \in \delta_{n_{l}}
\end{aligned}
$$

for any $\ell=1,2, \cdots$, we have

$$
A(0)=E\left[X(0) \mid \mathcal{F}_{0}\right]+\lim _{\ell \rightarrow \infty} E\left[A^{n_{\ell}}(\infty) \mid \mathcal{F}_{0}\right]=0
$$

We next prove that A is a natural increasing process. Take s and t with $s<t$ in $\bigcup_{n} \delta_{n}$. Then since $s, t \in \delta_{n_{\ell}}$ for a large $n_{\ell} \in \mathbb{N}$, by Theorem 4.1, we have

$$
E\left[X(s) \mid \mathcal{F}_{s}\right]+E\left[A^{n_{\ell}}(\infty) \mid \mathcal{F}_{s}\right] \leq E\left[X(t) \mid \mathcal{F}_{t}\right]+E\left[A^{n_{\ell}}(\infty) \mid \mathcal{F}_{t}\right]
$$

Taking $n_{\ell} \rightarrow \infty$, we get

$$
E\left[X(s) \mid \mathcal{F}_{s}\right]+E\left[A(\infty) \mid \mathcal{F}_{s}\right] \leq E\left[X(t) \mid \mathcal{F}_{t}\right]+E\left[A(\infty) \mid \mathcal{F}_{t}\right], \quad \text { a. e. }
$$

Hence, $A(s) \leq A(t)$. Since $\bigcup_{n} \delta_{n}$ is dense in \mathbb{R}_{+}, we obtain $A(s) \leq A(t)$ for all $s<t$. This implies that A is an increasing process. For any bounded closed martingale Z, we can see that

$$
\begin{aligned}
E\left[Z(\infty) A^{n}(\infty)\right] & =\sum_{k} E\left[Z(\infty)\left(A^{n}\left(t_{k+1}\right)-A^{n}\left(t_{k}\right)\right)\right] \\
& =\sum_{k} E\left[\left(A^{n}\left(t_{k+1}\right)-A^{n}\left(t_{k}\right)\right) E\left[Z(\infty) \mid \mathcal{F}_{t_{k}}\right]\right] \\
& =\sum_{k} E\left[\left(A^{n}\left(t_{k+1}\right)-A^{n}\left(t_{k}\right)\right) E\left[Z\left(t_{k}\right) \mid \mathcal{F}_{t_{k}}\right]\right] \\
& =\sum_{k} E\left[Z\left(t_{k}\right)\left(A^{n}\left(t_{k+1}\right)-A^{n}\left(t_{k}\right)\right)\right], t_{k} \in \delta_{n}
\end{aligned}
$$

On the other hand, since

$$
E\left[A(t)-A(s) \mid \mathcal{F}_{s}\right]=E\left[X(t)-X(s) \mid \mathcal{F}_{s}\right]
$$

by taking conditional expectations under \mathcal{F}_{s} in (4.1), we have

$$
\begin{aligned}
& E\left[A\left(t_{k+1}\right)-A\left(t_{k}\right) \mid \mathcal{F}_{t_{k}}\right] \\
& =E\left[X\left(t_{k+1}\right) \mid \mathcal{F}_{t_{k}}\right]-E\left[X\left(t_{k}\right) \mid \mathcal{F}_{t_{k}}\right] \\
& =A^{n}\left(t_{k+1}\right)-A^{n}\left(t_{k}\right) .
\end{aligned}
$$

Therefore, it holds that

$$
E\left[Z(\infty) A^{n}(\infty)\right]=\sum_{k} E\left[Z\left(t_{k}\right)\left(A\left(t_{k+1}\right)-A\left(t_{k}\right)\right)\right]
$$

Taking $n \rightarrow \infty$, we obtain

$$
E[Z(\infty) A(\infty)]=E\left[\int_{0}^{\infty} Z(s-) d A(s)\right]
$$

This implies that A is natural. Since

$$
\begin{aligned}
E\left[X(t)-A(t) \mid \mathcal{F}_{s}\right] & =E\left[E\left[X(t)-A(t) \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right] \\
& =E\left[-E\left[A(\infty) \mid \mathcal{F}_{t}\right] \mid \mathcal{F}_{s}\right] \\
& =-E\left[A(\infty) \mid \mathcal{F}_{s}\right] \\
& =E\left[X(s)-A(s) \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

the near-maritingale part of X is given by $X-A$.

5. A Stochastic Integral by a Near-martingale

Let $0 \leq a<b$. Let $\mathcal{F}_{(t}:=\sigma(B(b)-B(s) ; t<s \leq b) \vee \mathcal{N}$ for any $t \in[a, b]$, and $C([a, b])$ the Banach space of all continuous functions on $[a, b]$ with norm $\|\cdot\|_{\infty}$ given by $\|f\|_{\infty}:=\sup _{t \in[a, b]}|f(t)|, f \in C([a, b])$. Define $\mathcal{B}(C([a, b]))$ by the smallest σ-field including the family of open sets in $C(([a, b]))$, which is called the topological Borel field. Denote by P_{W} the Wiener measure on $\mathcal{B}(C([a, b]))$. For any $\left(\mathcal{F}_{(t)}\right)$-adapted process $g=\{g(t) ; a \leq t \leq b\}$ we consider

$$
\begin{equation*}
N(t):=\int_{t}^{b} g(u) d B(u), t \in[a, b] . \tag{5.1}
\end{equation*}
$$

Then, g is an instantly independent process of $\left(\mathcal{F}_{t}\right)$ and $N=\{N(t) ; a \leq t \leq b\}$ is a near-martingale and also an instantly independent process of $\left(\mathcal{F}_{t}\right)$. Since $g(t)$ is $\mathcal{F}_{\left(t^{-} \text {-measurable for any } t \in[a, b] \text {, then } g(t) \text { can be expressed in the form }\right.}$

$$
g(t)=G(B(b)-B(s) ; t<s \leq b)
$$

for some $\mathcal{B}(C([a, b]))$-measurable function G for any $t \in[a, b]$.
By Theorem 4.10, there exists a unique natural increasing process $A=$ $\{A(t) ; a \leq t \leq b\}$ such that $-N^{2}-A$ is a near-martingale. We denote A by $\langle N\rangle=\{\langle N\rangle(t) ; a \leq t \leq b\}$. Here, we have

$$
E\left[(N(t)-N(s))^{2} \mid \mathcal{F}_{s}\right]=E\left[\langle N\rangle(t)-\langle N\rangle(s) \mid \mathcal{F}_{s}\right]
$$

for any $s<t$. Let
$\mathcal{L}^{2}(\langle N\rangle):=\left\{X ; X\right.$ is predictable and satisfies $\left.E\left[\int_{a}^{t}|X(t)|^{2} d\langle N\rangle(t)\right]<\infty \forall t\right\}$.
For any X in $\mathcal{L}^{2}(\langle N\rangle)$, we define semi-norms $\|X\|_{t}(\langle N\rangle), a \leq t \leq b$, by

$$
\|X\|_{t}(\langle N\rangle):=E\left[\int_{a}^{t}|X|^{2} d\langle N\rangle(t)\right]^{1 / 2}
$$

Then $\mathcal{L}^{2}(\langle N\rangle)$ is the complete metric space with semi-norms $\|X\|_{t}(\langle N\rangle), a \leq t \leq b$.
For any $f \in C([a, b])$ and partition $\Delta: a=t_{0}<t_{1}<\cdots<t_{n}=b$, we put

$$
f_{\Delta}=\sum_{k=1}^{n} f\left(B\left(t_{k-1}\right)\right) 1_{\left[t_{k-1}, t_{k}\right)}
$$

and define the stochastic integral $\int_{a}^{b} f_{\Delta}(B(t)) d N(t)$ by

$$
\int_{a}^{b} f_{\Delta}(B(t)) d N(t):=\sum_{k=1}^{n} f\left(B\left(t_{k-1}\right)\right)\left(N\left(t_{k}\right)-N\left(t_{k-1}\right)\right), \quad \text { in } L^{2}(\Omega)
$$

Then we have the following:
Proposition 5.1. For any $f \in C([a, b])$ and partition

$$
\Delta: a=t_{0}<t_{1}<\cdots<t_{n}=b
$$

the process $\int_{a}^{*} f_{\Delta} d N$ is an L^{2} near-martingale and satisfies

$$
\begin{align*}
& \left\langle\int_{a}^{\cdot} f_{\Delta}(B(\cdot)) d N\right\rangle(t)=\int_{a}^{t} f_{\Delta}(B(t)) d\langle N\rangle(t) \tag{5.2}\\
E & {\left[\left|\int_{a}^{t} f_{\Delta}(B(t)) d N(t)\right|^{2}\right]=\left\|f_{\Delta}(B(\cdot))\right\|_{t}(\langle N\rangle)^{2} } \tag{5.3}
\end{align*}
$$

for all $a \leq t \leq b$.
Proof. Let $t>s>a$ and $f \in C([a, b])$. Then for any partition

$$
\Delta: s=t_{0}<t_{1}<\cdots<t_{n}=b
$$

we can see that

$$
\begin{aligned}
E & {\left[\left(\int_{s}^{t} f_{\Delta}(B(t)) d N(t)\right)^{2} \mid \mathcal{F}_{s}\right] } \\
= & \sum_{k=1}^{n} E\left[E\left[f_{k-1}^{2}\left(\Delta_{k} N(t)\right)^{2} \mid \mathcal{F}_{t_{k-1}}\right] \mid \mathcal{F}_{s}\right] \\
& +2 \sum_{k>\ell} E\left[E\left[f_{k-1} f_{\ell-1} \Delta_{k} N(t) \Delta_{\ell} N(t) \mid \mathcal{F}_{t_{\ell-1}}\right] \mid \mathcal{F}_{s}\right] \\
= & \sum_{k=1}^{n} E\left[f_{k-1}^{2} E\left[\left(\Delta_{k} N(t)\right)^{2} \mid \mathcal{F}_{t_{k-1}}\right] \mid \mathcal{F}_{s}\right] \\
& +2 \sum_{k>\ell} E\left[E\left[f_{k-1} f_{\ell-1} E\left[\left(\Delta_{k} N(t)\right)\left(\Delta_{\ell} N(t)\right) \mid \mathcal{F}_{t_{k-1}}\right] \mid \mathcal{F}_{t_{\ell-1}}\right] \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

where $f_{k-1}:=f\left(B\left(t_{k-1}\right)\right)$, and $\Delta_{k} N(t):=N\left(t_{k}\right)-N\left(t_{k-1}\right)$ for $k=1,2, \ldots, n$. By Corollary 2.5 and Theorem 2.6, we have

$$
E\left[\Delta_{k} N(t) \Delta_{\ell} N(t) \mid \mathcal{F}_{t_{k-1}}\right]=0
$$

Therefore, we get

$$
\begin{aligned}
& E\left[\left(\int_{s}^{t} f_{\Delta}(B(u)) d N(u)\right)^{2} \mid \mathcal{F}_{s}\right] \\
& =\sum_{k=1}^{n} E\left[f\left(B\left(t_{k-1}\right)\right)^{2} E\left[\langle N\rangle\left(t_{k}\right)-\langle N\rangle\left(t_{k-1}\right) \mid \mathcal{F}_{t_{k-1}}\right] \mid \mathcal{F}_{s}\right] \\
& =E\left[\sum_{k=1}^{n} f\left(B\left(t_{k-1}\right)\right)^{2}\left(\langle N\rangle\left(t_{k}\right)-\langle N\rangle\left(t_{k-1}\right)\right) \mid \mathcal{F}_{s}\right] \\
& =E\left[\int_{s}^{t} f_{\Delta}(B(u))^{2} d\langle N\rangle(u) \mid \mathcal{F}_{s}\right]
\end{aligned}
$$

This implies (5.2), and taking the expectation of the both sides of (5.2), we obtain (5.3).

For any $f \in C([a, b])$, we have $f_{\Delta}(B(t)) \rightarrow f(B(t))$ in $\mathcal{L}^{2}(\langle N\rangle)$ as $|\Delta|:=$ $\max \left\{t_{k}-t_{k-1} ; k=1,2, \ldots, n\right\} \rightarrow 0$. Therefore by Proposition 5.1, we can define $\int_{a}^{b} f(B(t)) d N(t)$ by

$$
\int_{a}^{b} f(B(t)) d N(t):=\lim _{|\Delta| \rightarrow 0} \int_{a}^{b} f_{\Delta}(B(t)) d N(t) \quad \text { in } L^{2}(\Omega)
$$

The stochastic integral $\int_{a}^{b} f(B(t)) g(t) d B(t)$ with $g(t)$ from (5.1) can be regarded as $-\int_{a}^{b} f(B(t)) d N(t)$. This is a generalization of [10] and a formulation of the new integral in [1] from the point of view of the stochastic integral by the nearmartingale.

References

1. Ayed, W. and Kuo, H.-H.: An extension of the Itô integral, Communications on Stochastic Analysis 2, no. 3 (2008) 323-333.
2. Hwang, C.-R., Kuo, H.-H., Saitô, K., and Zhai, J.: A general Itô formula for adapted and instantly independent stochastic processes, Communications on Stochastic Analysis 10, no. 3 (2016) 341-362.
3. Hwang, C.-R., Kuo, H.-H. Saitô, K. and Zhai, J.: Near-martingale property of anticipating stochastic integration, Communications on Stochastic Analysis 11, no. 4 (2017) 491-504.
4. Khalifa, N., Kuo, H.-H., Ouerdiane, H. and Szozda, B.: Linear stochastic differential equations with anticipating initial conditions, Communications on Stochastic Analysis 7, no. 2 (2013) 245-253.
5. Kunita, H.: The estimations of stochastic processes (in Japanese), Sangyo Tosho, 1976.
6. Kuo, H.-H.: Introduction to Stochastic Integration. Universitext (UTX), Springer, 2006.
7. Kuo, H.-H.: The Itô calculus and white noise theory: A brief survey toward general stochastic integration, Communications on Stochastic Analysis 8, no. 1 (2014) 111-139.
8. Kuo, H.-H., Peng, Y. and Szozda, B.: Itô formula and Girsanov theorem for anticipating stochastic integrals, Communications on Stochastic Analysis 7, no. 3 (2013) 441-458.
9. Kuo, H.-H., Peng, Y.,and Szozda, B.: Genaralization of the anticipative Girsanov theorem, Communications on Stochastic Analysis 7, no. 4 (2013) 573-589.
10. Kuo, H.-H., Sae-Tang, A., amd Szozda, B.: An isometry formula for a new stochastic integral, QP-PQ Quantum Probability and White Noise Analysis 29, (2013) 222-232.
11. Kuo, H.-H. and Saitô, K.: Doob's decomposition theorem for near-submartingales, Communications on Stochastic Analysis 9, no. 4 (2015) 467-476.

Shinya Hibino: Graduate School of Mathematics, Meijo University, Tenpaku,Nagoya 468-8502, Japan

E-mail address: 163429005@ccalumni.meijo-u.ac.jp
Hui-Hsiung Kuo: Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

E-mail address: kuo@math.lsu.edu
Kimiaki Saitô: Department of Mathematics, Meijo University, Tenpaku, Nagoya 4688502, Japan

E-mail address: ksaito@meijo-u.ac.jp

[^0]: Received 2018-8-9; Communicated by the editors.
 2010 Mathematics Subject Classification. Primary 60H05; Secondary 60H20.
 Key words and phrases. Near-martingale, near-submartingale, stochastic integral, the DoobMeyer decomposition.

 * Corresponding author.

