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A STOCHASTIC INTEGRAL BY A NEAR-MARTINGALE

SHINYA HIBINO, HUI-HSIUNG KUO, AND KIMIAKI SAITO*

ABSTRACT. In this paper we discuss the new stochastic integral in [1] in
terms of the It6 isometry. We prove the Doob-Meyer decomposition theorem
for near-submartingales in the classes (D) and (DL). Moreover, we introduce
a stochastic integral by a near-martingale as an application of the decompo-
sition theorem.

1. Introduction

A new stochastic integral was introduced in [1]. The Itd isometry based on
the new integral for special processes was discussed in [10]. The Doob-Meyer
decomposition theorem for continuous near-submartingales was also discussed in
[3]. This stochastic integral has been studied from different points of view [2, 4,
7, 8, 9] and references cited therein.

Let (Q, F, P; Fi)a<t<p be a basic probability space with a filtration {F; }a<t<s,
and B = {B(t); a <t < b} a {F;}-Brownian motion on (£, F, P). A stochastic
process g = {g(t);a <t < b} is called to be instantly independent of {F;} if g(t)
is independent of F; for all ¢ € [a, b]. A stochastic process g = {g(t);a <t < b} is
called to be in LZ ,([a,b] x Q) if the process satisfies the following conditions:

(1) g={g(t);a <t < b} is instantly independent of {F;}.

(2) [, Ellg(t)Pldt < oo.

(3) g is right-continuous in t.
A stochastic process g = {g(t);a <t < b} is called to be in Linq(€2, L?[a, b]) if the
process satisfies the following conditions:

(1) g={g(t);a <t <b} is instantly independent of {F;}.

@) [Plgt)2dt < o0, a.e.

In this article we discuss the new stochastic integral through the It6 isometry. In
Section 2 we discuss the stochastic integral by the Brownian motion B for processes
in L2 ;([a,b] x Q) through the It6 isometry with its properties. In Section 3 we
extend the stochastic integral to that on a class Ling(€2, L?[a,b]) which is larger
than the space in Section 2. In Section 4 we give the proof of the Doob-Meyer
decomposition theorem for near-submartingales in the classes (D) and (DL). This
theorem is important to discuss the new integral in [1] for its extension. In the last
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section we introduce a stochastic integral by a near-martingale as an application
of the decomposition theorem. This is a formulation of the new integral in [1] from
the point of view of the stochastic integral by the near-martingale.

2. Stochastic Integrals on L2 ([a,b] x Q)
Let g be in L2 4([a,b] x ). Then g is called to be an instantly independent

step process if there exist a partition a = tg < t; < --- < t, = b and instantly
independent random variables 7;, i = 1,2,...,n with E[n?] < co such that
Zm W)y, o), we Qe [a,b] (2.1)

We denote the set of all instantly independent step processes by Step;,4([a, b] x §2).
For any g € Step;,q([a,b] x Q) given as (2.1), we define J(g) by

an z tz—l))-

Then we have the following.

Lemma 2.1. For any g,h € Step;,q([a,b] X Q) and a,b € R, it holds that
J(ag + bh) = aJ(g) + bJ(h).

Lemma 2.2. For any g € Step;,q([a,b] x Q), the following equalities hold.

(1)  E[J(9)]=0. ,
@) ElTI = [, Ellg(t)]]dt.

Proof. Let g be a function in Step,,4([a, b] x Q) given as (2.1).
(1):  Since, for any 1 <1 < n, n; is independent to B(t;) — B(t;— ) we have

En(B(t:) — B(ti—1))] = E[m]E[B(t:;) — B(ti—1)] =

Therefore, E[J(g)] = 0.
(2): Ifi < j, we have

Enin;(B(t;) — B(ti—1))(B(t;) — B(tj-1))]
= E[(B(t;) — B(ti-1))|E[nin;(B(t;) — B(tj-1))] = 0.
If i = j, we have
E[n} (B(t:) — B(ti-1))*] = E[(B(t;) — B(ti-1))*|E[n]]
= (ti — ti-1) E[n].

Therefore, we obtain

b
=S Bl (B - Blt)(B(t) — Blty1)] = / Ellg(t) Pldt

3,7=1
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Lemma 2.3. For any g € L2 ,([a,b]xQ), there exists {gn}zo:l C Stepjq([a, b]xQ)

such that
b

lim [ Ellg(t) — g (t)[*]dt = 0

n—oo a

holds.

Let g € L2 4([a,b] x Q). Then there exists {gn}zozl C Step;nq([a, b] x Q) such

that
b

T [ Ellg(t) — gu(0)]dt = 0.

By Lemmas 2.1, 2.2 and 2.3, we have

n,m—00

b
BT (90) = Tgm)P) = [ Ellgnlt) = gm0t 0.
Therefore, {J(g,)}52, is a Cauchy sequence in L?(2). By the completeness of
L?%(Q), there exists J(g) € L%(£2) such that
J(9) = lim T(gn), inL*(Q).

Thus we can define the stochastic integral f; g(t)dB(t) by

/gwﬂwwzﬂm

as an element of L?(Q). This is well-defined. In fact, assume that there exist
{gn(t)}220, {hn(t) 152y C Step;nq([a, b] x Q) such that
b b
i [ Elg(t) - 9a(0)Plde =0, lim [ Ellg(t) ~ hu(6) Pl =0.

n—oo a

Then we can see that

b
B[l (gn) = T (hn)?] =/ Ellgn(t) — hn(t)]?)dt

b b
= [ Bllott) ~ an(P1dt + [ Ellg(e) ~ ha(0) Pl

— 0.

n— oo

Therefore, lim J(g,) = lim J(h,) in L%().

Theorem 2.4. For any g € L% ,([a,b] x Q), J(g) has the following properties:
(1) ElI(g)] =0.
@ EIT@P] = J, Ellg®))dt.

Proof. (1) follows from E[J(g)] = nh_}rréo E[J(gn)] = 0. (2) follows from

BT (@)P) = Jin £(7(g.)) = lim [ Ellgn(0)Pide = [ Elgt)Plat.
O
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Corollary 2.5. For any g,h € LZ ;([a,b] x Q), the equality

b b b
E / g(t)dB(t) / h(t)dB(t)| = / Elg(t)h(t)]dt

holds.

Proof. By Theorem 2.4, we have

E

b b T b
[ swant+ [ waso] | = [ Elat) + noP

Then we can see that
.

I /abg(t)dB(t) + /ab h(t)dB(o)

2

+2 (/bg(t)dB(t)> (/b h(t)dB(t)) + (/b h(t)dB(t))

b
_ / Ellg(t)[2)dB(t)

+2E + /bE[|h(t)|2]dB(t).

b b
/ o()dB(1) / h(t)dB(t)

On the other hand, we get

b
/ Ellg(t) + h(t) )t
¢ b b

b
- / Ellg(t) PJdB(t) + 2 / Elg(tyh(t))dt + / E{lh(t)?)dB(1).

a a

Consequently, we obtain

b b b
g [ swapw [ noiso| - [ Erogw

Example 2.6. For any g € L2 ;([a,b] x Q), the stochastic process

{/bg(s)dB(s); a<t< b}

is an instantly independent process of {F;}.
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3. Stochastic Integrals on Li,q(2, L*[a,b])

Lemma 3.1. For any g € Lina(2, L%[a,b]), there exists a sequence {g,}2>, C
L2 ,([a,b] x Q) such that

b
lim / lgn(t) — g(t)?dt =0, a.e.

n—r oo

Proof. For any n € N, we set

gnlt,w) = g(t,w), f;b lg(s,w)|?ds < n,
o 0, j;fb lg(s,w)|*ds > n.

Then {g,(t); a <t < b} is instantly independent of {F;} and

b b
/ g (£, )2t = / g(tw)Pdt, o e w
a T (w)

holds, where 7, (w) = inf {t; ftb lg(s,w)|?ds < n} . Therefore, we have
b
/ lgn(®)dt <n, a.e. w.
Since f:E[|gn(t)|2]dt <nand g € Lina(Q, L?[a,b]), it holds that

b
/|g(t,w)|2dt§n, a.e.w e
a

for a large n. Then we have g(t,w) = g,(t,w) for all t € [a,b]. Consequently, we
obtain

n—oo

b
lim / lgn (t,w) — g(t,w)|?dt =0, a.e. w.
(]

Lemma 3.2. Let g € Step;q([a,b] x Q). Then for any € > 0, there exists ¢ > 0

such that
b
c
P( >e>§62+P</a |g(t)|2dt>c>.

Proof. For any ¢ > 0, we define g.(t,w) by

b
g (t (U) = {g(t’w)’ ‘[tb |g(57w)|2d5 S c,
0, I} lg(s,w)[2ds > c.

>5}U{ [ stana) = [ gc<t>dB<t>},

/ o(t)dB(t)

Since
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for any € > 0 and ¢ > 0, we have

P ( /bg(t)dB(t) > 5)
b b b
<P </ 9e(t)dB(t) >6> + P (/ g(t)dB(t) #/ gc(t)dB(t)>-

Then since g € Step;,q([a,d] x ©), we have

{/ab(dB #/gc 1dB(t } {/|g |dt>c}
Therefore,
P(/abg(t)dB(t) >s>§P</ab (t)dB(t) ) (/ lg(t) 2dt>c>.

By the Chebyshev inequality, we obtain
2 b
+P (/ lg(t)|2dt > c)

P ( /bg(t)dB(t) > s) < E%E {/bgc(t)dB(t)
b b
= si?/u Elge(t)P)dt + P (/a lg(t)|?dt > c>
b
< 6% +P (/ lg(t)2dt > c> .

O

Lemma 3.3. For any g € Lina(Q, L%[a,b]), there exists a sequence {gn}5%, C
Stepinq([a, b] x Q) such that

lim / |gn(t) — g(t)|?dt =0, in probability.

n—oo

Proof. By Lemma 3.1, for any g € Lina(Q, L*[a,b]), we can take {h,}3>, C
L% ,([a,b] x Q) such that

b
lim |hn(t) — g(t)|?dt = 0, in probability.

For any n, applying Lemma 2.3 to h,,, there exists { gn} | C Stepiya([a, b] x Q)

such that
1
/ 9 () |dt] L
Tl
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Then we have

{/ 19n (1) |dt>s}
{/ o (0) = h0) Pt > 5 } {/ e |dt>4}

for all € > 0. Hence, for all € > 0,

</ lgn(t) 2dt>6>
SP(/ lgn(t) — R ()Ith>4>+P</ [ (t (t)l2dt>i>-

Therefore, by the Chebyshev inequality,

b
I% ( |9n(t) — g(t)[*dt > 6)

b
|gn (t) — hn(t)[*dt

a

4

IN
™ |
|

b
P n( dt
+ </ | (t (t)]? >4>
t)|2dt <

IN

_|_

=
7N
IS

b=l

>

3

S

for all € > 0. This means the assertion:

lim / |gn(t) — g(t)|?dt =0, in probability.

n—oo

O
By Lemma 3.3, for any g € Lina(£2, L?[a, b)), there exists {g,, }5°; C Step;,q([a, b] X
Q) such that
b
lim |gn(t) — g(t)[>dt = 0, in probability.

Then by Lemma 3.2, for any € > 0,

b 3
P(|T(gn) = T (gm)| > €) < g +P (/ gn (1) — gm ()| 2dt > 2) .
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204
Since
9 3
(1) — dt
[ 1)~ P>
53
/|gn |dt> /|gm —g(o)Par> 5 b
we have

b 3
P /|g7l(t)—gm(t)l2dt>62>

gP( lgn(t) — g()2dt > >+P</|gm - |dt>€83>.

Hence, since there exists N € N such that

el €

for all n > N by Lemma 3.3, it holds that

</|gn - )|dt>23><2

for all n,m > N. Consequently, for any € > 0 there exists N € N such that
P (1T (gn) = T (gm)| > &) <e
for all n,m > N. This implies that {J(gn)} converges in probability. Thus we

define the stochastic integral f:g(t)dB(t) by

b
/ g(t)dB(t) = lim J(gn), in probability.
n— oo

This is well-defined. In fact, suppose that there exist sequences {g,(t)}52, and

{hn(t)}52 C Steping([a, b] x Q) such that

hm/ lg(t) — gn(t)|?dt =0, hm/|g

Then by Lemma 3.2, for any € > 0, we have

h(t)|?dt =0 in probability.

P (|7 (gn) = T (ha)| > €) <

{/ o) ~ ha(t) dt>f}

Since
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</|%/ ndn>;)
<p</ 19n(0) |2dt>83>+P</ It (t)Zdt>i>.

By Lemma 3.3, for any € > 0, there exist N1 € N and Ny € N such that

23
</ lgn(t) — |dt>8><€’ for all n > Ny,
&3
I ( dt > —
/' >3 ) <

Therefore, putting N = max{Ny, Na}, we have

(/wn Wﬁ>;><§

for all n,m > N. Consequently,
P(|j(gn) - j(hn)l > 5) <e
holds for all n > N. Thus, we obtain lim J(g,) = lim J(h,) in probability.
n—oo n— oo

we have

W

and

, forall n > Ns.

W

4. The Doob-Meyer Deomposition by the Near-martingale

Let (Q, F, P; Ft)a<i<p be a basic probability space with a filtration {F; }a<¢<p-
A stochastic process {X(t);a <t < b} is called to be the near-martingale with
filtration {F;}a<i<p if it satisfies the following conditions:

(1) E[X@)|)<oocforalla<t<b,

(2)  E[X(t)|Fs] = E[X(s)|Fs] for all s < t.
If the condition

(3) E[X(t)|Fs] = E[X(s)|Fs] for all s <t
holds instead of the condition (2), the stochastic process {X (¢t);a <t < b} is called
to be the near-submartingale with the filtration {F;}o<t<p.

Theorem 4.1. ([5]) Let X = {X(¢); n € N} be a near-submaritngale. Then,
there exist a near-martingale N = {N(n); n € N} and an increasing process
A = {A(n);n € N} such that
X(n)=N(n)+ A(n),n € N,

where A is called to be the increasing process if it satisfies the following conditions:

(1) A1) =0,

(2) for each n > 2, A(n) is F,—1-measurable,

(3) for any m <n, A(m) < A(n), a.e.

Theorem 4.2. Let X (¢ ft s) foranya <t <bandg € L% ([a,b] x).
Then the stochastic pmcess {X(t ) a § t < b}is a near-martingale with {Fi}a<t<p-
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Proof. Let g € Step;,q([a,b] x ). Then g has the form
Zm Wl (), s=tg<t1 < <t;=t<-<t,=b,

where 7;,¢ = 0,1,2,--- ,n, are random variables which independent to F;, safisfy-
ing E[n?] < oo. Then we obtain

b
/t g(u)dB(u)‘]-"s]

E

=E Z ni(B(ti) — B(ti-1))|Fs
i=j+1

n

=E| Y m(B(t:) = B(ti-1))|Fs | + Y Em]E[(B(t:) - B(ti-1))]
[i=j+1 i=1

n

=E| > mi(B(ti) — B(ti-1)|Fs| + E
[i=5+1

=F /sbg(u)dB(u)‘]:s

M-

ni(B(t) - B(m))\fs]
i=1

Next we prove the theorem in the case of g € L ,([a,b] x Q). By Lemma 2.3, there
b
exists {gn }o; C Stepyq([a,b] x Q) such that le / E[|g(t) — gn(t)|?]dt = 0. Let

XM () = / bgn(u)dB(u), n € N.
Then {X™(t); a < t < b} is a near-martingale for each n € N from above
argument. For any s < t, we have
E[X(t) - X(s)|Fs] = E[X(t) = X" ()| F] + BIX™(s) — X (s)|F].
Since
E[|EIX(t) - X" (0)|F]1%] < EIE[X(t ) X(")(t)|2|fsﬂ
E[X(t) = X" (1))

/E\g — gu(w)P)du

s/ Ellg(u) — gn(u)[2)du —— 0,

n—oo
and by taking subsequence of {X ™) (t)}, we get
E[X(t) — X™ ()| F,] —— 0, a.e.

—00
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Similarly, we have

E[X(s) — X™(s)|F;] —— 0, a.e.

n—oo

Consequently, we obtain
E[X(t) — X(s)|Fs] =0, a.e.
This implies
E[X(t)|Fs| = E[X(s)|Fs], a.e.
O

From now on, we assume that the submartingale and the near-submartingale
are right-continuous. Let {F;;t > 0} be a right-continuous filtration and set

Foo =\ Fi.
t>0

The Doob decomposition theorem for the near-submartingale is proved in [11].
In [3] the Doob-Meyer decomposition theorem is proved for the continuous near-
submartingale. In this section we prove the Doob-Meyer decomposition theorem
for the right-continuous near-submartingale.

Definition 4.3. Let X = {X(¢),t € Ry} be a near-submartingale (respectively,
near-martingale). Suppose there exists an F,-measurable and integrable random
variable X (0c0) such that

EIX(t)|F:] < E[X(c0)|F],  (respectively, E[X(t)|F] = E[X(c0)|F])

for all t € R, (= [0,00)). Then we call {X(¢),t € Ry (= [0,00])} a closed near-
submartingale (respectively, closed near-martingale).

Definition 4.4. An (F;)-adapted right-continuous process A = {A(t);t € R.}
is called an increasing process if A(t) is an increasing function in ¢ and A(0) =0
almost surely.

Definition 4.5. An integrable increasing process A is called a natural increasing
process if it satisfies the equality

E [/OtX(s)dA(s)} =FE [/OtX(s—)dA(s)] . VteR,

for all bounded martingales X.

Let X = {X(X); A € A}be a system of integrable random variables on a proba-
bility space (£2, F, P). If X satisfies

sup/ | X (A\)|dP —— 0,
[X(N)[>c

AEA c— 00

then X is called to be uniformly integrable. A near-submartingale X = {X (¢),t €
R, } is called to have the Doob-Meyer decomposition if X is expressed in the form

X(t) = N(t) + A(t), Vt € R,

for some near-martingale N and natural increasing process A.
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Lemma 4.6. Let A, B be natual increasing processes. Then, if A — B is a near-
martingale, for any bounded (F;)-adapted process f = {f(t); t > 0}, the equality

E { /0 t f(s)dA(s)] —F { /0 t f(s)dB(s)}
holds.

Proof. Let N(t) = A(t) — B(t) for all t € R;. Take a partition of [0,¢] :
d:={0=ty <---<t, =t}

Then since N is a near-martingale, we get

E Zf(tk—l)(N(tk)—N(tk—l))]
k=1

=E | ) E[f(tr-1)(N(ts) - N(tk—l))lftkl]]
k=1
= E > fte-1)(BIN(tg)|Fry ] — E[N(tkl)}-tk_l])] =0.
k=1
Therefore,
E Z Flte—1)(A(te) = Ati—1)) | = B | D fts-1)(B(tx) — B(tkl))l
k=1
holds. Here, setting f°(s) = f(tx), tx < s <tpy1; k=0,1,...,n — 1, we have

[/ F5(s)dA(s ]:E[/O f‘s(s)dB(s)]

Consequently, by |6] — 0 and the left-continuity, we obtain
t t
E [/ f(s)dA(s)] =F [/ f(s)dB(s)} .
0 0

Lemma 4.7. (cf.[5]) Let A be an integrable increasing process. Then A is natural

if and only if .
EX#t)At))=F [/0 X(s—)dA(s)]

holds for any bounded martingale X.

O

Theorem 4.8. The Doob-Meyer decomposition of a near-submartingale is
uniquely determined if it exists.

Proof. Let X = {X(t),t € Ry} be a near-submartingale. Suppose that both
of X = M+ A and X = N + B are the Doob-Meyer decompositions. Then
since A — B is a near-martingale and by Lemma 4.6, for any bounded martingale
{Y(t);t € Ry}, we have

E [/OtY(s)dA(s)] -5 [/OtY(s)dB(s)} .
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Since A, B is natural increasing and by Lemma 4.7, we have
E[Y(t)A(t)] = E[Y (t)B(t)].

For any bounded random variable Y, we define Y = {Y(¢);t € Ry} by Y (¢) :=
E[Y|F] for all t € Ry. Then, Y is a (F;)¢er, -martingale, and therefore, we have

EY AQ®)] = E[E[Y AQ®t)|F]] = E[Y (1) A()]
= EY(1)B(t)] = E[E[Y B(t)|F:]] = E[Y B(1)].

Consequently, putting ¥ = 14 for all A € F, we obtain P(A(t) = B(t)) = 1 for
each ¢t € Ry. This implies

PVt e Ry A(t) = B(t)) = 1

by the right-continuity of A(t) and B(t). |

Let T be the set of stopping times and set 7, := {T eT;7(w)<a, YwEe Q}
A closed near-submartingale X = {X (t),t € R, } is called to be in the class (D) if
X (7) is uniformly integrable for any 7 € 7. A near-submartingale X = {X(¢),t €
R4} is called to be in the class (DL) if X(7) is uniformly integrable for any a > 0
and 7 € 7,.

Lemma 4.9. (cf. [5]) {A%;n € N} is uniformly integrable.

Theorem 4.10. Let X be a near-submartingle in the class (DL). If X(t) —
X (00) a. e. and there exists an integrable random variable Y such that | X;| <Y
for all t > 0, then X has the Doob-Meyer decomposition X = N + A. Moreover,
if X is in the class (D), then N and A in the decomposition of X are uniformly
integrable.

Proof. Tt is enough to prove the theorem in the case of a near-submartingale

X ={X(t),t € Ry} in the class (D). Let Y (¢) be Y (t) = X (t) — E[X (c0)|F] for

all t € Ry. Then, {Y(¢),t € R;} is a near-submartingale, and hence tlim Y(t) =
— 00

0,a. e. Let {X(t),t € Ry} be a near-submartingale satisfying tlim X(t) =0,a.e.
—00

Take a sequence 9, :{t§n) = Q%,j € N}, n = 1,2,3,... of partitions of [0, c0).
(

For an arbitrarily fixed J,,, we denote tjn)by t; simply. For each n, we define an

increasing process A"(t),t € d,, by
k—1
A1) = Y _{BIX (1)1 F,] = EIX(t)|F, )}, 1 € 0
i=1

Then by Lemma 4.9, A™(o0) is uniformly integrable. Therefore, there exist some
subsequence A™(00),f = 1,2,--- and an integrable random variable A(co) such
that A™ (00) — A(oc) in LY. For any t € Ry, we define A(t) by

A(t) = E[X ()| 7] + E[A(c0)|F]- (4.1)
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Then A is a (F;)-adapted process. Since

k—1
E[A™ (o0)|Fo] = lim B | Y {ELX (t40)|F,] - BIX (1)1 7,1} o
=0

= lim {E[X(tx)|Fo] — ELX(0)| o}

= —E[X(0)|Fo], tx € On,
for any £ =1,2,---, we have

A(0) = BIX(0)Fo] + Jim A" (o0)| 5] =
We next prove that A is a natural increasing process. Take s and ¢t with s < ¢ in
\U,, 6n. Then since s,t € d,, for a large ny € N, by Theorem 4.1, we have
E[X(s)|Fs] + E[A™(00)|Fs] < E[X(¢)|F] + E[A™ (c0)|F].
Taking ny — oo, we get
E[X(s)|Fs] + E[A(0)|Fs] < E[X(t)|Ft] + E[A(00)|Ft], a.e.

Hence, A(s) < A(t). Since |J,, 6, is dense in R, we obtain A(s) < A(t) for all
s < t. This implies that A is an increasing process. For any bounded closed
martingale Z, we can see that

ElZ(co = S B2 (A" () = A" ()
= ZE tk+1 An(tk))E[Z(OO”]:tkH
= ZE tk+1 An(tk))E[Z(tk”]:tk]]

= ZE A™M(try1) — A™(t)], th € On.

On the other hand, since
E[A(t) — A(s)|Fs] = E[X(t) — X (s)|F4]
by taking conditional expectations under F; in (4.1), we have
E[A(tgt1) — Altr) | Fe, ]
= E[X (tr1)|Fi ) = BIX ()| Fr, ]
= A"(tga1) — A" (tg).
Therefore, it holds that

E[Z(c00)A™(00)] = Y BlZ (1) (Altrs1) — Altr))].
k

Taking n — oo, we obtain
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This implies that A is natural. Since
E[X(t) — A()|Fs] = E[E[X(t) — A(t)|F4]| ]
= E[-E[A(c0)| ]| Fs]
= —E[A(c0)|F]
= E[X(s) — A(s)Fs,
the near-maritingale part of X is given by X — A. ]

5. A Stochastic Integral by a Near-martingale

Let 0 < a < b. Let Fy := a(B(b) — B(s); t < s < b) VN for any t € [a,b],
and C([a,b]) the Banach space of all continuous functions on [a,b] with norm
I lloo given by |[fllco = supsefa) [f ()], f € C([a,b]). Define B(C([a,b])) by the
smallest o-field including the family of open sets in C(([a, b])), which is called the
topological Borel field. Denote by Py the Wiener measure on B(C([a, b])). For any
(F(t)-adapted process g = {g(t); a <t < b} we consider

b
N(t) = /t () dB(u), t € [a,b]. (5.1)

Then, g is an instantly independent process of (F;) and N = {N(¢t); a <t < b} is
a near-martingale and also an instantly independent process of (F;). Since ¢(t) is
F-measurable for any ¢ € [a,b], then g(t) can be expressed in the form

g(t) = G(B(b) = B(s); t <s<b)

for some B(C([a,b]))-measurable function G for any ¢ € [a, b].

By Theorem 4.10, there exists a unique natural increasing process A =
{A(t); a <t < b} such that —N? — A is a near-martingale. We denote A by
(N) = {(N)(t); a <t <b}. Here, we have

BI(N(t) = N(s))?|Fs] = ELN)(t) = (N)(s)|F]
for any s < t. Let

¢

L2(N)) := {X; X is predictable and satisfies E [/ |X(t)|2d<N>(t)} < o0 Vt} .
a

For any X in £2((N)), we define semi-norms || X||;((N)), a <t < b, by

X1 =& | t X Pa)(o)] -

Then £2({N)) is the complete metric space with semi-norms || X ||;((N)),a <t < b.
For any f € C([a,b]) and partition A :a =ty <t; < --- <t, =b, we put

fA = Zf(B(tk—l))]‘[tk—latk)
k=1
and define the stochastic integral f: fa(B(t))dN(t) by

b n
/ fa(B@)AN(t) ==Y f(B(tk1))(N(t) = N(tx—1)), in L*(Q).
a k=1



212 SHINYA HIBINO, HUI-HSIUNG KUO, AND KIMIAKI SAITO

Then we have the following:
Proposition 5.1. For any f € C([a,b]) and partition
Ata=ty<t;<---<t,=b,

the process fa fadN is an L? near-martingale and satisfies

</ fA(B(-))dN> (t) = /at Fa(B(1))d(N)(t), (5.2)

E / fa(B)AN(1)

] = [|fa(B() [ ((N))? (5.3)
foralla <t <b.

Proof. Let t > s > a and f € C([a,b]). Then for any partition
A:s=tg<t1 <---<t,=b,

(f fA<B<t>>dN<t>)2 fs]

=" BIE[f2 (AN ()| Fr, )| F)
k=1

+2) " E[E[fo-1fe-1 8 N()AN(t)|Fy, ]| ]
k>0

= Elf2 E[(ARN ()| F )| ]

we can see that

E

+2) " E[E[fr-1fe-1 E[(ARN () (AN ()| Fop )| Fe 1),
where fr_1 := f(B(tk—1)), and AgN(t) := N(tx) — N(tg—1) for k = 1,2,...,n.
By Corollary 2.5 and Theorem 2.6, we have
E[AN(&)A¢N(t)|Ft,,_,] = 0.

(f fa(B(U))dN(U)>2 fs]

=Y E[f(Bte-1))’E [(N)(tx) — (N) (tre—1)| Fo,_, ] | 7]
k=1

Therefore, we get

E

3

D FBE—)) (N (1) = (N)(tr-1)) fs]
k=1
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This implies (5.2), and taking the expectation of the both sides of (5.2), we obtain

(5.3). O
For any f € C([a,b]), we have fa(B(t)) — f(B(t)) in L2((N)) as |A] =
max{ty —tx—1; k =1,2,...,n} = 0. Therefore by Proposition 5.1, we can define

J2 F(B(1))dN(t) by

b b
/ F(B()AN(t) == lim / FA(B@)AN(t) in L2(Q).

|A]—0

The stochastic integral fab f(B(t))g(t)dB(t) with g(t) from (5.1) can be regarded

as — f; f(B(t))dN(t). This is a generalization of [10] and a formulation of the
new integral in [1] from the point of view of the stochastic integral by the near-
martingale.
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