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Abstract. In this paper we discuss the new stochastic integral in [1] in
terms of the Itô isometry. We prove the Doob-Meyer decomposition theorem
for near-submartingales in the classes (D) and (DL). Moreover, we introduce

a stochastic integral by a near-martingale as an application of the decompo-
sition theorem.

1. Introduction

A new stochastic integral was introduced in [1]. The Itô isometry based on
the new integral for special processes was discussed in [10]. The Doob-Meyer
decomposition theorem for continuous near-submartingales was also discussed in
[3]. This stochastic integral has been studied from different points of view [2, 4,
7, 8, 9] and references cited therein.

Let (Ω,F , P ;Ft)a≤t≤b be a basic probability space with a filtration {Ft}a≤t≤b,
and B = {B(t); a ≤ t ≤ b} a {Ft}-Brownian motion on (Ω,F , P ). A stochastic
process g = {g(t); a ≤ t ≤ b} is called to be instantly independent of {Ft} if g(t)
is independent of Ft for all t ∈ [a, b]. A stochastic process g = {g(t); a ≤ t ≤ b} is
called to be in L2

ind([a, b]× Ω) if the process satisfies the following conditions:

(1) g = {g(t); a ≤ t ≤ b} is instantly independent of {Ft}.
(2)

∫ b

a
E[|g(t)|2]dt < ∞.

(3) g is right-continuous in t.

A stochastic process g = {g(t); a ≤ t ≤ b} is called to be in Lind(Ω, L
2[a, b]) if the

process satisfies the following conditions:

(1) g = {g(t); a ≤ t ≤ b} is instantly independent of {Ft}.
(2)

∫ b

a
|g(t)|2dt < ∞, a. e.

In this article we discuss the new stochastic integral through the Itô isometry. In
Section 2 we discuss the stochastic integral by the Brownian motion B for processes
in L2

ind([a, b] × Ω) through the Itô isometry with its properties. In Section 3 we
extend the stochastic integral to that on a class Lind(Ω, L

2[a, b]) which is larger
than the space in Section 2. In Section 4 we give the proof of the Doob-Meyer
decomposition theorem for near-submartingales in the classes (D) and (DL). This
theorem is important to discuss the new integral in [1] for its extension. In the last
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section we introduce a stochastic integral by a near-martingale as an application
of the decomposition theorem. This is a formulation of the new integral in [1] from
the point of view of the stochastic integral by the near-martingale.

2. Stochastic Integrals on L2
ind([a, b]× Ω)

Let g be in L2
ind([a, b] × Ω). Then g is called to be an instantly independent

step process if there exist a partition a = t0 < t1 < · · · < tn = b and instantly
independent random variables ηi, i = 1, 2, . . . , n with E[η2i ] < ∞ such that

g(t, ω) =

n∑
i=1

ηi(ω)1[ti−1,ti)(t), ω ∈ Ω, t ∈ [a, b]. (2.1)

We denote the set of all instantly independent step processes by Stepind([a, b]×Ω).
For any g ∈ Stepind([a, b]× Ω) given as (2.1), we define J (g) by

J (g) :=
n∑

i=1

ηi(B(ti)−B(ti−1)).

Then we have the following.

Lemma 2.1. For any g, h ∈ Stepind([a, b]× Ω) and a, b ∈ R, it holds that

J (ag + bh) = aJ(g) + bJ(h).

Lemma 2.2. For any g ∈ Stepind([a, b]× Ω), the following equalities hold.

(1) E[J (g)] = 0.

(2) E[|J (g)|2] =
∫ b

a
E[|g(t)|2]dt.

Proof. Let g be a function in Stepind([a, b]× Ω) given as (2.1).
(1): Since, for any 1 ≤ i ≤ n, ηi is independent to B(ti)−B(ti−1), we have

E[ηi(B(ti)−B(ti−1))] = E[ηi]E[B(ti)−B(ti−1)] = 0.

Therefore, E[J (g)] = 0.
(2): If i < j, we have

E[ηiηj(B(ti)−B(ti−1))(B(tj)−B(tj−1))]

= E[(B(ti)−B(ti−1))]E[ηiηj(B(tj)−B(tj−1))] = 0.

If i = j, we have

E[η2i (B(ti)−B(ti−1))
2] = E[(B(ti)−B(ti−1))

2]E[η2i ]

= (ti − ti−1)E[η2i ].

Therefore, we obtain

E[|J (g)|2] =
n∑

i,j=1

E[ηiηj(B(ti)−B(ti−1))(B(tj)−B(tj−1))] =

∫ b

a

E[|g(t)|2]dt.

�
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Lemma 2.3. For any g ∈ L2
ind([a, b]×Ω), there exists

{
gn
}∞
n=1

⊂ Stepind([a, b]×Ω)
such that

lim
n→∞

∫ b

a

E[|g(t)− gn(t)|2]dt = 0

holds.

Let g ∈ L2
ind([a, b] × Ω). Then there exists

{
gn
}∞
n=1

⊂ Stepind([a, b] × Ω) such
that

lim
n→∞

∫ b

a

E[|g(t)− gn(t)|2]dt = 0.

By Lemmas 2.1, 2.2 and 2.3, we have

E[|J (gn)− J (gm)|2] =
∫ b

a

E[|gn(t)− gm(t)|2]dt −−−−−→
n,m→∞

0.

Therefore, {J (gn)}∞n=1 is a Cauchy sequence in L2(Ω). By the completeness of
L2(Ω), there exists J (g) ∈ L2(Ω) such that

J (g) = lim
n→∞

J (gn), in L2(Ω).

Thus we can define the stochastic integral
∫ b

a
g(t)dB(t) by∫ b

a

g(t)dB(t) := J (g)

as an element of L2(Ω). This is well-defined. In fact, assume that there exist
{gn(t)}∞n=0, {hn(t)}∞n=0 ⊂ Stepind([a, b]× Ω) such that

lim
n→∞

∫ b

a

E[|g(t)− gn(t)|2]dt = 0, lim
n→∞

∫ b

a

E[|g(t)− hn(t)|2]dt = 0.

Then we can see that

E[|J (gn)− J (hn)|2] =
∫ b

a

E[|gn(t)− hn(t)|2]dt

=

∫ b

a

E[|g(t)− gn(t)|2]dt+
∫ b

a

E[|g(t)− hn(t)|2]dt

−−−−→
n→∞

0.

Therefore, lim
n→∞

J (gn) = lim
n→∞

J (hn) in L2(Ω).

Theorem 2.4. For any g ∈ L2
ind([a, b]× Ω), J (g) has the following properties:

(1) E[J (g)] = 0.

(2) E[|J (g)|2] =
∫ b

a
E[|g(t)|2]dt.

Proof. (1) follows from E[J (g)] = lim
n→∞

E[J (gn)] = 0. (2) follows from

E[|J (g)|2] = lim
n→∞

E[|J (gn)|2] = lim
n→∞

∫ b

a

E[|gn(t)|2]dt =
∫ b

a

E[|g(t)|2]dt.

�



200 SHINYA HIBINO, HUI-HSIUNG KUO, AND KIMIAKI SAITÔ

Corollary 2.5. For any g, h ∈ L2
ind([a, b]× Ω), the equality

E

[∫ b

a

g(t)dB(t)

∫ b

a

h(t)dB(t)

]
=

∫ b

a

E[g(t)h(t)]dt

holds.

Proof. By Theorem 2.4, we have

E

[∣∣∣ ∫ b

a

g(t)dB(t) +

∫ b

a

h(t)dB(t)
∣∣∣2] =

∫ b

a

E[|g(t) + h(t)|2]dt.

Then we can see that

E

[∣∣∣ ∫ b

a

g(t)dB(t) +

∫ b

a

h(t)dB(t)
∣∣∣2]

= E

(∫ b

a

g(t)dB(t)

)2

+2

(∫ b

a

g(t)dB(t)

)(∫ b

a

h(t)dB(t)

)
+

(∫ b

a

h(t)dB(t)

)2


=

∫ b

a

E[|g(t)|2]dB(t)

+ 2E

[∫ b

a

g(t)dB(t)

∫ b

a

h(t)dB(t)

]
+

∫ b

a

E[|h(t)|2]dB(t).

On the other hand, we get∫ b

a

E[|g(t) + h(t)|2]dt

=

∫ b

a

E[|g(t)|2]dB(t) + 2

∫ b

a

E[g(t)h(t)]dt+

∫ b

a

E[|h(t)|2]dB(t).

Consequently, we obtain

E

[∫ b

a

g(t)dB(t)

∫ b

a

h(t)dB(t)

]
=

∫ b

a

E[f(t)g(t)]dt.

�

Example 2.6. For any g ∈ L2
ind([a, b]× Ω), the stochastic process{∫ b

t

g(s)dB(s); a ≤ t ≤ b

}
is an instantly independent process of {Ft}.
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3. Stochastic Integrals on Lind(Ω, L
2[a, b])

Lemma 3.1. For any g ∈ Lind(Ω, L
2[a, b]), there exists a sequence {gn}∞n=0 ⊂

L2
ind([a, b]× Ω) such that

lim
n→∞

∫ b

a

|gn(t)− g(t)|2dt = 0, a. e.

Proof. For any n ∈ N, we set

gn(t, ω) =

{
g(t, ω),

∫ b

t
|g(s, ω)|2ds ≤ n,

0,
∫ b

t
|g(s, ω)|2ds > n.

Then {gn(t); a ≤ t ≤ b} is instantly independent of {Ft} and∫ b

a

|gn(t, ω)|2dt =
∫ b

τn(ω)

|g(t, ω)|2dt, a. e. ω

holds, where τn(ω) = inf
{
t;
∫ b

t
|g(s, ω)|2ds ≤ n

}
. Therefore, we have∫ b

a

|gn(t)|2dt ≤ n, a. e. ω.

Since
∫ b

a
E[|gn(t)|2]dt ≤ n and g ∈ Lind(Ω, L

2[a, b]), it holds that∫ b

a

|g(t, ω)|2dt ≤ n, a. e. ω ∈ Ω

for a large n. Then we have g(t, ω) = gn(t, ω) for all t ∈ [a, b]. Consequently, we
obtain

lim
n→∞

∫ b

a

|gn(t, ω)− g(t, ω)|2dt = 0, a. e. ω.

�

Lemma 3.2. Let g ∈ Stepind([a, b] × Ω). Then for any ϵ > 0, there exists c > 0
such that

P

(∣∣∣∣∣
∫ b

a

g(t)dB(t)

∣∣∣∣∣ > ϵ

)
≤ c

ϵ2
+ P

(∫ b

a

|g(t)|2dt > c

)
.

Proof. For any c > 0, we define gc(t, ω) by

gc(t, ω) =

{
g(t, ω),

∫ b

t
|g(s, ω)|2ds ≤ c,

0,
∫ b

t
|g(s, ω)|2ds > c.

Since {∣∣∣∣∣
∫ b

a

g(t)dB(t)

∣∣∣∣∣ > ε

}

⊂

{∣∣∣∣∣
∫ b

a

gc(t)dB(t)

∣∣∣∣∣ > ε

}
∪

{∫ b

a

g(t)dB(t) ̸=
∫ b

a

gc(t)dB(t)

}
,
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for any ϵ > 0 and c > 0, we have

P

(∣∣∣∣∣
∫ b

a

g(t)dB(t)

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣
∫ b

a

gc(t)dB(t)

∣∣∣∣∣ > ε

)
+ P

(∫ b

a

g(t)dB(t) ̸=
∫ b

a

gc(t)dB(t)

)
.

Then since g ∈ Stepind([a, b]× Ω), we have{∫ b

a

g(t)dB(t) ̸=
∫ b

a

gc(t)dB(t)

}
⊂

{∫ b

a

|g(t)|2dt > c

}
Therefore,

P

(∣∣∣∣∣
∫ b

a

g(t)dB(t)

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣
∫ b

a

gc(t)dB(t)

∣∣∣∣∣ > ε

)
+ P

(∫ b

a

|g(t)|2dt > c

)
.

By the Chebyshev inequality, we obtain

P

(∣∣∣∣∣
∫ b

a

g(t)dB(t)

∣∣∣∣∣ > ε

)
≤ 1

ε2
E

∣∣∣∣∣
∫ b

a

gc(t)dB(t)

∣∣∣∣∣
2
+ P

(∫ b

a

|g(t)|2dt > c

)

=
1

ε2

∫ b

a

E[|gc(t)|2]dt+ P

(∫ b

a

|g(t)|2dt > c

)

≤ c

ε2
+ P

(∫ b

a

|g(t)|2dt > c

)
.

�

Lemma 3.3. For any g ∈ Lind(Ω, L
2[a, b]), there exists a sequence {gn}∞n=1 ⊂

Stepind([a, b]× Ω) such that

lim
n→∞

∫ b

a

|gn(t)− g(t)|2dt = 0, in probability.

Proof. By Lemma 3.1, for any g ∈ Lind(Ω, L
2[a, b]), we can take {hn}∞n=1 ⊂

L2
ind([a, b]× Ω) such that

lim
n→∞

∫ b

a

|hn(t)− g(t)|2dt = 0, in probability.

For any n, applying Lemma 2.3 to hn, there exists
{
gn
}∞
n=1

⊂ Stepind([a, b] × Ω)
such that

E

[∫ b

a

|gn(t)− hn(t)|2dt

]
<

1

n
.
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Then we have{∫ b

a

|gn(t)− g(t)|2dt > ε

}

⊂

{∫ b

a

|gn(t)− hn(t)|2dt >
ε

4

}
∪

{∫ b

a

|hn(t)− g(t)|2dt > ε

4

}
for all ε > 0. Hence, for all ε > 0,

P

(∫ b

a

|gn(t)− g(t)|2dt > ε

)

≤ P

(∫ b

a

|gn(t)− hn(t)|2dt >
ε

4

)
+ P

(∫ b

a

|hn(t)− g(t)|2dt > ε

4

)
.

Therefore, by the Chebyshev inequality,

P

(∫ b

a

|gn(t)− g(t)|2dt > ε

)

≤ 4

ε
E

[∫ b

a

|gn(t)− hn(t)|2dt

]
+ P

(∫ b

a

|hn(t)− g(t)|2dt > ε

4

)

≤ 4

nε
+ P

(∫ b

a

|hn(t)− g(t)|2dt > ε

4

)
for all ε > 0. Consequently, we obtain

lim
n→∞

P

(∫ b

a

|gn(t)− g(t)|2dt > ε

)
= 0

for all ε > 0. This means the assertion:

lim
n→∞

∫ b

a

|gn(t)− g(t)|2dt = 0, in probability.

�

By Lemma 3.3, for any g ∈ Lind(Ω, L
2[a, b]), there exists {gn}∞n=1 ⊂ Stepind([a, b]×

Ω) such that

lim
n→∞

∫ b

a

|gn(t)− g(t)|2dt = 0, in probability.

Then by Lemma 3.2, for any ε > 0,

P (|J (gn)− J (gm)| > ε) ≤ ε

2
+ P

(∫ b

a

|gn(t)− gm(t)|2dt > ε3

2

)
.
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Since {∫ b

a

|gn(t)− gm(t)|2dt > ε3

2

}

⊂

{∫ b

a

|gn(t)− g(t)|2dt > ε3

8

}
∪

{∫ b

a

|gm(t)− g(t)|2dt > ε3

8

}
,

we have

P

(∫ b

a

|gn(t)− gm(t)|2dt > ε3

2

)

≤ P

(∫ b

a

|gn(t)− g(t)|2dt > ε3

8

)
+ P

(∫ b

a

|gm(t)− g(t)|2dt > ε3

8

)
.

Hence, since there exists N ∈ N such that

P

(∫ b

a

|gn(t)− g(t)|2dt > ε3

8

)
<

ε

4

for all n ≥ N by Lemma 3.3, it holds that

P

(∫ b

a

|gn(t)− gm(t)|2dt > ε3

2

)
<

ε

2

for all n,m ≥ N. Consequently, for any ϵ > 0 there exists N ∈ N such that

P (|J (gn)− J (gm)| > ε) < ε

for all n,m ≥ N. This implies that {J (gn)} converges in probability. Thus we

define the stochastic integral
∫ b

a
g(t)dB(t) by∫ b

a

g(t)dB(t) = lim
n→∞

J (gn), in probability.

This is well-defined. In fact, suppose that there exist sequences {gn(t)}∞n=0 and
{hn(t)}∞n=0 ⊂ Stepind([a, b]× Ω) such that

lim
n→∞

∫ b

a

|g(t)− gn(t)|2dt = 0, lim
n→∞

∫ b

a

|g(t)− hn(t)|2dt = 0 in probability.

Then by Lemma 3.2, for any ε > 0, we have

P (|J (gn)− J (hn)| > ε) ≤ ε

2
+ P

(∫ b

a

|gn(t)− hn(t)|2dt >
ε3

2

)
.

Since {∫ b

a

|gn(t)− hn(t)|2dt >
ε3

2

}

⊂

{∫ b

a

|gn(t)− g(t)|2dt > ε3

8

}
∪

{∫ b

a

|hn(t)− g(t)|2dt > ε3

8

}
,



A STOCHASTIC INTEGRAL BY A NEAR-MARTINGALE 205

we have

P

(∫ b

a

|gn(t)− hn(t)|2dt >
ε3

2

)

≤ P

(∫ b

a

|gn(t)− g(t)|2dt > ε3

8

)
+ P

(∫ b

a

|hn(t)− g(t)|2dt > ε3

8

)
.

By Lemma 3.3, for any ϵ > 0, there exist N1 ∈ N and N2 ∈ N such that

P

(∫ b

a

|gn(t)− g(t)|2dt > ε3

8

)
<

ε

4
, for all n ≥ N1,

and

P

(∫ b

a

|hn(t)− g(t)|2dt > ε3

8

)
<

ε

4
, for all n ≥ N2.

Therefore, putting N = max{N1, N2}, we have

P

(∫ b

a

|gn(t)− hn(t)|2dt >
ε3

2

)
<

ε

2

for all n,m ≥ N. Consequently,

P (|J (gn)− J (hn)| > ε) < ε

holds for all n ≥ N. Thus, we obtain lim
n→∞

J (gn) = lim
n→∞

J (hn) in probability.

4. The Doob-Meyer Deomposition by the Near-martingale

Let (Ω,F , P ;Ft)a≤t≤b be a basic probability space with a filtration {Ft}a≤t≤b.
A stochastic process {X(t); a ≤ t ≤ b} is called to be the near-martingale with
filtration {Ft}a≤t≤b if it satisfies the following conditions:

(1) E[|X(t)|] < ∞ for all a ≤ t ≤ b,
(2) E[X(t)|Fs] = E[X(s)|Fs] for all s < t.

If the condition

(3) E[X(t)|Fs] ≥ E[X(s)|Fs] for all s < t

holds instead of the condition (2), the stochastic process {X(t); a ≤ t ≤ b} is called
to be the near-submartingale with the filtration {Ft}a≤t≤b.

Theorem 4.1. ([5]) Let X = {X(t); n ∈ N} be a near-submaritngale. Then,
there exist a near-martingale N = {N(n); n ∈ N} and an increasing process
A = {A(n);n ∈ N} such that

X(n) = N(n) +A(n), n ∈ N,
where A is called to be the increasing process if it satisfies the following conditions:

(1) A(1) = 0,
(2) for each n ≥ 2, A(n) is Fn−1-measurable,
(3) for any m ≤ n, A(m) ≤ A(n), a. e.

Theorem 4.2. Let X(t) =
∫ b

t
g(s)dB(s) for any a ≤ t ≤ b and g ∈ L2

ind([a, b]×Ω).
Then the stochastic process {X(t); a ≤ t ≤ b}is a near-martingale with {Ft}a≤t≤b.



206 SHINYA HIBINO, HUI-HSIUNG KUO, AND KIMIAKI SAITÔ

Proof. Let g ∈ Stepind([a, b]× Ω). Then g has the form

g(u, ω) =

n∑
i=1

ηi(ω)1[ti−1,ti)(u), s = t0 < t1 < · · · < tj = t < · · · < tn = b,

where ηi, i = 0, 1, 2, · · · , n, are random variables which independent to Fti safisfy-
ing E[η2i ] < ∞. Then we obtain

E

[∫ b

t

g(u)dB(u)
∣∣∣Fs

]

= E

 n∑
i=j+1

ηi(B(ti)−B(ti−1))
∣∣∣Fs


= E

 n∑
i=j+1

ηi(B(ti)−B(ti−1))
∣∣∣Fs

+

j∑
i=1

E [ηi]E[(B(ti)−B(ti−1))]

= E

 n∑
i=j+1

ηi(B(ti)−B(ti−1))
∣∣∣Fs

+ E

[
j∑

i=1

ηi(B(ti)−B(ti−1))
∣∣∣Fs

]

= E

[∫ b

s

g(u)dB(u)
∣∣∣Fs

]
.

Next we prove the theorem in the case of g ∈ L2
ind([a, b]×Ω). By Lemma 2.3, there

exists {gn}∞n=1 ⊂ Stepind([a, b]×Ω) such that lim
n→∞

∫ b

a

E[|g(t)−gn(t)|2]dt = 0. Let

X(n)(t) =

∫ b

t

gn(u)dB(u), n ∈ N.

Then {X(n)(t); a ≤ t ≤ b} is a near-martingale for each n ∈ N from above
argument. For any s < t, we have

E[X(t)−X(s)|Fs] = E[X(t)−X(n)(t)|Fs] + E[X(n)(s)−X(s)|Fs].

Since

E[|E[X(t)−X(n)(t)|Fs]|2] ≤ E[E[|X(t)−X(n)(t)|2|Fs]]

= E[|X(t)−X(n)(t)|2]

=

∫ b

t

E[|g(u)− gn(u)|2]du

≤
∫ b

a

E[|g(u)− gn(u)|2]du −−−−→
n→∞

0,

and by taking subsequence of {X(n)(t)}, we get

E[X(t)−X(n)(t)|Fs] −−−−→
n→∞

0, a. e.
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Similarly, we have

E[X(s)−X(n)(s)|Fs] −−−−→
n→∞

0, a. e.

Consequently, we obtain

E[X(t)−X(s)|Fs] = 0, a. e.

This implies

E[X(t)|Fs] = E[X(s)|Fs], a. e.

�

From now on, we assume that the submartingale and the near-submartingale
are right-continuous. Let {Ft; t ≥ 0} be a right-continuous filtration and set

F∞ =
∨
t≥0

Ft.

The Doob decomposition theorem for the near-submartingale is proved in [11].
In [3] the Doob-Meyer decomposition theorem is proved for the continuous near-
submartingale. In this section we prove the Doob-Meyer decomposition theorem
for the right-continuous near-submartingale.

Definition 4.3. Let X = {X(t), t ∈ R+} be a near-submartingale (respectively,
near-martingale). Suppose there exists an F∞-measurable and integrable random
variable X(∞) such that

E[X(t)|Ft] ≤ E[X(∞)|Ft], (respectively, E[X(t)|Ft] = E[X(∞)|Ft])

for all t ∈ R+(≡ [0,∞)). Then we call {X(t), t ∈ R+(≡ [0,∞])} a closed near-
submartingale (respectively, closed near-martingale).

Definition 4.4. An (Ft)-adapted right-continuous process A = {A(t); t ∈ R+}
is called an increasing process if A(t) is an increasing function in t and A(0) = 0
almost surely.

Definition 4.5. An integrable increasing process A is called a natural increasing
process if it satisfies the equality

E

[∫ t

0

X(s)dA(s)

]
= E

[∫ t

0

X(s−)dA(s)

]
, ∀t ∈ R+

for all bounded martingales X.

Let X = {X(λ);λ ∈ Λ}be a system of integrable random variables on a proba-
bility space (Ω,F , P ). If X satisfies

sup
λ∈Λ

∫
|X(λ)|>c

|X(λ)|dP −−−→
c→∞

0,

then X is called to be uniformly integrable. A near-submartingale X = {X(t), t ∈
R+} is called to have the Doob-Meyer decomposition if X is expressed in the form

X(t) = N(t) +A(t), ∀t ∈ R+

for some near-martingale N and natural increasing process A.
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Lemma 4.6. Let A,B be natual increasing processes. Then, if A− B is a near-
martingale, for any bounded (Ft)-adapted process f = {f(t); t ≥ 0}, the equality

E

[∫ t

0

f(s)dA(s)

]
= E

[∫ t

0

f(s)dB(s)

]
holds.

Proof. Let N(t) = A(t)−B(t) for all t ∈ R+. Take a partition of [0, t] :

δ := {0 = t0 < · · · < tn = t}.
Then since N is a near-martingale, we get

E

[
n∑

k=1

f(tk−1)(N(tk)−N(tk−1))

]

= E

[
n∑

k=1

E[f(tk−1)(N(tk)−N(tk−1))|Ftk−1
]

]

= E

[
n∑

k=1

f(tk−1)(E[N(tk)|Ftk−1
]− E[N(tk−1)|Ftk−1

])

]
= 0.

Therefore,

E

[
n∑

k=1

f(tk−1)(A(tk)−A(tk−1))

]
= E

[
n∑

k=1

f(tk−1)(B(tk)−B(tk−1))

]
holds. Here, setting fδ(s) = f(tk), tk < s ≤ tk+1; k = 0, 1, . . . , n− 1, we have

E

[∫ t

0

fδ(s)dA(s)

]
= E

[∫ t

0

fδ(s)dB(s)

]
.

Consequently, by |δ| → 0 and the left-continuity, we obtain

E

[∫ t

0

f(s)dA(s)

]
= E

[∫ t

0

f(s)dB(s)

]
.

�
Lemma 4.7. (cf.[5]) Let A be an integrable increasing process. Then A is natural
if and only if

E[X(t)A(t)] = E

[∫ t

0

X(s−)dA(s)

]
holds for any bounded martingale X.

Theorem 4.8. The Doob-Meyer decomposition of a near-submartingale is
uniquely determined if it exists.

Proof. Let X = {X(t), t ∈ R+} be a near-submartingale. Suppose that both
of X = M + A and X = N + B are the Doob-Meyer decompositions. Then
since A−B is a near-martingale and by Lemma 4.6, for any bounded martingale
{Y (t); t ∈ R+}, we have

E

[∫ t

0

Y (s−)dA(s)

]
= E

[∫ t

0

Y (s−)dB(s)

]
.
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Since A,B is natural increasing and by Lemma 4.7, we have

E[Y (t)A(t)] = E[Y (t)B(t)].

For any bounded random variable Y, we define Y = {Y (t); t ∈ R+} by Y (t) :=
E[Y |Ft] for all t ∈ R+. Then, Y is a (Ft)t∈R+

-martingale, and therefore, we have

E[Y A(t)] = E[E[Y A(t)|Ft]] = E[Y (t)A(t)]

= E[Y (t)B(t)] = E[E[Y B(t)|Ft]] = E[Y B(t)].

Consequently, putting Y = 1Λ for all Λ ∈ F , we obtain P (A(t) = B(t)) = 1 for
each t ∈ R+. This implies

P (∀t ∈ R+;A(t) = B(t)) = 1

by the right-continuity of A(t) and B(t). �

Let T be the set of stopping times and set Ta :=
{
τ ∈ T ; τ(ω) ≤ a, ∀ω ∈ Ω

}
.

A closed near-submartingale X = {X(t), t ∈ R+} is called to be in the class (D) if
X(τ) is uniformly integrable for any τ ∈ T . A near-submartingale X = {X(t), t ∈
R+} is called to be in the class (DL) if X(τ) is uniformly integrable for any a > 0
and τ ∈ Ta.

Lemma 4.9. (cf. [5]) {An
∞;n ∈ N} is uniformly integrable.

Theorem 4.10. Let X be a near-submartingle in the class (DL). If X(t) →
X(∞) a. e. and there exists an integrable random variable Y such that |Xt| ≤ Y
for all t ≥ 0, then X has the Doob-Meyer decomposition X = N + A. Moreover,
if X is in the class (D), then N and A in the decomposition of X are uniformly
integrable.

Proof. It is enough to prove the theorem in the case of a near-submartingale
X = {X(t), t ∈ R+} in the class (D). Let Y (t) be Y (t) = X(t)− E[X(∞)|Ft] for
all t ∈ R+. Then, {Y (t), t ∈ R+} is a near-submartingale, and hence lim

t→∞
Y (t) =

0, a. e. Let {X(t), t ∈ R+} be a near-submartingale satisfying lim
t→∞

X(t) = 0, a. e.

Take a sequence δn =
{
t
(n)
j = j

2n , j ∈ N
}
, n = 1, 2, 3, . . . of partitions of [0,∞).

For an arbitrarily fixed δn, we denote t
(n)
j by tj simply. For each n, we define an

increasing process An(t), t ∈ δn by

An(tk) =
k−1∑
i=1

{
E[X(tj+1)|Ftj ]− E[X(tj)|Ftj ]

}
, tj ∈ δn.

Then by Lemma 4.9, An(∞) is uniformly integrable. Therefore, there exist some
subsequence Anℓ(∞), ℓ = 1, 2, · · · and an integrable random variable A(∞) such
that Anl(∞) → A(∞) in L1. For any t ∈ R+, we define A(t) by

A(t) = E[X(t)|Ft] + E[A(∞)|Ft]. (4.1)
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Then A is a (Ft)-adapted process. Since

E[Anℓ(∞)|F0] = lim
k→∞

E

k−1∑
j=0

{
E[X(tj+1)|Ftj ]− E[X(tj)|Ftj ]

}∣∣∣F0


= lim

k→∞

{
E[X(tk)|F0]− E[X(0)|F0]

}
= −E[X(0)|F0], tk ∈ δnl

for any ℓ = 1, 2, · · · , we have

A(0) = E[X(0)|F0] + lim
ℓ→∞

E[Anℓ(∞)|F0] = 0.

We next prove that A is a natural increasing process. Take s and t with s < t in∪
n δn. Then since s, t ∈ δnℓ

for a large nℓ ∈ N, by Theorem 4.1, we have

E[X(s)|Fs] + E[Anℓ(∞)|Fs] ≤ E[X(t)|Ft] + E[Anℓ(∞)|Ft].

Taking nℓ → ∞, we get

E[X(s)|Fs] + E[A(∞)|Fs] ≤ E[X(t)|Ft] + E[A(∞)|Ft], a. e.

Hence, A(s) ≤ A(t). Since
∪

n δn is dense in R+, we obtain A(s) ≤ A(t) for all
s < t. This implies that A is an increasing process. For any bounded closed
martingale Z, we can see that

E[Z(∞)An(∞)] =
∑
k

E[Z(∞)(An(tk+1)−An(tk))]

=
∑
k

E[(An(tk+1)−An(tk))E[Z(∞)|Ftk ]]

=
∑
k

E[(An(tk+1)−An(tk))E[Z(tk)|Ftk ]]

=
∑
k

E[Z(tk)(A
n(tk+1)−An(tk))], tk ∈ δn.

On the other hand, since

E[A(t)−A(s)|Fs] = E[X(t)−X(s)|Fs]

by taking conditional expectations under Fs in (4.1), we have

E[A(tk+1)−A(tk)|Ftk ]

= E[X(tk+1)|Ftk ]− E[X(tk)|Ftk ]

= An(tk+1)−An(tk).

Therefore, it holds that

E[Z(∞)An(∞)] =
∑
k

E[Z(tk)(A(tk+1)−A(tk))].

Taking n → ∞, we obtain

E[Z(∞)A(∞)] = E

[∫ ∞

0

Z(s−)dA(s)

]
.
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This implies that A is natural. Since

E[X(t)−A(t)|Fs] = E[E[X(t)−A(t)|Ft]|Fs]

= E[−E[A(∞)|Ft]|Fs]

= −E[A(∞)|Fs]

= E[X(s)−A(s)|Fs],

the near-maritingale part of X is given by X −A. �

5. A Stochastic Integral by a Near-martingale

Let 0 ≤ a < b. Let F(t := σ(B(b) − B(s); t < s ≤ b) ∨ N for any t ∈ [a, b],
and C([a, b]) the Banach space of all continuous functions on [a, b] with norm
∥ · ∥∞ given by ∥f∥∞ := supt∈[a,b] |f(t)|, f ∈ C([a, b]). Define B(C([a, b])) by the

smallest σ-field including the family of open sets in C(([a, b])), which is called the
topological Borel field. Denote by PW the Wiener measure on B(C([a, b])). For any
(F(t)-adapted process g = {g(t); a ≤ t ≤ b} we consider

N(t) :=

∫ b

t

g(u)dB(u), t ∈ [a, b]. (5.1)

Then, g is an instantly independent process of (Ft) and N = {N(t); a ≤ t ≤ b} is
a near-martingale and also an instantly independent process of (Ft). Since g(t) is
F(t-measurable for any t ∈ [a, b], then g(t) can be expressed in the form

g(t) = G(B(b)−B(s); t < s ≤ b)

for some B(C([a, b]))-measurable function G for any t ∈ [a, b].
By Theorem 4.10, there exists a unique natural increasing process A =

{A(t); a ≤ t ≤ b} such that −N2 − A is a near-martingale. We denote A by
⟨N⟩ = {⟨N⟩(t); a ≤ t ≤ b}. Here, we have

E[(N(t)−N(s))2|Fs] = E[⟨N⟩(t)− ⟨N⟩(s)|Fs]

for any s < t. Let

L2(⟨N⟩) :=
{
X; X is predictable and satisfies E

[∫ t

a

|X(t)|2d⟨N⟩(t)
]
< ∞ ∀t

}
.

For any X in L2(⟨N⟩), we define semi-norms ∥X∥t(⟨N⟩), a ≤ t ≤ b, by

∥X∥t(⟨N⟩) := E

[∫ t

a

|X|2d⟨N⟩(t)
]1/2

.

Then L2(⟨N⟩) is the complete metric space with semi-norms ∥X∥t(⟨N⟩), a ≤ t ≤ b.
For any f ∈ C([a, b]) and partition ∆ : a = t0 < t1 < · · · < tn = b, we put

f∆ =
n∑

k=1

f(B(tk−1))1[tk−1,tk)

and define the stochastic integral
∫ b

a
f∆(B(t))dN(t) by∫ b

a

f∆(B(t))dN(t) :=
n∑

k=1

f(B(tk−1))(N(tk)−N(tk−1)), in L2(Ω).
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Then we have the following:

Proposition 5.1. For any f ∈ C([a, b]) and partition

∆ : a = t0 < t1 < · · · < tn = b,

the process
∫ ·
a
f∆dN is an L2 near-martingale and satisfies⟨∫ ·

a

f∆(B(·))dN
⟩
(t) =

∫ t

a

f∆(B(t))d⟨N⟩(t), (5.2)

E

[∣∣∣∣∫ t

a

f∆(B(t))dN(t)

∣∣∣∣2
]
= ∥f∆(B(·))∥t(⟨N⟩)2 (5.3)

for all a ≤ t ≤ b.

Proof. Let t > s > a and f ∈ C([a, b]). Then for any partition

∆ : s = t0 < t1 < · · · < tn = b,

we can see that

E

[(∫ t

s

f∆(B(t))dN(t)

)2 ∣∣∣Fs

]

=
n∑

k=1

E[E[f2
k−1(∆kN(t))2|Ftk−1

]|Fs]

+2
∑
k>ℓ

E[E[fk−1fℓ−1∆kN(t)∆ℓN(t)|Ftℓ−1
]|Fs]

=
n∑

k=1

E[f2
k−1E[(∆kN(t))2|Ftk−1

]|Fs]

+2
∑
k>ℓ

E[E[fk−1fℓ−1E[(∆kN(t))(∆ℓN(t))|Ftk−1
]|Ftℓ−1

]|Fs],

where fk−1 := f(B(tk−1)), and ∆kN(t) := N(tk) − N(tk−1) for k = 1, 2, . . . , n.
By Corollary 2.5 and Theorem 2.6, we have

E[∆kN(t)∆ℓN(t)|Ftk−1
] = 0.

Therefore, we get

E

[(∫ t

s

f∆(B(u))dN(u)

)2 ∣∣∣Fs

]

=

n∑
k=1

E
[
f(B(tk−1))

2E
[
⟨N⟩(tk)− ⟨N⟩(tk−1)|Ftk−1

]
|Fs

]
= E

[
n∑

k=1

f(B(tk−1))
2(⟨N⟩(tk)− ⟨N⟩(tk−1))

∣∣∣Fs

]

= E

[∫ t

s

f∆(B(u))2d⟨N⟩(u)
∣∣∣Fs

]
.
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This implies (5.2), and taking the expectation of the both sides of (5.2), we obtain
(5.3). �

For any f ∈ C([a, b]), we have f∆(B(t)) → f(B(t)) in L2(⟨N⟩) as |∆| :=
max{tk − tk−1; k = 1, 2, . . . , n} → 0. Therefore by Proposition 5.1, we can define∫ b

a
f(B(t))dN(t) by∫ b

a

f(B(t))dN(t) := lim
|∆|→0

∫ b

a

f∆(B(t))dN(t) in L2(Ω).

The stochastic integral
∫ b

a
f(B(t))g(t)dB(t) with g(t) from (5.1) can be regarded

as −
∫ b

a
f(B(t))dN(t). This is a generalization of [10] and a formulation of the

new integral in [1] from the point of view of the stochastic integral by the near-
martingale.
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