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ABSTRACT

Implementation of effective control schemes for Nonlinear Systems is currently being studied comprehensively. In
this paper, robust control schemes for trajectory tracking of Nonlinear Permanent Magnet Stepper Motor system
has been proposed. Direct Quadrature (DQ) transformation technique has been employed to convert the system
dynamics to DQ frame. Initially, a conventional PID controller along with its control law is discussed. Also, a Self-
Tuning Adaptive Minimum Variance controller is tested and found to be better than PID controller. Finally, an
optimal control strategy using Feedback Linearization is formulated; where in, the desired tracking of current
vectors (direct and quadrature) are obtained. The performances of all the aforementioned control algorithms are
analysed in detail, with better results observed in Feedback Linearization controller.

Keywords: Permanent Magnet Stepper Motor (PMSM), Controllers, PID, Minimum Variance Control, Feedback
linearization.

1. INTRODUCTION

There have been considerable researches occurring in field of elementary precision control of Drives and
Motors. In particular, Permanent Magnet Stepper Motor is one of the widely exploited branches. The control
of permanent magnet stepper motor using Marc Nonlinear state feedback was proposed by [1]. The position
control of permanent magnet stepper motor and its simple field weakening methods are discussed in [2].
The model based control law for a high performance nonlinear feedback control of PMSM is discussed in
[3-4]. The mathematical model and methodology of the linearization of PMSM and its positional control
are discussed. It is non-adaptive but still superior to open loop controller. The parameters vary with time
and the machines are highly nonlinear. So, nonlinear adaptive control technique as discussed in [5] has
been applied to PMSM.

The static PID control law [6], which is used as a reference PID law for testing the PMSM tracking
operation is analyzed. The minimum variance controller for the optimum tracking of PMSM has also been
considered to emphasize their advantages over static PID controller. [7-11]. As discussed in [13-15], there
has been a considerable development in nonlinear control theory in the last 15 years with such ideas as
feedback linearization, input/output linearization, and passivity theory. The least squares identification
procedure [16-17] is also employed for the tracking of output positional vector. This paper is divided into
VI sections. Section I consists of Mathematical Model of Permanent Magnet Stepper Motor (PMSM) and
its DQ transformation. Section II delineates about PID Control. Section III deals with Minimum Variance
Control. Section IV describes about the Feedback Linearization Control and its Reference Position
Generation. Section V comprises of Simulation results and the required Motor parameters. Finally, Section
VI furnishes the conclusion and the cited references.

Permanent Magnet Stepper Motor (PMSM) works on the principle of electromagnetism. It is incorporated
with a rotor contrived of permanent magnet and a stator made of electromagnet. When the winding of the
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stator is energized with the supply, it makes the rotor to get magnetized permanently and moves with
revolving magnetic field produced by the stator. The speed of the PMSM is in turn directly proportional to
the number of poles of the PMSM. Thus by the variation of voltage between the windings, the rotor can be
made to rotate.

It could be seen that the system of equations governing the PMSM is nonlinear and this may result in
several uncertainties of the dynamic system thereby causing problems in effective controlling of the motor.
If the modelling of these uncertainties is ignored, then this might damage the performance of the motor
resulting in inaccuracies and unacceptable errors in applications involving the positioning of the motor.
Therefore transformation of these equations from the existing coordinate to a nonlinear coordinate known
as Direct-Quadrature transformation is done.

SECTION I

MATHEMATICAL MODEL OF PMSM

The mathematical dynamics of the PMSM is given by the following set of differential equations [12]:
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of equations:
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transforms of the stator voltage and current. Applying this DQ transformation to the system yields:
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Here we take the voltage inequality as follows:
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where V
max

 is the maximum voltage that could be applied to the system. V
max 

can have a value less than or
equal to 40 Volts which is a standard value.

SECTION II

PID CONTROL

The most common control algorithms involve the use of PID (Proportional Integral Derivative) controllers.
The PID controller, with some minor variations is used in many practical feedback loops. It comprises of
three parameters: the proportional, integral and derivative. PID calculation necessitates the use of these
three parameters. The reception to current error is determined by proportional value; the reaction to sum of
recent errors is determined by integral value; and the derivative value determines the action based on the
rate at which error has been changing. The sum of these three actions is used in different process control
schemes. The equation of a PID controller is given as,

0
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Where, K
p
 is the proportional gain, K

i 
is the integral gain and K

d 
is the derivative gain. We use this PID

controller for the tracking and control of Permanent Magnet Stepper Motor (PMSM). The results are
simulated using MATLAB. The following control equations (4) are used,
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Where U
d
 is direct control variable, U

q 
is quadrature control variable. In this paper, we assume that the

direct reference current is almost zero because it does not provide any torque to the motor system.
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In (5) i
dr

 is desired direct current and i
qr 

is the desired quadrature current. All values are in SI units. The
performance of the PID controller is shown in the simulation results. This being the conventional one gives
poor tracking performances compared to the next two.

SECTION III

MINIMUM VARIANCE CONTROL

Minimum variance controller is just one form of self-tuning controllers that falls under the adaptive control
strategies. We often want fast response time at the initial stages of a process, but later on put more prominence
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on reducing steady state error. This section discusses the use of minimum variance controller for the tracking
of Permanent Magnet Stepper Motor (PMSM). Consider the following model (6):

1 1 1* dA q y k F q q U k G q e k (6)

The objective function is measured by the equation (9) given below:

2
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The above equation yields input U(k) after simplifying, which minimizes the mean square error between

the predicted output and the desired value .y k d�  The case where 0y k d�  is considered, the above

equations (7) becomes (8),
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The process variable of the system at time (k + d) is given by:
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Also B(q–1) E(q–1) + q–d T (q–1) = G(q–1)

Thus, equation (9) becomes,

I = E{[T/G) y(k) + (FB/G) u(k) + Be(k + d)]2} (9)

The whole objective here is to simplify the above equation to its minimal value. Control variable u(k)
depends upon the previous values u(k –1), u(k –2) and on outputs y(k), y(k –1). Thus, if the following
equation (10) is satisfied, minimum variance control of the above form is obtained.

U(K) = –(T(q–1)/F(q–1) + B(q–1))y(k) (10)

SECTION IV

FEEDBACK LINEARIZATION CONTROL

This controller is proposed to eliminate the rigorous recursive least square identification procedure that is carried
out in Minimum Variance Control strategy. Generally for control of nonlinear systems, the generic method
adopted is transformation of the system into a linear one and finally applying an apropos linear control technique.
This might not suffice for processes having continuously changing process variables. So in PMSM where the
position vector and speed vectors are constantly accelerating and decelerating, Feedback Linearization is used
which alleviates the aforementioned problem. Both linearization as well as the control action are taken care of by
the Feedback Linearization controller. In effect, this actually reduces both complexity as well as the time required
for our desired tracking. This strategy transforms the Nonlinear Permanent Magnet Stepper Motor system into a
linear system by converting the input voltage vector into a different coordinate plane which is called the Direct-
Quadrature (DQ) frame. Thus this DQ transformation helps us to easily carry out the Feedback Linearization
control action. Now, the voltage vectors in Direct and Quadrature frame as given as:

d dr r r qr q dv v N L I i Lu

q qr r r dr d qv v N L i i Lu (11)
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By substituting the above equations in equation (3) the nonlinear terms get cancelled out i.e. they
are eliminated completely, thereby linearizing the entire system. The control signal U

d
 is a function

error in current vector in direct frame. In order to compensate for the errors in position as well as
speed vector, their errors are also incorporated in U

q
 dynamics. The control signals U

d
 and U

q
 are

given as follows:
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by the following formula (13), (14):
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Here K� term represents the back-emf of the motor. This back-emf is quite undesirable because it
limits the motor in reaching high speeds. So to eliminate it, the back-emf term has been included in direct
reference current vector. Also the reactance of the motor represented by the term N

r
�

r
L has been incorporated

together with resistance R to determine the total impedance provided by the PMSM. Also the Moment of
Inertia of the motor J should be known so that control action and change in position of the motor would be
in sync with each other. Motors having larger inertia would change their position slowly as compared to
motors which have lesser inertia. Depending upon the value of J, control action should be taken by the
controller.

Finally the tracking error is found to be dependent on errors in speed, position as well as current vectors
in both direct and quadrature frame. The feedback term u is a function of � i.e.,

Figure 1: Desired and Actual Direct Current Figure 2: Desired and Actual Quadrature Current



7268 Narendran R. and Anand V.

u = – P� (15)

where P is the gain matrix which is obtained by pole placement technique using Ackermann’s formula.

1 0 0 0 0

0 2 3 4 5

P
P

P P P P

Now with the current vectors obtained in (13) and (14), the equations are solved to get v
dr

 and v
qr 

in (16).

dr dr dr r r qrv Li Ri N L i
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REFERENCE SPEED AND POSITION GENERATION

The reference speed trajectory generated here is a trapezoidal curve. The trapezoidal curve consists of three
sections with each portion occupying a fixed time length. Till time T1, it is a linear straight line of the form
y = mx with constant positive slope. From time T1 to T2, it is a constant line at 50 rad/sec with slope zero
and from time T2 to T3, it is a linear straight of the form y = mx + c with negative slope falling down to zero
at time T3. The reference trajectory for position is obtained by integrating it. The reference trajectory used
in this paper are given below:

666.67 0 0.075

50 0.075 0.275

1000 325 0.275 0.325

x t

y t

x t
(17)

SECTION V

SIMULATION RESULTS

The simulation is carried out in MATLAB and the results are shown in the figure. In these results, it is seen
that the Feedback Linearization Controller tracks the reference trajectory much closer than the other two.
The simulation is carried out for 0.5 seconds and the output is recorded for the same. Further, the comparison
between the controllers in the speed tracking trajectory and their corresponding errors in position as well as

Figure 3: Reference Speed Trajectory Figure 4: Reference Position Trajectory
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speed is noted. Here, although the error converges to zero for all the three controllers, the tracking performance
is the best for Feedback Linearization Controller. In addition to this, the actual Quadrature and direct
current is found to move along with the desired values. For stability analysis, the Eigen values of the
system matrix is found to be negative. Also, the root locus of all the three controllers show that the poles of
the feedback linearization controller is comparatively towards the left half of the s-plane indicating a higher
stability then the others. In the table given below which shows the comparison between the controllers, it is
found that the performances indices have minimum values for feedback linearization controller. The
minimum variance controller provides a better result when compared to PID controller. Yet the settling
time and time constant remains almost the same for all the controllers. The performance criterions for
evaluating the efficiency of a controller are Integral Absolute value of magnitude of error (IAE), Integral
Square Error (ISE), and Integral Time multiplexed Absolute value of Error (ITAE). Their vales should be
maintained as minimum as possible. These depend on the absolute value of error thereby preventing the
error cancellation. The formulae for calculating them are as follows:

2  ISE e dt

 IAE e dt

 ITAE e t dt (18)

Table for Comparison of the Three Controllers:

Performance Indices FBL Minimum Variance PID

ISE 0.05 0.55 1.12

IAE 2.3 7.94 11.34

ITAE 0.92 2.38 3.4

MOTOR PARAMETERS

The following motor parameters are taken for simulation [19] are as follows:

Parameter Value

J 4.5 � 10-5 kg.m2

N 50

Km 0.19 N.m/A

L 1.5 mH

R 0.55�
V 40 V

B 0.0008 N.m.s/rad

SECTION VI

CONCLUSION

Thus the performances of all the proposed controllers has been analysed based on various performance
indices. Although the Minimum Variance Controller had slightly better results than PID Controller, it is
evidently seen that Feedback Linearization Controller in a Permanent Magnet Stepper Motor (PMSM) has
close tracking of trajectory position of the rotor and its current vectors with respect to reference values. The
minimal amount of errors present was due to the inherent delays in the system, all of which could be
undermined when put to use in an industrial setup. There is no amount of quantisation noise present in any
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Figure 5: Comparison of Controllers in Rotor Speed Figure 6: Comparison of Controllers in Rotor Position

Figure 7: Comparison of Controllers in Rotor Speed Error Figure 8: Comparison of Controllers in Rotor Position Error

of the tracking simulations of Feedback Linearization Controller thereby providing sufficient evidence that
it outweighs the other controllers.

REFERENCES:
[1] P. Acarnley, Stepping Motors: a Guide to Modern Theory and Practice, 4th ed. London: Institution of Electrical Engineers,

1982.

[2] M. Kristic, I. Kanellakopoulous, and P. Kokotovic, Nonlinear and Adaptive Control Design. New York: Wiley, 1995.

[3] Bodson, M J and J Chiasson, “Application of nonlinear control methods to the positioning of a permanent magnet stepper
motor,” In Proceedings of 28th IEEE Conf. On Decision and Control,Tampa, FL. pp. 531-532, 1989.

[4] Bodson, M J and J Chiasson, “High Performance nonlinear feedback control of a permanent magnet stepper motor,
“IEEE Trans. Control System Technology, CST-1,1993, pp.5-14.

[5] Zribi M and J.Chaisson, “Position Control of a PM stepper motor by exact linearization.” IEEE Trans. Automation and
Control, AC 36, 1991, pp620-625.



Realisation of High Performance Controllers for Nonlinear Drive System 7271

[6] R Marino, S Peresada and P Tomei, “Nonlinear adaptive Control of Permanent Magnet Step Motors.” Automaticavol 31,
No 11,1995, pp-1595- 1604.

[7] K.J.Astrom and B. Wittenmark, “On Self_tuning regulators. “ Automatica, Vol. P, 1973, pp.185-199.

[8] D.W.Clarke, “ Self-tuning Control of non minimum phase systems.” Automatica, Vol.20, 1984, pp.501- 517.

[9] D.W. Clarke et al, Adaptive methods for control system design, Self-tuning Control, M M Gupta, editor, 1986, pp.
195-202.

[10] Khalid S Al-Olimat, “Adaptive Control Algorithms with Multiple Models and Fuzzy Logic Switching”, Ph.D. Dissertation,
The University of Toledo, Toledo, OH. August 1999.

[11] W.Davis, System Identification for self-adaptive control, Wiley-interscience, 1970.

[12] Bodson, M ,Chiasson, J. N., Novotnak, R. T. and Rekowski, R. B., “High Performance Nonlinear Feedback Control of a
Permanent Magnet Stepper Motor”, IEEE Transactions on Control Systems Technology,Vol. 1, No. 1, pp. 5-13, 1993.

[13] A. Isidori, Nonlinear Control Systems. New York: Springer-Verlag, 2nd ed., 1989.

[14] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems. New York: Springer-Verlag, 1990

[15] C. I. Byrnes, A.Isidori, and J.C. Willems, “Passivity, feedback equivalence, and the global stabilization of minimum
phase nonlinear systems,” IEEE Trans. Automat. Contr., vol. 36, no. 11, pp, 1228-1240, Nov. 1991.

[16] G. Campbell, “Online parameter identification of a pm stepper motor,” Univ. Pittsburgh, 1991.

[17] D. Schuerer, “Parameter identification of a permanent magnet stepping motor,” M.S. thesis, Univ. Pittsburgh, 1990.

[18] SukumarKamalasadan, Dr. Adel A. Ghandakly, “An Adaptive Position Tracking Controller for Permanent Magnet Stepper
Motors” Department of Electrical Engineering and Computer Science, The University of Toledo, Toledo, OH 43606,
U.S.A.

[19] Youngju Lee and Yuri B, Shtessel, “ Comparison of a Feedback Linearization Controller and Sliding Mode Controllers
for a Permanent Magnet Stepper Motor”, Department of Electrical and Computer Engineering, University of Alabama in
Huntsville, Huntsville, Alabama 35899




