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Abstract. In the paper we consider the Harris flow of Brownian particles

at fixed moment of time as a random process on R and investigate mixing
property for it.

1. Intorduction

In this article we study spatial properties of the Harris flows of Brownian parti-
cles on the real line. Such flows arose originally in the paper of T.E. Harris [8] as
a model of continuum system of ordered Brownian motions with correlation that
depends only on the distance between the particles. Let Γ be a real continuous
positive definite function on R such that Γ(0) = 1 and Γ is Lipshits outside any
neighborhood of zero.

Definition 1.1. The Harris flow with the local characteristic Γ is a family {x(u, ·),
u ∈ R} of Brownian martingales with respect to the joint filtration such that

(1) for every u ∈ R
x(u, 0) = u;

(2) for every u1 ≤ u2 and t ≥ 0

x(u1, t) ≤ x(u2, t);

(3) for every u1, u2 ∈ R the joint characteristic is

d⟨x(u1, ·), x(u2, ·)⟩(t) = Γ(x(u1, t)− x(u2, t))dt.

It was proved in [8] that such family exists and, moreover the function Γ defines
its distribution uniquely. It is known that depending on the correlation function
Γ Harris flow can consists of the continuous or step functions with respect to
a spatial variable [11]. Different properties of the Harris flows were studied in
[10, 1, 6, 7, 12, 5, 4]. Since the correlation depends only on a distance between
two particles, then its distribution is invariant with respect to spatial shifts. In
the present paper we prove that in the most interesting cases the Harris flow has
even mixing property with respect to a spatial variable. Under the condition on
local characteristic Γ: ∫ 1

0

u

1− Γ(u)
du <∞
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the coalescence occurs in the Harris flow [11]. If for fixed time t the function x(·, t)
is a step function then we can consider a point process on R:

N =
∑
uj∈D

δx(uj ,t),

where D is the set of jumps of the function x(·, t) (see, for example, [3]). Then the
questions about ergodicity and mixing properties of the point process N can be
reduced to the questions about ergodicity and mixing properties of the Harris flow
with respect to spatial variable. The article is organized as follows. In the first
part we present the necessary definitions and reduce the studying of the mixing
property of the Harris flow to the investigation of its n−poing motions. In the
second part we prove the uniqueness of the corresponding martingale problem and
obtain the main result about the mixing property. The last part contains examples
and applications. Note that invariant flows under a spatial transform in one- and
multidimensional case was studied by C. Zirbel [15].

2. n−point Motions and Mixing Property

Here we will consider the flow as a family of random mappings x(·, t) from R
to R. The second property in the definition of the Harris flow causes that x(·, t) is
nondecreasing function. Define the transformation Th, h ∈ R on a set of mappings
from R to R by the rule:

Thf(·) = f(·+ h)− h.

As a consequence of the third condition from Definition 1.1 one can see that
for every h ∈ R the family {Thx(u, t), u ∈ R, t ≥ 0} has the same distribution
as {x(u, t), u ∈ R, t ≥ 0}. Precisely, we denote by M(R) a set of nondecreasing
mappings from R to R with cylindric σ−field C and let µx be a measure on M(R)
produced by the process x(·, t), i.e. for any k ≥ 1 and ∆i ∈ B(R), i ∈ {1, . . . , k} :

µx{f ∈ M(R) : f(ui) ∈ ∆i, i ∈ {1, . . . , k}} = P{x(ui, t) ∈ ∆i, i ∈ {1, . . . , k}}.
In this terms the group of transformation {Th} preserves the measure µx, i.e.

µx ◦ T−1
h = µx, h ∈ R.

By definition (see, for example [2]), the group of transformations {Th}h∈R has a
mixing property with respect to the measure µx if for any F1, F2 ∈ L2(M,C, µx)

lim
h→∞

∫
M
F1(Thf)F2(f)µx(df) =

∫
M
F1(f)µx(df)

∫
M
F2(f)µx(df). (2.1)

We note that it is enough to check (2.1) for any functions F1, F2 from the class
E = {F : F (f) = exp{i

∑n
i=1 λif(ui)}, λi, ui ∈ R, i = 1, . . . ,m; m ∈ N}.

For a point u⃗ ∈ Rn the n−dimensional process

x(u⃗, t) = (x(u1, t), x(u2, t), . . . , x(un, t))

is called by an n−point motion of the Harris flow. It follows from the above
remark that it will suffice to consider an n−point motions of the Harris flow to
prove a mixing property. To this end we fix a point u⃗ ∈ Rn+m with ui < ui+1, i =
1, 2, . . . , n+m and consider the (n+m)−point motion of the Harris flow:

Zh(t) = (x(u1, t), . . . , x(un, t), x(un+1 + h, t)− h, . . . , x(un+m + h, t)− h).
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From the definition of the Harris flow the process Zh characterizes by three prop-
erties:

(1) Zh(0) = (u1, . . . , un+m);
(2) Zi

h(t) ≤ Zi+1
h (t);

(3) for any i ∈ {1, . . . , n + m} Zi
h is a Brownian martingale and for i, j ∈

{1, . . . , n} or i, j ∈ {n+ 1, . . . , n+m}

⟨Zi
h(·), Z

j
h(·)⟩(t) =

∫ t

0

Γ(Zi
h(s)− Zj

h(s))ds,

and for i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , n+m}

⟨Zi
h(·), Z

j
h(·)⟩(t) =

∫ t

0

Γ(Zi
h(s)− Zj

h(s) + h)ds.

To obtain the mixing property of the Harris flow we will show that Zh has a weak
limit as h→ ∞ and find out the properties of the limit.

Theorem 2.1. Let Γ be such that Γ(u) → 0 as u → ∞. Then Zh weakly con-
verges in C([0, 1])n+m to some martingale Z0 as h → ∞. Moreover, for any
i ∈ {1, . . . , n + m} Zi

h is a Brownian martingale and for i, j ∈ {1, . . . , n} or
i, j ∈ {n+ 1, . . . , n+m}

⟨Zi
0(·), Z

j
0(·)⟩(t) =

∫ t

0

Γ(Zi
0(s)− Zj

0(s))ds, (2.2)

and for i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , n+m}

⟨Zi
0(·), Z

j
0(·)⟩(t) = 0. (2.3)

Proof. Firstly, we note that the family {Zh(·)}h>0 is weakly precompact set in
C([0, 1])n+m since each coordinate Zi

h(·) is a Wiener process.
The next step is to prove that any limit point of the set {Zh(·)}h is a martingale

with quadratic characteristics (2.2) and (2.3). Since the process {Zi
h(t); t ≥ 0}

is a martingale for any h, we have that for any k ≥ 1, for any continuous and
bounded function f from Rk to R and t1 < t2 < . . . < tk < s

Ef
(
Zi
h(t1), . . . , Z

i
h(tk)

) (
Zi
h(s)− Zi

h(tk)
)
= 0.

Let Z̃0 be some limit point, i.e. for hn → ∞ Zhn ⇒ Z̃0 in C([0, 1])n+m, then

Ef
(
Z̃i
0(t1), . . . , Z̃

i
0(tk)

)(
Z̃i
0(s)− Z̃i

0(tk)
)

= lim
n→∞

Ef
(
Zi
hn

(t1), . . . , Z
i
hn

(tn)
) (
Zi
hn

(s)− Zi
hn

(tk)
)

= 0.

The last passage to the limit is justified since Zi
h(s)− Zi

h(tk) has the same distri-
bution for any h with exponential moments. So we have the martingale property
for any limit process of the set {Zh(·)}h>0.

Next, for i, j ∈ {1, . . . , n} or i, j ∈ {n+ 1, . . . , n+m} a process

mi,j
h (t) = Zi

h(t)Z
j
h(t)−

∫ t

0

Γ(Zi
h(s)− Zj

h(s))ds
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is a martingale. Since the mapping from C([0, 1])n to C([0, 1])

Z(·) 7→ Zi(·)Zj(·)−
∫ ·

0

Γ(Zi(s)− Zj(s))ds

is continuous, then {mi,j
h (·)}h>0 is weakly precompact in C([0, 1]) and has a weak

limit m̃i,j
0 (·). By the same arguments as it was done for Z̃0, m̃

i,j
0 (·) is a martingale

and, moreover,

m̃i,j
0 (t) = Z̃i

0(t)Z̃
j
0(t)−

∫ t

0

Γ(Z̃i
0(s)− Z̃j

0(s))ds,

where Z̃0 is some limit point of {Zh}h>0.
For the case when i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , n+m} a process

mi,j
h = Zi

h(t)Z
j
h(t)−

∫ t

0

Γ(Zi
h(s)− Zj

h(s) + h)ds,

is a martingale.
Since Γ(u) → 0 as u → ∞ then we obtain that a weak limit of the set

{mi,j
h (·)}h>0 is a martingale of the form m̃i,j

0 = Z̃i
0(t)Z̃

j
0(t). So we get the properties

(2.2) and (2.3) for any limit process of the set {Zh}h>0. Theorem is proved. □

We characterized a weak limit of the set {Zh}h>0 as a martingale with charac-
teristics given by (2.2) and (2.3). One can obtain a martingale with such properties
if we take two independent Harris flows x, x′ with the same Γ and put

Z0(t) = (x(u1, t), . . . , x(un, t), x
′(un+1, t), . . . , x

′(un+m, t)).

In the next section we prove that the process Z0 is the unique weak limit point of
the set {Zh}h>0. From this fact the mixing property for the Harris flow is follows.

3. Uniqueness of Solution to Martingale Problem

We consider a limit point Z̃0 of the set {Zh}h>0 as a solution to a generalized
martingale problem and obtain uniqueness of such solution. We give here some
notations and results from [13] devoted to a generalized martingale problem.

Let an operator

L =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi

be defined on certain domain D ⊂ Rd where a is a function from D to the space
of real symmetric non-negative definite d × d matrices and b is a function from
D to Rd. Suppose that a and b are locally bounded on D. Let D̂ = D ∪ {∆}
denote one-point compactification of D and let B(D̂) denote the Borel subsets of

D̂ [13]. Denote ΩD = {ω ∈ C([0,∞),D)} Let {Dn}∞n=1 be an increasing sequence
of bounded domains such that D̄n ⊂ Dn+1 and

∪∞
n=1 Dn = D. Define τDn(ω) =

inf{t ≥ 0 : ω(t) /∈ Dn} (τn may be equal to infinity) and let τD = limn→∞ τDn .
Now define

Ω̂D = {ω ∈ C([0,∞), D̂) : either τD = ∞ or τD <∞ and ω(τD + t) = ∆, t > 0}
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We consider Ω̂D as a closed subset of C([0,∞), D̂), so it is a complete separable

metric space. Let F̂D denote the Borel σ−algebra on Ω̂D and define the filtration
F̂D

t = σ(w(s), 0 ≤ s ≤ t).

Definition 3.1. ([13], p. 42) A family of probability measures {Px}x∈D̂ on (Ω̂D,

F̂D) such that for the process X(t, ω) = ω(t)

(1) Px(X(0) = x) = 1;

(2) f(X(t∧ τDn))−
∫ t∧τDn

0
(Lf)(X(s))ds is a martingale with respect to (Ω̂D,

F̂D, F̂D
t,Px) for all n = 1, 2, . . . and all f ∈ C2(D)

is a solution to the generalized martingale problem for the operator L on the
domain D.

We use next result about existence and uniqueness of a solution to a generalized
martingale problem.

Theorem 3.2 ([13], Theorem 13.1). Let the coefficients a and b be locally bounded
and measurable on D and assume that a is continuous on D and that

d∑
i,j=1

ai,j(x)vivj > 0

for x ∈ D and v ∈ Rd \ {0}. Then there exists a unique solution {Px, x ∈ D̂} to
the generalized martingale problem on D.

Moreover, let an = ψna + (1 − ψn)I, bn = ψnb, where ψn : Rd → R is a
C∞−function satisfying ψn(x) = 1 for x ∈ Dn, ψn(x) = 0 for x /∈ Dn+1 and

0 ≤ ψn ≤ 1. Then Px|F̂D
τDn

= P(n)
x |FτDn

for n = 1, 2, . . . and x ∈ D, where

{P(n)
x , x ∈ Rd} denotes the unique solution to the martingale problem on Rd

for Ln with coefficients an and bn. The familty {Px, x ∈ D} posseses the Feller

property and the family {Px, x ∈ D̂} posesses the strong Markov property.

The result of the next lemma follows from the previous theorem. Consider the
operator

Ln,m =
1

2

n∑
i,j=1

Γ(ui − uj)
∂2

∂ui∂uj
+

1

2

n+m∑
i,j=n+1

Γ(ui − uj)
∂2

∂ui∂uj

on the domain D = {u ∈ Rn+m : u1 < u2 < . . . < un, un+1 < un+2 < . . . <
un+m}. Denote Dk = {u ∈ Rn+m : ∥u∥ ≤ k, ui < ui+1− 1

k , i = 1, 2, . . . , n− 1, n+
1, . . . , n+m}.

Lemma 3.3. Let X(1) and X(2) be solution to generalized martingale problem for

Ln,m on D and put τi = inf{X(i)(t) ∈ ∂D}. Then (τ1, X
(1)
s , 0 ≤ s < τ1) and

(τ2, X
(2)
s , 0 ≤ s < τ2) have the equal distribution.

Proof. Statement of the lemma follows from the theorem 3.2. □

Denote by C a subset of Ω̂D such that ωi(t) = ωi+1(t) for i ∈ {1, . . . , n+m}\{n}
implies ωi(t+s) = ωi+1(t+s) for all s ≥ 0. The next lemma gives us the uniqueness
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to the martingale problem for Ln,m in Rn+m and the proof is similar to lemma
3.2 in [8].

Lemma 3.4. For any u ∈ Rn+m there exists a unique solution to the martingale
problem for the operator Ln+m in Rn+m, such that Pu(C) = 1.

Proof. We will use the method of mathematical induction with respect to n andm.

For n = m = 1 we have the operator L1,1 = 1
2

(
∂2

∂u2
1
+ ∂2

∂u2
2

)
. The two-dimensional

standard Wiener process is the unique solution for the martingale problem for
L1,1 in R2. Assume that the statement of the theorem is true for n and m− 1 and
prove it for n and m. Let us fix a point u⃗ = (u1, . . . , un, un+1, . . . , un+m), where
ui ≤ ui+1 for i ∈ {1, . . . , n +m} \ {n}. Firstly we assume that the point u⃗ such
that ui = ui+1 for some i ∈ {n+ 1, . . . , n+m}. Note that

Ln,mf(u1, . . . , un, . . . , un+m)

= Ln,m−1g(u1, . . . , un, un+1, . . . , ui, ui+2, . . . , un+m),

where g : Rn+m−1 → R is defined as follows:

g(x1, . . . , xn, xn+1, . . . , xn+m−1)

= f(x1, . . . , xn, xn+1, . . . , xi, xi, xi+1, . . . , xn+m−1).

Indeed,

Ln,m−1g(u1, . . . , un, un+1, . . . , ui, ui+2, . . . , un+m)

=
1

2

n∑
l,j=1

Γ(ul − uj)
∂2

∂ul∂uj
g +

1

2

∑
l,j∈{n+1,...,n+m}\{i+1}

Γ(ul − uj)
∂2

∂ul∂uj
g

=
1

2

n∑
l,j=1

Γ(ul − uj)
∂2

∂ul∂uj
f(u1, . . . , ui, ui, ui+2, . . . , un+m)

+
1

2

∑
l,j∈{n+1,...,n+m}\{i,i+1}

Γ(ul − uj)
∂2

∂ul∂uj
f(u1, . . . , ui, ui, ui+2, . . . , un+m)

+
1

2
(f ′′ii + f ′′i+1,i+1 + f ′′i+1,i + f ′′i+1,i)

= Ln,mf(u1, . . . , ui, ui, ui+2, . . . , un+m).

This implies that a process (X1(t), . . . , Xn(t), . . . , Xn+m(t)) is a solution for the
martingale problem for Ln,m with start point u⃗ if and only if a process (X1(t), . . . ,
Xn(t), . . . , Xn+m−1(t)) is a solution for the martingale problem for Ln,m−1 with
start point (u1, . . . , un, . . . , ui, ui+2, . . . , un+m). Uniqueness for solution follows
from inductive hypothesis.

Now we assume that the point u⃗ = (u1, . . . , un, un+1, . . . , un+m) such that ui <
ui+1 for all i ∈ {1, . . . , n+m} \ {n}. Denote

H = {v⃗ ∈ Rn+m : vi ≤ vi+1, i ∈ {1, . . . , n+m} \ {n},
∃j ∈ {1, . . . , n+m} \ {n} : vj = vj+1}.

Let P′
u be a solution for the martingale problem for Ln,m on D with start point

u⃗ and let {X ′(t), t ≥ 0} be a corresponding process. Put τ = inf{t : X ′(t) ∈ H}.
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Since X ′(τ) ∈ H, by previous case there exists unique law PX′(τ) that solve the
martingale problem for Ln,m with start point X ′(τ). Now we denote as Pu⃗ a
distribution of the process X(·) that has the same law as X ′(·) up to the moment
τ and {X(τ + s), s ≥ 0}, conditioned by σ−field Fτ is given by the law PX(τ).
Then from [14], Theorem 6.1.2, Pu⃗ solve the martingale problem for Ln,m with
start from u⃗ and Pu⃗(C) = 1. From previous lemma, any solution X ′′(·) starting
from u⃗ is governed by Pu⃗ until reaching H. The distribution of (X ′′(τ + s), s ≥ 0),
conditioned on Fτ solves the martingale problem with start from X ′′(τ), and
hence has the law PX′′(τ). It follows that X ′′ has the same law as X. Lemma is
proved. □

4. Mixing Coefficients for Harris Flow

Let us consider the Harris flow {x(u, t), u ∈ R, t ∈ [0, 1]} with local charac-
teristic Γ with supp(Γ) ⊂ [−c, c] for some constant c > 0. For the random process
{x(u, ·), u ∈ R} in C([0, 1]) we will find out an estimation for the strong mixing
coefficient which is defined as

α(h) = sup{|P(A ∩B)− P(A)P(B)|, A ∈ Fu
−∞, B ∈ F∞

u+h, u ∈ R},

where Fv
u = σ{x(w, ·), w ∈ [u, v]}.

Denote Dc = {u ∈ Rn+m : ui < ui+1, i = 1, 2, . . . , n +m, un+1 − un > 2c}
and for u ∈ Dc consider next two processes:

X1(t) = (x(u1, t), x(u2, t), . . . , x(un+m, t)),

X2(t) = (x′(u1, t), x
′(u2, t), . . . , x

′(un, t), x
′′(un+1, t), x

′′(un+2, t) . . . , x
′′(un+m, t))

and denote τ1 = inf{t : x(un+1, t) − x(un, t) = c} and τ2 = inf{t : x′′(un+1, t) −
x′(un, t) = c}.

Lemma 4.1. The processes (τ1, X1(t), 0 ≤ t < τ1) and (τ1, X2(t), 0 ≤ t < τ2)
have the equal distribution.

Proof. It is easy to see that the processes X1 and X2 satisfy the generalized mar-
tingale problem for the operator

Ln,m =
1

2

n∑
i,j=1

Γ(ui − uj)
∂2

∂ui∂uj
+

1

2

n+m∑
i,j=n+1

Γ(ui − uj)
∂2

∂ui∂uj

in the domain Dc. The proof of this lemma is the same as the proof of lemma
3.4. □

Lemma 4.2. Let supp(Γ) ⊂ [−c, c]. Then for h > c

α(h) ≤ 2

√
2

π

∫ ∞

h−c

e−x2/2dx

Proof. Let h > c. For the proof it is sufficient to consider sets A ∈ Fu
−∞, B ∈ F∞

u+h

of the form:

A = {x(ui, ti) ∈ Ii, i = 1, 2, . . . , n}
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and

B = {x(vj , sj) ∈ Jj , j = 1, . . . ,m},
where u1 < . . . < un < u, u+ h < v1 < . . . < vm, and ti, sj ∈ [0, 1], Ii, Ji ∈ B(R)
for i = 1, . . . , n, j = 1, . . . ,m.

We denote by τ = inf{s : x′(un, s) = x′′(v1, s) + c}. For such sets A, B, using
the previous lemma we get:

P(A ∩B) = P
(
A ∩B ∩ {max

i,j
(ti, sj) < τ}

)
+ P

(
A ∩B ∩ {max

i,j
(ti, sj) ≥ τ}

)
= P

(
x′(ui, ti) ∈ Ii, i = 1, . . . , n, x′′(vj , sj) ∈ Jj , j = 1, . . . ,m, max

i,j
(ti, sj) < τ

)
+ P

(
A ∩B ∩ {max

i,j
(ti, sj) ≥ τ}

)
= P (x′(ui, ti) ∈ Ii, i = 1, . . . , n, x′′(vj , sj) ∈ Jj , j = 1, . . . ,m)

− P
(
x′(ui, ti) ∈ Ii, i = 1, . . . , n, x′′(vj , sj) ∈ Jj , j = 1, . . . ,m, max

i,j
(ti, sj) ≥ τ

)
+ P

(
A ∩B ∩ {max

i,j
(ti, sj) ≥ τ}

)
.

Using independence between processes x′, x′′:

|P(A ∩B)− P(A)P(B)| ≤ 2P({max
i,j

(ti, sj) ≥ τ})

= P(τ ≤ 1)

≤ 2

√
2

π

∫ ∞

h−c

e−x2/2dx.

Since ergodicity follows from the mixing property we can deduce asymptotic
properties of the Harris flow with respect to spatial parameter. If we assume that
for fixed time t the set {x(u, t),u ∈ [0, 1]} is finite with probability 1, we can
conclude from ergodicity that

lim
U→∞

ν[0,U ]

U
= Eν[0,1] − 1,

where ν[0,U ] = #{x(u, t),u ∈ [0, U ]} is the number of clusters in the Harris flow at
the time t = 1. For the Arratia flow, i.e. for the flow with Γ = 1I{0} [1] we obtain:

lim
U→∞

ν[0,U ]

U
=

√
2

π
.

□
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