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A NOTE ON NONSMOOTH PARTIAL VECTOR 
INVEXITY IN n-SET OPTIMIZATION

Narender Kumar and R. K. Budhraja

Abstract: Sufficient optimality conditions and duality results for a class of minmax 
programming problems involving n-set functions using the notion of generalized 
vector invexity for nonsmooth n-set functions are established.
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1. INTRODUCTION
Minmax programming problems arise frequently in many areas particularly in game 
theory and facility location problems. A concrete theory for minmax programming 
problems was developed by Damyanov and Malozemov [6]. Later, Bector and 
Chandra [2] presented duality results for minmax programs involving pseudolinear 
functions. Notion of V-invexity was first introduced by Jayakumar and Mond [7] and 
was successfully applied by Bector, Chandra and Kumar [3] to establish  sufficient 
optimality conditions and duality results for minmax programs.

On the other hand, optimization problems involving n-set functions was 
extensively studied in the past and a rich literature is available on optimality 
conditions and duality results for such problems. For such problems one can refer to 
[1,5,8,9,10] for more details. Recently, Bhatia and Kumar [4] introduced the notions 
of invexity and its generalizations for n-set functions and established duality results 
for minmax programming problem involving invex functions. In this note, we define 
the notion of generalized V-invexity  for nonsmooth n-set functions. Sufficient 
optimality conditions and duality results are derived for the following minmax 
program (P) with generalized V-invexity assumptions on the functions involved:

(P)         

where An is the n-fold product of -algebra A of subsets of a given set X   = 
{1,2,…,p} and  are real-valued n-set nonsmooth functions defined on An .

Throughout the paper, we assume that  is a finite atom less measure space 
with  separable. An is n-fold product of a -algebra A of subsets of set X, 
a pseudometric d on An is defined by
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where  S = )S,...,S,S( n21     nA ,   T = )T,...,T,T( n21    nA ,  and  

ii TS   denote symmetric difference of sets  iS  and  iT . For  h  X(L1 ,A,)  

and iS    A,  the integral  
iS

dh  will be denoted by h,
iS

 , where 
iS

  is the 

characteristic function of iS . 

2.   NONSMOOTH V-INVEXITY 
In this section, we first recall some preliminary results which are well established 
in the literature. Some observations are made in the results. These observations 
motivated us to define the notion of V-invexity and generalized V-invexity for 
nonsmooth n-set functions. Imposing the conditions of generalized V-invexity on 
few of the functions, duality results will be developed in the later section. 

We first define the subdifferential for a nonsmooth n-set function. 

Definition 2.1  For a real-valued n-set function F : nA   R , not differentiable 
at   S   nA , the subdifferential of F at S  is defined as 

 F(S ) = { f  n
1L (X, nA ,) : F(S)  F(S )  f, SS   } 

If the set  F(S ) is nonempty then we say F is subdifferentiable at S . 

It is evident that if S  solves an optimization problem   min F(S) then            
0   F(S ). Calculus properties of the subdifferential of a nonsmooth convex n-
set function F have been studied in the past. These properties are in turn 
extensively used to study nonsmooth n-set optimization problems. The aim of 
this short note is to study minmax optimization problem (P) under more relaxed 
assumptions of V-invexity. In this context it may be emphasized that the purpose 
is not merely to generalize the duality results obtained in [4] but rather to 
establish primal-dual relationship under V-invexity conditions only on very few 
functions involved in the problem (P). The note may be treated as supplement to 
the basic ideas of [4]. 

To achieve the desire results, we associate another optimization problem 
(EP) with (P) as follows 
(EP)  min q 
 subject to jF (S)  q , j  J 

                 kH (S)  0, k  K 
S  nA  
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Equivalence between the problems (P) and (EP) are well known. We recall here 
the corresponding results for the sake of completeness. 

Lemma 2.1 [12]  If S  is an optimal solution of (P) then ( S , q ) with q  = 

pj1
max


 jF ( S ) is an optimal solution of (EP). Conversely, if  ( S ,q ) is an 

optimal solution of (EP) then S  is an optimal solution of (P). 
In view of the above Lemma, studying the problem (P) and characterizing its 

optimal solution is equivalent to studying the problem (EP) and characterizing its 
optimal solution. Hence, from now onwards, we concentrate on the problem 
(EP). 

Following theorem, providing necessary conditions for the existence of an 
optimal solution of (P) or (EP), follows immediately from the above discussion. 

Theorem 2.1  Let S  be an optimal solution of (P). Then     pR  and         
   mR , q   R  with q  = 

pj1
max


 jF ( S ) such that 

 0  )S(Fj

p

1j
j 



 + )S(Hk

p

1k
k 



                                        (1) 

  j ( jF ( S )  q ) = 0 , j  J                                      (2) 

  k kH ( S ) = 0 , k  K                                                     (3) 

    0 ,     0 , (  ,  )  0. 

If an appropriate constraint qualification or regularity condition holds for the 

problem (EP), then we can take  



p

1j
j  = 1. 

Also, observe from the complementarity conditions (2) and (3), if J( S )  K( S ) 
denotes the set of active constraints of (EP) at S  then 

for j  J( S ) = { j  J : jF ( S ) = 
pj1

max


 jF ( S ) } , j  = 0 

and    for k  K( S ) = { k  K : kH ( S ) = 0 } , k  = 0. 

So, (1) can be rewritten as 

 0  )S(Fj
)S(Jj

j 


 + )S(Hk
)S(Kk

k 


                              (4) 
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Moreover, note that for  j  J( S ) , we may have j  = 0 and for  k  K( S ), we 

may have k  = 0. Defining two sets 

 1J ( S ) = { j  J( S ) : j  > 0 },  1K ( S ) = { k  K( S ) : k  > 0 }, 

we can write (4) as 

0  )S(Fj
)S(Jj

j
1




 + )S(Hk
)S(Kk

k
1




. 

Thus we conclude the following: 

Theorem 2.2  Let S  be an optimal solution of (P) and appropriate regularity 
condition hold for (EP) then there exist    pR  and    mR  such that 

0  )S(Fj
)S(Jj

j
1




 + )S(Hk
)S(Kk

k
1




 

j  > 0 ,  k  > 0 

where  1J ( S ) = { j  J( S ) : j  > 0},  1K ( S ) = { k  K( S ) : k  > 0}. 

Regularity condition on (EP) at S  ensures the non emptiness of the set 1J ( S ). 

The above necessary conditions for the problem (P) motivate us to impose        
V-invexity conditions on few of the functions of the problem (P) unlike [4] 
where the authors discussed duality results by imposing condition of invexity on 
all the n-set functions involved in (P). 
Another fact that we may observe is that while establishing optimality conditions 
and duality results for the problem (P) under V-invexity assumptions one actually 
does not require the explicit knowledge of the functions  or . For given points 
S, T  nA ,  existence of vectors   and  (depending on S and T) satisfying the 
appropriate inequality is sufficient to ensure the optimality conditions and duality 
results. 
In view of the above observations, we first define the notion of V-invexity for 
nonsmooth n-set functions. 
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If G : nA   rR  is a nonsmooth vector function, say, G = (
1G ,

2G , …, 
rG ), then for 

each  j  J, jG ( S )  n
1L (X, nA ,) and we define                                       

G ( S ) = 1G ( S )  2G ( S )  …  rG ( S ). Thus, each element of G
( S ) is a matrix  M = ( ji ) of the order  n  r in which the elements of the jth 

column are the elements of the set jG ( S ). 

i.e., for j   jG ( S ) = {   n
1L (X, nA ,) : jG (T)  jG ( S )   f, ST   } 

writing  j  = ( j1 , j2 , …, jn
t)   jG ( S ). 

Definition 2.2  A vector function G : nA   rR  is said to be V-pseudoinvex at 
S  if for every T  nA   vectors   nR  and   int ( rR  ), depending on T, 
such that 

 
 


r

1j

n

1i
STjii ),(

ii
   0      




r

1j
j jG (T)   




r

1j
j jG ( S ) ,       

for some ( ji )  G ( S ) 

Definition 2.3  A vector function G : nA   rR  is said to be V-quasiinvex at 
S  if for every  T  nA  there exist vectors   nR  and   int ( rR  ), 
depending on T, such that 





r

1j
j jG (T)   




r

1j
j jG ( S ) 

  
 


r

1j

n

1i
STjii )),((

ii
   0    ( ji )  G ( S ). 

If for every  T  nA , vectors  =  = e  rR  then the above definitions reduces 
to that of pseudoinvexity and quasiinvexity, respectively, for the nonsmooth case. 

Observe that in the above two definitions we have assumed that for every 
given T  nA  we can find   nR  and   int ( rR  ) satisfying the appropriate 
inequalities. With change in T, values of   and  obviously change. So, both 
vectors   and  are functions of T. However, we need not know the explicit 
expressions formulas for the two functions   and  in the above definitions. 

3.   DUALITY 
We now associate a Mond-Weir type dual (D) to the problem (P) and establish 
duality results under generalized V-invexity assumptions on few of the functions. 
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(D)  Max   

subject to   

0  



p

1j
j jF (T)  + 




m

1k
k kH (T)                          (5) 

j ( jF (T)   )    0,  j  J                                      (6) 

k kH (T)   0 ,  k  K                                      (7) 

T  nA ,    pR  , t e = 1 ,   mR  ,   R                 (8) 

Theorem 3.1(Weak Duality)  Let S be feasible for (P) and q = 
pj1

max


 jF (S). 

Let (T, , , ) be feasible for (D). Further, let (
1J 1JF ) be V-pseudoinvex and  

(
1K 1KH ) be V-quasiinvex at T with respect to a common vector , where      

1J   1J (T) and 1K   1K (T). Then      q   . 

Proof.  Note that          1J   1J (T) = { j : j  > 0 } 

1K   1K (T) = { k : k  > 0 }. 

So, from (5) it follows that   j   jF (T) ,  j  1J  and k
~   kH (T) , k  

1K  such that 

0  = 



1Jj

j j   +  



1Kk

k k
~                                         (9) 

We now prove the result by contradiction. Let q < . 
Then from (2), (6) and (8), we get 

j jF (S) < j jF (T) ,  j  1J  

 



1Jj

j j jF (S) < 



1Jj

j j jF (T) , j    0 , j  1J  with at least one j > 0. 

From V-pseudoinvexity assumptions it follows that 

 
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 j  = ( j1 , j2 , …, jn
t)  jF (T) ,  j  1J . 

Also, from (3) and (7) we have 

k kH (S)    k kH (T) ,  k  1K  

which along with V-quasiinvexity of (
1K


1K

H ) at T implies 

)),~((
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TSkiki 

 

     0                        (11) 

Contradiction follows from (10), (11) and (9).  
Hence  q   .  

Theorem 3.2 (Strong Duality)  Let  S  be an optimal solution of (P) and 
regularity condition holds for the problem (EP). Then there exist                         
   pR  , t e = 1 ,    mR  , q   R  such that (S , q ,  ,  ) is feasible 
for (D). Further, if the conditions of Weak Duality theorem hold then                     
(S , q ,  ,  ) is an optimal solution of (D) and  

pj1
max


 jF (S ) = q . 

Proof.  By Theorem 2.1 there exist    pR  and    mR , q   R  with     
q  = 

pj1
max


 jF (S ) such that 

0  )S(Fj

p

1j
j 



 + )S(Hk

p

1k
k 



 

j ( jF (S )  q ) = 0 ,    j  J 

k kH (S ) = 0 ,              k  K 

    0 ,     0 , (  ,  )  0. 

Further, as regularity condition hold for the problem (EP), we have   



p

1j
j  = 1. 

This shows that (S ,q ,  , ) is feasible of (D). Optimality of (S ,q ,  , ) 
follows from the Weak Duality theorem. 
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