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ABSTRACT: This paper presents an important new technique for study of a particular
compact right topological semigroup H

S 
, an important semigroup which is constracted

as the semigroup in the Stone-Cech compactification of a particular partial semigroup,
S called an oid (see [8]). principal result is that H

S
 contains a copy of the free

semigroups on 2c generators. Also we conclude by establishing some properties (both
algebraic and topological) about the structure of H

S
.
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1. INTRODUCTION

We shall present our theory in a fairly concrete setting so that our methods and results
will be more readily accessible. Throughout this paper we will let S be a commutative
oid. A more detailed analysis of commutative oids can be found in [8]. Also we assume
that S is discrete, so that the points of �S the Stone-Cech compactifcation of S can be
considered as the principal ultrafilters on S. The known theory for an oid S shows that
how to find a subset H

S
 of �S which is a compact right topological semigroup (that is, if

whenever ����H
S
 and ������ in H

S
, then �������� in H

S
) [8]. The main purpose of this

paper is to show that H
S
 contains copies of the free semigroups (Theorem 3.9). To

prove that for each n, H
n
 (see Section 2 for precise definition) generates a free semigroup

in H
S
 is an immediate consequence of the stronger result that its contains a cancellative

semigroup (Theorems 3.4, 3.8). Also we find (Theorem 3.13) that H
S
 contains a copy of

the free semigroups on 2c generators.

We conclude by establishing some properties of H
S
, for example (H

S
)2 � H

S
 (Theorem

3.22), (l�)–1(�) � H
S
 and H� are not nowhere dense in H

S
 (Theorems 3.24, 3.25).

2. DEFINITION AND PRELIMINARIES

Let � �1 1
A

i

�

�
 be a sequence of sets such that for each i � N, A

i
 contains distinguished

element 1 and will be supposed to have at least two elements.

Write 1x = x1 = x for all x � A
i
. Take the sequence � �1 1i

x x
�

�
�  with x

i
 � A

i
 for each

i � N. We define
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supp(x
i
)

i�N
 = {i � N : x

i
 � 1}.

Write

S = {(x
i
)

i�N
 : supp(x

i
)

i�N
 is finite and non-empty}.

A standard commutative oid is the set S together with the product xy defined in S if
and only if (supp x)�(supp y) = Ø to be (x

i 
y

i
) (see [8], for definition). Thus the product

x
i 
y

i
 is required to be defined only is either x

i
 = 1 or y

i
 = 1. Of course the product in S is

associative where defined and supp(xy) = (supp x)�(supp y) whenever xy is define in S.
supp x(�) � ��for some net (x(�)) in S will mean that the minimum element in the
support of (x(�)) tends to infinity. Then for a fixed t in S, eventually supp t < supp x(�)
and so eventually, tx(�) is defined in S (see [7], for definition). The compact space S is
the Stone-Cech compactification of the discrete space S. For each
k � N, write S

k
 = {(x

i
)

i�N
 � S : x

i
 = 1 for i < k}. Since S is a discrete space then both S

k
 and

its complement is open in S, so that cl�S
S

k
 is both open and closed in �S ([5], 6.9). Then

�S produces a compact right topological semigroup H
S
 defined by

1

,S S k
k

H cl S
�

�
�

��
with the multiplication �v = lim� lim�x(�)y(�) if � = lim� x(�) and v = lim�y(�) for some
nets (x(�)), (y(�)) in S where supp x(�) ���, supp y(�) ��� [1]. Given a function f : S
� T where T is a compact Hausdorff space, the unique continuous extension of f to �S
is denoted by f �. The cardinal function is the map c : S � N given by c(x) = card (supp
x) (That is, the number of elements of the support of x). Then if (supp x)�(supp y) = Ø so
that xy defined in S, c(xy) = c(x) + c(y). It follows easily that c extends to a homomorphism
c�  from H

S
 into the one-point compactification N�{�}. Now write

H
n
 = {��� H

S
 : c�(�) = n}, n � N and H� = {��� H

S
 : c�(�) = �}. Then H

S
 = H1�H2

�···�H�. Thus H
n
 is clopen and each � � H

n
 is a limit of a net (x(�)) with c(x(�)) = n

for each �. Moreover, H
n
H

m
 � H

m×n � H
m+n

 for all n, m � N so that H1�H2�···�H
m
··· is

a subsemigroup of H
S
.

3. FREE SEMIGROUP

In this section we shall be concerned with proving the existence in H
S
 of free semigroups

generated by H
n
 for each n � N. The proof that H

S
 contains copies of the free semigroups

is much easier than the proof for �N the Stone-Cech compactifcation of the positive
integers [6].

Definition 3.1: For n � N we define a map d
n
 : S � S as follows. Let x � S with

supp x = {i1, i2, ···, ik
} so that c(x) = k. If k � n we put d

n
(x) = x. If n < k we put d

n
(x) = y

where y
i1
 = x

i1
, ···, y

ik–n
 = x

ik–n
 and y

i
 = 1 for all other values of n. Then d

n
 extends to a

unique continuous mapping : .nd S S� � ��
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Theorem 3.2: For �����S, ����H
S
 with c�(�) = n, n � N then � �nd � �� � � .

Proof: There are nets (x(�)), (y(�)) in S such that x(�) ���, y(�) ���  with
supp y(�) ���. Then eventually, c(y(�)) = n. Now for a fixed �, eventually supp x(�)

< supp y(�) so that lim�dn
(x(�)y(�)) = x(�). Since � � � � � �� �lim limn nd d x y�

� ��� � � �  it

follows that � �nd � �� � �  as claimed.

Lemma 3.3: For �1, �2 � H
S
, ��� H

n
, n � N then �1� = �2� implies that �1 = �2.

Proof: By Theorem 3.2, � � � �1 1 2 2n nd d� �� � � � � � � � �  and the result follows. The

next result is an immediate consequence of Lemma 3.3.

Theorem 3.4: The semigroup H1 ��H2 � ··· � H
m
 � ··· is right cancellative.

Definition 3.5: Let x � S with supp x = {i1, i2, ···, ik
} so that c(x) = k and let n � N.

We define a map e
n
 : S � S by e

n
(x) = x if k � n, otherwise e

n
(x) = y where 

1 1n ni iy x
� �
� , ···,

y
ik
 = x

ik
 and y

i
 = 1 for all other values of n. Then e

n
 has unique continuous extension 

ne�

from �S into itself.

Theorem 3.6: For �����S with c�(�) = n, n � N,  ��� H
S
 then � �ne� �� � �.

Proof: Analogous to that of Theorem 3.2.

Lemma 3.7: For �1, �2 � H
S
, ����H

n
, n � N then ��1 = ��2 implies that �1 = �2.

Proof: Analogous to that of Lemma 3.3. As a consequence of Lemma 3.7, we have
the following result.

Theorem 3.8: The semigroup H1 � H2 � ··· � H
m
 ··· is left cancellative.

Theorem 3.9: The semigroup generated by Hn, n � N is a free semigroup in HS.

Proof: If �1, �2 ··· �p = �1 �2 ··· �q with �, s and �, s in H
n
 then c�(�1, �2 ··· �p) = np and

c�(�1�2 ··· �q) = nq, so that p = q. We now apply 
ne�  (similarly for 

nd � ) to both sides, to

get �2�3 ··· �p = 1 2( )n pe� � � �� = 1 2( )n qe� � � �� . An application of theorem 3.4 completes

the proof.

Definition 3.10: For n � N, we define a map r
n
 : S � S as follows. Let x � S with

supp x = {i1, i2, ···, ik
} so that c(x) = k If k � n we put r

n
(x) = x. If n < k, we put r

n
(x) = y

where 
1 1

, ,
n ni i i iy x y x� ��  and y

i
 = 1 for all other values of n. Then r

n
 extends to a

unique continuous function 
nr
�  of �S into itself, so that � � � �n nr r� ��� � � � �  whenever
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�����S with c�(�) = n, ��� H
S
. Thus obtain an alternative proof of Theorem 3.9 by using

nr
�, n � N.

We now distinguish a second element in each A
i
 (arbitrary) and denote it by “a” for

each i � N. Write

1
ij

i j

a i j

��
� � � ��

Put � �� �1
,in i
n N

�

�
� � � � . Then � is a countable subset of S. Further if ����HS is a

limit point of a subnet of � then c�(�) = 1.

Lemma 3.11: Let �1, �2, ···, �k
 � H

S
 be limit of subnets of �. Then

(i) c�(�1�2 ··· �k
) = k;

(ii) for n � k, 
nr
�(�1�2 ··· �k

) = �1�2 ··· �n
;

(iii) for n � k and any ��� H
S
, 

nr
�(�1�2 ··· �k

�) = �1�2 ··· �n
.

The proof is straightforward.

Remark 3.12: Let G be the set of limit points of �. Then G = (cl�S
�) \ �. Since � is

countable and discrete, it follows that cl�S
� is homeomorphic to �N and so (cl�S

�) \�� is
homeomorphic to N*(= �N \ N). Thus card(G) = 2c where c is the cardinality of the
continuum.

Theorem 3.13: The set G generates a free semigroup in H
S
 on 2c generators.

Proof: Analogous to that Theorem 3.9.

To end of this section we give a number of result, (both algebraic and topological)
for the compact right topological semigroup H

S
.

Theorem 3.14: For each n � N, {�H
S
 : ��� H

n
} is a family of disjoint right ideals

in H
S
.

Proof: If �1 � �2 in H
n
 then 

nr
� (�1HS

) = �1, nr
� (�2HS

) = �2 by the definition 3.10. Thus

(�1HS
) � (�2HS

) = Ø, as claimed.

Theorem 3.15: H
S
 contains 2c disjoint right ideals of the from �H

S
 where ��� G.

Proof: Indeed by Remark 3.12, card(G) = 2c. This proves our assertion.

Theorem 3.16: For each n � N, {H
S
v : v � H

n
} is a family of disjoint left ideals in

H
S
.
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Proof: It is a straightforward argument to prove that � � � � ,n ne v e v v� �� � �  whenever

�����S, v � H
n
, n � N. Now the proof is similar to that proof of Theorem 3.14.

As a consequence of Remark 3.12 and Theorem 3.16, we have the following result.

Theorem 3.17: H
S
 contains 2c disjoint left ideals of the from H

S
v, whenever v � G.

Definition 3.18: For x � S with supp x = {i1, i2, ···, ik
}, we define by l(x) (the length

of the support of x) the integer i
k
 – i1 + 1. Then l extends to a unique continuous function

l� from �S into the one-point compactification N � {�}. So for fixed t � S, eventually
supp t < supp y(�), whenever (y(�)) is a net in S with supp y(�) ��� and so, eventually
l(ty(�)) = �. Since l�(��) = lim� lim�l(x(�)y(�)) where �����S, ��� H

S
, x(�) ��� and

y(�) ��� with supp y(�) ���, it follows that l�(��) = �. Now we have the following
result.

Proposition 3.19: Let ��� H
n
 for some n � N with l�(�) < �. Then �� is not a

product.

Proposition 3.20: H
S
 has no left identity, no right identity (and hence has no identity).

Proof: If e is a left identity for H
S
, ��= e� for all ����H

S
, which is impossible by

proposition 3.19. The other part is similar.

Remark 3.21: (i) Clearly, l�(e) = � where e is an idempotent in H
S
. We denote the

set of all idempotents in H
S
 by E(H

S
). Thus we obtain that E(H

S
) ��{� � H

S
 : l�(�) = �}.

(ii) H
S
 has no left zero. If ��is a left zero, it follows that ��is in every left ideal in H

S
,

which is impossible by Theorem 3.17. Now using Theorem 3.15. By a similar argument,
H

S
 has no right zero. Hence H

S
 is not a left [right] zero semigroup.

Theorem 3.22: (H
S
)2 is not dense in H

S
.

Proof: Let �, ��� H
S
. Then l�(��) = � so that (H

S
)2 � (l�)–1(1) = Ø. But (l�)–1(1) is a

non-empty open set in �S which contains elements of H
S
.

Theorem 3.23: The set {��� H
S
 : l�(�) < �} is not dense in H

S
.

Proof: Take a sequence � �
1n n

s
�

�
 in S with � � � �21 1n in i in i

s
��

� �
� � � . Set X = {s

n
 : n � N}.

Let 1
X
 be the indicator function of X (that is the function on S whose value is 1 on X and

0 on S \ X) and let � be a cluster point of � �
1n n

s
�

�
 in �S. Then ��� H

S
, so that � �1 1X

� � � .

Now take ��� H
S
 such that l�(�) = k for some k � N. Let x(�) ��� with supp x(�) ���.

Then eventually l(x(�)) = k, so that eventually x(�) � X. Hence � �1 0X
� � � . It follows

that � is not the limit of a net of elements of {��� H
S
 : l�(�) < �} and the result follows.

Theorem 3.24: (l�)–1(�) � H
S
 is not nowhere dense in H

S
.
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Proof: Let � �
1
,n n

s
�

�
 X and � be as in Theorem 3.23. Then � � 1

1X SH
�� �  is a non-empty

open set in H
S
. Now X is countable and discrete,so that cl�SX is homeomorphic to N and

(cl�S
X\X) is homeomorphic to N*. Thus ���(cl�S

X)\X if and only if � = lim
i
 

ins , for some

subnet � �
ins  of � �

1n n
s

�

�
 with n

i
 ��� and supp

ins ��. Further, (cl�S
X)\X = � � 1

1X SH
�� � .

Now l(s
n
) = n2 – n + 1 so that l(s

n
) ���, as n ���. Thus from ����(cl�SX)\X, it follows

that l�(�) = � and so � � � � � �1 1
1 ,X SH l

� �� �� � �  as claimed.

Theorem 3.25: H� is not nowhere dense in H
S
.

Proof: Clearly, H� = (c�)–1(�) \ H
S
. Take a sequence � �

1n n
t

�

�
 in S with � �

1n in i
t

�

�
� �

� � � �21 1 1in i in i

��
� � �

� �� . Let � be the cluster point of � �
1n n

t
�

�
 in �S. Then ��� H

S
 and c�(�) = �.

Put X = {t
n
 : n � N}. Now by a similar argument as the proof of Theorem 3.24, the result

follows.
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