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Abstract : This paper concerns with the pulsatile flow of blood through a mildly 
stenosed artery assuming blood as a two - layer fluid, where the erythrocytes 
remain suspended in the core region and the plasma constitutes the peripheral 
region. In the fluid flow model, it is assumed that the core region is Bingham 
plastic and the peripheral region is Newtonian fluid. This flow model includes the 
effects of uniform magnetic field , periodic body acceleration, velocity slip and 
pressure gradient  on the blood flow through the constricted arteries. The 
analytical expressions for the velocity, flow rate, wall shear stress and the 
effective viscosity, are obtained employing the perturbation technique. Some of 
the aforesaid expressions have been depicted pictorially and then their behaviours 
(under the influence of various flow parameters) have been interpreted. It has been 
observed that with increase of magnetic field the velocity of core region and wall 
shear stress decreases whereas the velocity of peripheral region increases. Further, 
the velocity and the wall shear stress increase with increase in body acceleration 
and pressure gradient parameter. On the other hand, with increase in slip velocity, 
the velocity of blood increases but the wall shear stress decreases.       
Mathematics Subject Classification : 76Z05, 74G10, 76W05. 
Keywords : Bingham Plastic , Newtonian , Peripheral Plasma Layer , Slip velocity 
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INTRODUCTION:   
Blood is a multi-component material that consists of gel-like formed elements in 
aqueous plasma viz.  Red blood cells (RBC 98% by volume), white blood cells 
(WBC), platelets and variety of Lipoproteins. Plasma, which is an aqueous 
solution, contains numerous low molecular weight organic and inorganic materials 
in low concentration including clotting factors (fibrinogen, prothrombin etc.) and 
various ions.  RBCS are in large numbers , which contain haemoglobin transport 
oxygen around the body. Henderson and Thurston have reported that though 
platelets are very small, they played an important rule on coagulation of blood both 
in the healing of wounds and in the formation of thrombi. 

Blood flow in the human circulatory system is caused by the pumping action 
of the heart, which inturn produces a pressure gradient throughout the system 
[Fung (1981), Misra et al (2008)].  Human heart is a muscular pump which, by the 
contraction and expansion of heart muscles, produces a pressure difference in its 
systolic and diastolic conditions, popularly known as pressure pulse. Flow of blood 
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due to this pressure pulse is know as pulsatile flow of blood [Chaturani and Samy 
(1985); Guyton and Hall (2006)]. Again, the human body may also be subjected to 
acceleration (or vibrations) which are quite common in normal life viz. while 
riding a vehicle or while landing, taking off and flying in an aircraft, sudden fast 
movement of the body, operating a jack hammer, during sports and gymnastic 
activities etc. In such circumstances, the human body gets unintentionally 
subjected to external acceleration, which is known as body acceleration. Due to 
this body acceleration, the flow of blood in the arteries is affected greatly [Sud and 
Sekhon (1985, 1987)]. 

             Although the human body can generally adjust to such effects, yet 
prolonged exposure  to such accelerative disturbances may lead to health problem, 
like headache, abdominal pain, loss of vision and increase pulse rate etc.  Sud and 
Sekhon (1985) proposed a mathematical model of blood flow in a single artery 
subject to pulsatic pressure gradient as well as body acceleration. Nagarani and 
Sarojamma (2008) presented a theoretical model of pulsatile blood flow in a 
stenosed artery under the action of periodic body acceleration, considering blood 
as a Casson fluid. 

Many theoretical and experimental analysis were presented on the study of 
blood flow characteristics in presence of Stenosis [Mc Donald (1979), Mandal 
(2005), Bali and Awasthi (2007); Shankar and Ismail (2009); Biswas and 
Chakraborty (2009 a, 2009 b, 2010a),  Sankar and Lee (2009, 2010)]. It has been 
observed from various reports that, though at high Shear rates blood exhibits 
Newtonian behaviour in large arteries like aorta [Taylor (1959)], blood being a 
suspension of corpuscles , at low Shear rates and while flowing through narrow 
vessels, blood behaves like a non- Newtonian  fluid [Merrill et al (1965); Charm 
and Kurland (1974)]. Bugliarellow and Sevilla (1970) and Cokelet (1972) have 
experimentally proved that for blood flowing through small vessels, there exists 
cell poor plasma (Newtonian fluid) layer in the peripheral region and a core region 
of suspension containing almost all the erythrocytes. 

It is to be noted that for certain flow models, many investigators pointed out 
that blood possesses a finite yield stress [Fung (1981), Kapur et al (1982)]. We 
know that Bingham plastic is an interesting and specialized material with yield 
stress whose consistency curve or flow behaviour seems to be a straight line curve 
[Fung (1981); Kapur et al (1982)]. This particular material deforms elastically, 
until the yield stress is reached, but once this stress is exceeded, it flows as a 
Newtonian fluid with Shear Stress being linearly related to the rate of Shear Strain 
[Schlichting (1968)].  Hence, in reality, blood behaves as Bingham Plastic in the 
core region of a constricted artery.  Biswas and Chakraborty (2010 b) presented a 
model of two-layer pulsatile blood flow in a stenosed artery with body 
acceleration, where the peripheral layer was considered as Newtonian and the core 
region was assumed as Bingham plastic. 



	 Analysis of Magnetic Effect on Blood Flow....	 87

 
 

Here, in view of the above discussion, a blood flow model has been proposed 
for a stenosed artery in presence of a uniform magnetic field, where blood is 
assumed to be a two - layer fluid where the erythrocytes remain suspended in the 
core region and the plasma constitutes the peripheral region.  The fluid flow model 
assumes that the core region behaves as Bingham plastic and the peripheral region 
as Newtonian fluid. This flow model includes the effects of a uniform magnetic 
field, periodic body acceleration, pressure gradient and velocity slip on the blood 
flow through constricted arteries. 

MATHEMATICAL FORMULATION: 
In this problem we consider an axially symmetric, laminar, pulsatile and fully 
developed flow of blood (assumed to be incompressible) through a circular tube 
with an axially non-symmetric mild stenosis in presence of a uniform magnetic 
field of low strength. So, the induced magnetic field is negligible.  Next, it is 
assumed that the body fluid be represented by a two-layer fluid model with the 
core region (suspension of all erythrocytes) as Bingham plastic and the peripheral 
layer (constituted by plasma) as Newtonian fluid, where the wall of the tube is 
rigid. The length of the artery is assumed to be so great in comparison to its radius 
that the entrance and exit special wall effect may be neglected. 

  
 Schematic diagram of a stenosed artery 

  
  The geometry of stenosis in the peripheral region is given by [Nagarani and 

Sarojamma (2008); Biswas and Chakraborty (2010 b)] 
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and the geometry of the core region is given by 
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where , ( )R z  is the radius of the stenosed artery in the peripheral layer , 1( )R z is 
the radius of the artery in stenosed core region such that 

1 0 0( ) ( ) ; where ,R z R z R R    are the radii of the normal artery and core 

region of the normal artery respectively ; p is the maximum height of the stenosis 
in the peripheral region , β is the ratio of central core radius to the normal artery 
radius, c  is the maximum height of the stenosis in the core region such that   

0andc p z   is the half length of the stenosis.

 
Further it is to be noted that the radial velocity is negligibly small for low 

Reynolds number flow in a tube with mild stenosis [ Nagarani and 
Sarojamma(2008) ; Sankar and Lee (2009)]. 

The equation of motions governing the flow in core region and peripheral 
region are given by  
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where,   andB NU U  are the fluid velocities in the core region and peripheral 

region respectively, ,B N  are the shear stresses for Bingham plastic fluid and 

Newtonian fluid respectively ; p is the pressure and ( )F t  is the body 
acceleration ; ,B N  are the densities of Bingham plastic fluid and Newtonian 

fluid respectively,    is the electrical conductivity and B  is the applied magnetic 
field. 

The constitutive equations for Bingham plastic fluid and Newtonian fluid are 
respectively given by 
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where, is the radius of the plug flow region and

is  the  Yield  Stress  Sankar and Lee 2010    .
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The periodic body acceleration in axial direction is given by 
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where, 0a is the amplitude, 2 ,b b bf f   is its frequency in Hz,     is the 

angle of   ( )F t  with respect to the heart action.  The frequency of body 
acceleration  bf   is taken to be small so that wave effect can be ignored. 

The pressure gradient at any position z and time t may be represented as 
under: 
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where,  0A  is the steady component of the pressure gradient,  1A  is the 
amplitude of fluctuating component of pressure gradient  and 

2 ,wherep p pf f   is the pulse frequency. Both 0A and  1A  are functions of 
z . 

Let us introduce the following non-dimensional variables: 
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where,  andB N   are the pulsatile Reynolds number for Bingham plastic fluid 
and Newtonian fluid respectively. 
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Using the above non-dimensional variables, equations (1) and (2) become 
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The governing equations of motion in (3) and (4) ,  in non-dimensional form are  
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Using non-dimensional variables, equations (5) and (6) reduce to 
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The volumetric flow rate is given by: 
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The effective viscosity in non-dimensional form can be express as: 
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Now the non – dimensional velocity field is determined by: 

0 0   1 1where,        ,   ,     ,       are defined in the expressions of (38), (37),
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The numerical  results concerning the expressions , , and are computed
by  using  Wolfram Mathematica software .

N B wU U Q

The expression for effective viscosity e  can be obtained from the expressions 
of (24) and (47). 

RESULTS AND DISCUSSION: 
This model has been developed to analyse the magnetic effect on velocity profile, 
wall shear stress on the wall of the stenosis, volumetric flow rate and effective 
viscosity of blood in a two layer blood flow model under various flow parameters 
assuming the core region as Bingham plastic and the peripheral layer as Newtonian 
fluid. Here, we will discuss graphically the velocity field and wall shear stress 
under various flow parameters. 

Figure 1 and Figure 2 depict the variation of  peripheral layer ( Newtonian 
fluid ) velocity  NU   and core region velocity ( Bingham plastic) BU  versus radial 

distance  r  for various values of  BM  (Hartman number for Bingham plastic) 

with fixed values of  B = 1, 1e  , 0.05SU     and 0.2NM  ( Hartman number 

for Newtonian fluid). In these figures we observe that both andN BU U decrease 

with increase of BM . 

Figure 3 and Figure 4 show the behaviour of  andN BU U versus r for various 

values of NM with fixed values of 0.05, 1, 1, 0.2S BU B e M    . In these 

figures, we note that with increase of NM , the NU increases whereas the BU
decreases.  
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values of NM with fixed values of 0.05, 1, 1, 0.2S BU B e M    . In these 

figures, we note that with increase of NM , the NU increases whereas the BU
decreases.  

 
 

Thus from Figure 1, Figure 2, Figure 3 and Figure 4 , we see that with increase 
of BM , both andN BU U decrease, whereas  NU increases but BU decreases with 

increase of NM . 

Figure 5 and Figure 6 portray the variation of andN BU U versus r for various 
values of body acceleration parameter  B   with fixed values of  

0.05, 0.2, 0.2, 1S B NU M M e    . Here we observed that both  

andN BU U increase with a rise in the body acceleration parameter B . 

Figure 7 and Figure 8 depict the variation of andB NU U versus r for various 

values of slip velocity 
S

U  with fixed values of  B NB=1, M =0.2, M =0.2, e=1. Here 

we see that both  andB NU U  increase with increase in slip velocity S
U  . 

Figure 9 and Figure 10 portray the variation of andN BU U versus r  for 
various values of pressure gradient parameter  e  with the values of  

0.05, 0.2, 0.2, 1S B NU M M B     fixed.  Here we note that both  andN BU U  
increase with increase in pressure gradient parameter  e  . 

Figure 11 depicts the behaviour of wall shear stress w  versus t  for various 
values of  BM  with fixed values of S NU =0.05,B=1, e=1,M =0.5 . Here, we 
observe that magnitude of wτ decreases with increase of BM . 

Figure 12 depicts the variation of wall shear stress w  versus t  for various 
values of  NM  with fixed values of S BU =0.05, B=1, e=1,M =0.5 . Here also,  we 
observe that the magnitude of wτ decreases with increase of NM . 

Hence, from figure 11 and figure 12 we observe that shear stress  w   

decreases in magnitude with increase in andB NM M . 

Figure 13 shows the variation of wall shear stress w  versus t  for various 

values of body acceleration parameter   B  with fixed values of 0.05, 1,SU e   
0.5,BM  0.5NM  . Here we note that the magnitude of w increases with 

increase in B .  

Figure 14 depicts the variation of wall shear stress w  versus t  for various 

values of pressure gradient parameter e  with fixed values of 0.05, 1,SU B   
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0.5,BM  0.5NM  . Here also, we observe that the magnitude of w increases 
with increase in e .   

Figure 15 shows the variation of wall shear stress w  versus t  for various 

values of slip velocity SU  with fixed values of 1, 3,e B   0.5,BM 

0.5NM  . Here we see that the magnitude of w decreases with increase of SU
. 

CONCLUSIONS: 
From the above discussion, we may come to the following conclusions: 
i) The speed of blood flow in stenosed artery is greatly influenced by the 

strength of the magnetic field, because in presence of magnetic field, the 
velocity in the peripheral layer (Blood plasma) and the velocity in core region 
(erythrocytes) mostly decrease. So, patients with coronary artery diseases 
should stay away from strong magnetic fields to maintain the normal flow of 
blood. But, a magnetic field of appropriate strength may be beneficial for 
patients with coronary artery diseases to keep control on the speed of blood 
flow. 
 

ii) Under the influence of magnetic field, with increase of body acceleration, 
both the velocities of blood plasma as well as erythrocytes ( represented by 
Bingham plastic) increase.  So periodic body acceleration needs to be 
controlled for patients with coronary artery disease, whenever they are under 
a magnetic field. 

iii) Under the influence of magnetic field, with increase of slip velocity the 
velocity of blood increases whereas the wall shear stress decreases.  Hence, 
drugs that increase the slip velocity may be beneficial in increasing the flow 
of blood and in decreasing the wall shear stress which may help in minimizing 
the harmful effects of cardiovascular diseases to a great extent. 
 

iv) The speed of blood flow (both in peripheral and core region) under magnetic 
field increases with increase in pressure gradient.  Hence, to keep control over 
the flow of blood under magnetic effects, the pressure gradient must be 
maintained at appropriate levels. 

 
v) The wall shear stress in the wall of stenosed artery decreases with increase in 

the strength of the applied magnetic field. So, to regulate the wall shear stress 
on the stenosed artery, a suitable magnetic field is desirable so that the risk 
due to cardiovascular diseases may be minimized. 
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0.5,BM  0.5NM  . Here also, we observe that the magnitude of w increases 
with increase in e .   

Figure 15 shows the variation of wall shear stress w  versus t  for various 

values of slip velocity SU  with fixed values of 1, 3,e B   0.5,BM 

0.5NM  . Here we see that the magnitude of w decreases with increase of SU
. 

CONCLUSIONS: 
From the above discussion, we may come to the following conclusions: 
i) The speed of blood flow in stenosed artery is greatly influenced by the 

strength of the magnetic field, because in presence of magnetic field, the 
velocity in the peripheral layer (Blood plasma) and the velocity in core region 
(erythrocytes) mostly decrease. So, patients with coronary artery diseases 
should stay away from strong magnetic fields to maintain the normal flow of 
blood. But, a magnetic field of appropriate strength may be beneficial for 
patients with coronary artery diseases to keep control on the speed of blood 
flow. 
 

ii) Under the influence of magnetic field, with increase of body acceleration, 
both the velocities of blood plasma as well as erythrocytes ( represented by 
Bingham plastic) increase.  So periodic body acceleration needs to be 
controlled for patients with coronary artery disease, whenever they are under 
a magnetic field. 

iii) Under the influence of magnetic field, with increase of slip velocity the 
velocity of blood increases whereas the wall shear stress decreases.  Hence, 
drugs that increase the slip velocity may be beneficial in increasing the flow 
of blood and in decreasing the wall shear stress which may help in minimizing 
the harmful effects of cardiovascular diseases to a great extent. 
 

iv) The speed of blood flow (both in peripheral and core region) under magnetic 
field increases with increase in pressure gradient.  Hence, to keep control over 
the flow of blood under magnetic effects, the pressure gradient must be 
maintained at appropriate levels. 

 
v) The wall shear stress in the wall of stenosed artery decreases with increase in 

the strength of the applied magnetic field. So, to regulate the wall shear stress 
on the stenosed artery, a suitable magnetic field is desirable so that the risk 
due to cardiovascular diseases may be minimized. 

 

 
 

vi) With increase in the body acceleration parameter as well as in the pressure 
gradient parameter, the wall shear stress in the wall of the stenosed artery 
increases. Hence, the body acceleration and pressure gradient should be well 
maintained for the safety of the patient with coronary artery diseases 
whenever they are under the influence of a magnetic field. 
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Figure 1:  NU   versus  r   for  0.05 , 1 , 1 , 0.2 .S NU B e M     
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Figure 2:  BU   versus  r   for  0.05 , 1 , 1 , 0.2 .S NU B e M     

-10

0

10

20

30

40

50

60

70

80

90

100

0.001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nu

r

2NM 

0.9NM 

0.1NM 

 

Figure 3:  NU   versus  r   for  0.05 , 1 , 1 , 0.2 .S BU B e M     
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Figure 4:  BU   versus  r   for  0.05 , 1 , 1 , 0.2 .S BU B e M     
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Figure 5:  NU   versus  r   for  0.05 , 0.2 , 1 , 0.2 .S N BU M e M     
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Figure 6:  BU   versus  r   for  0.05 , 0.2 , 1 , 0.2 .S N BU M e M     
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Figure 7:  BU   versus  r   for  1 , 0.2 , 1 , 0.2 .N BB M e M     
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Figure 8:  NU   versus  r   for  3 , 0.5 , 1 , 0.5 .N BB M e M     
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Figure 9:  NU   versus  r   for  1 , 0.2 , 0.05 , 0.2 .N S BB M U M     
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Figure 8:  NU   versus  r   for  3 , 0.5 , 1 , 0.5 .N BB M e M     
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Figure 9:  NU   versus  r   for  1 , 0.2 , 0.05 , 0.2 .N S BB M U M     
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Figure 10:  BU   versus  r   for  1 , 0.2 , 0.05 , 0.2 .N S BB M U M     
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Figure 11:  w   versus  t   for  1 , 0.5 , 0.05 , 1 .N SB M U e     
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Figure 12:  w   versus  t   for  1 , 0.5 , 0.05 , 1 .B SB M U e     
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Figure 13:  w   versus  t   for  0.5 , 0.5 , 0.05 , 1 .N B SM M U e     
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Figure 14:  w   versus  t   for  0.5 , 0.5 , 0.05 , 1 .N B SM M U B     
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Figure 15:  w   versus  t   for  0.5 , 0.5 , 1 , 3 .N BM M e B     
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Figure 14:  w   versus  t   for  0.5 , 0.5 , 0.05 , 1 .N B SM M U B     
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Figure 15:  w   versus  t   for  0.5 , 0.5 , 1 , 3 .N BM M e B     
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