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THE SUBCRITICAL PHASE FOR A HOMOPOLYMER MODEL

IDDO BEN-ARI* AND HUGO PANZO

ABSTRACT. We study a model of continuous-time nearest-neighbor random
walk on Z¢ penalized by its occupation time at the origin, also known as
a homopolymer. For a fixed real parameter 8 and time ¢t > 0, we consider
the probability measure on paths of the random walk starting from the ori-
gin whose Radon-Nikodym derivative is proportional to the exponent of the
product 8 times the occupation time at the origin up to time ¢. The case
B > 0 was studied previously by Cranston and Molchanov [3][4]. We consider
the case $ < 0, which is intrinsically different only when the underlying walk
is recurrent, that is d = 1,2. Our main result is a scaling limit for the dis-
tribution of the homopolymer on the time interval [0,¢], as t — oo, a result
that coincides with the scaling limit for penalized Brownian motion due to
Roynette and Yor [9]. In two dimensions, the penalizing effect is asymptoti-
cally diminished, and the homopolymer scales to standard Brownian motion.
Our approach is based on potential analytic and martingale approximation
for the model. We also apply our main result to recover a scaling limit for a
wetting model. We study the model though analysis of resolvents.

1. Introduction

1.1. Description of the model. Let € denote the space of cadlag processes on
Z%. Elements in Q are functions w : R, — Z¢ which are right continuous with left
limits. We denote the canonical process associated to by X = {X(¢) : t € Ry},
where X (¢) := X (t)(w) = w(t), and for ¢ € R} we define F; as as the o algebra
on ) generated by the (pre-images of the) coordinate mappings w — X (s), s < t,
that is, F; is the smallest o-algebra making all coordinate mappings X (s), s <,
measurable. We also let 7 denote the o-algebra generated by Uer, F;. Forx € YA
let P, denote the probability distribution on F corresponding to continuous-time
nearest-neighbor symmetric random walk on Z%, with constant jump rate 1 from
each site, conditioned on X (0) = x. The corresponding expectation operator will
be denoted by F,.

For each parameter 8 € R, we define the corresponding homopolymer as a family
of Gibbs measures on F, {Ps; : t € R} } by letting

dPs, 1
t_ 1 .
P 7o, exp(BI(t)),
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where J(t) = fot 0o(X(s))ds and Zg, = Ep[exp(BI(t))] is the normalizing con-
stant, known as the partition function, viewed as function of the time parameter
t. Below, we refer to Py as the reference measure. Note that unless § = 0, the
homopolymer forms an inconsistent family of probability measures. One way to
view the homopolymer is as a model of random growth of large chains of atoms:
starting with a single atom at the origin at time 0, atoms are added one at a
time, the new atom placed in a site adjacent to the last one added. The random
path {X(s) : s < t} encodes the configuration of the chain at time ¢ as follows.
Let J; = 0 and let J;1; = inf{t > J; : X(t7) # X(¢)} (with the convention
inf ) = o). Then J; and X (J;) are, respectively, the time and the site where the
j-th atom was added, provided J; < oo. The probabilistic mechanism driving the
growth of the homopolymer attempts to capture a simple form of self-interaction,
rewarding or penalizing stays at 0 according to whether S > 0 or 8 < 0. A more
standard and physically relevant interpretation of the model when d = 1 [6, Sec-
tion 1.2] is as a defect line model, an interface between media in 1+ 1 dimensions,
where the graph of the path separates between a medium below it a medium above
it. Note, however, that in [6] the homopolymer considered is in discrete time and
the interface is obtained by linear interpolation of the path (in addition, the paths
considered are pinned to 0 at time ¢). A variant of the defect line interpretation is
the wetting model [8][6, Section 1.3] in 141 dimensions. This is obtained from the
defect line model by restricting the Gibbs measure to paths which do not hit the
negative half line. We analyze the continuous-time version of the wetting model
using our results on the homopolymer.

1.2. First observations. A key feature in the area of polymers and more gener-
ally in statistical physics is the phenomenon of a phase transition in behavior as a
function of parameters. The homopolymer exhibits a phase transition, and because
it is analytically tractable, allows for rather detailed description of the different
phases. As is customary in models defined through Gibbs measures, the simplest
characterization for phase transition is obtained by gross asymptotic behavior of
the partition function as ¢ — oo, usually according to whether the correspond-
ing Lyapunov exponent, defined below for the homopolymer, is either zero or is
strictly positive. This is because the asymptotic behavior of the partition func-
tion typically encapsulates a fundamental statement on the asymptotic behavior
of the Gibbs measures themselves. We now briefly illustrate this principle for the
homopolymer, and begin by defining the Lyapunov exponent, A(8) as

A(B) = lim %hlZg)t.

Observe that A(0) = 0 and for all other values of 8 the limit exists due to a
standard sub-additivity argument. Since X is not positive recurrent under the
reference measure Py, it follows that A(8) > 0. To obtain an upper bound on
A(B), recall the following well-known large deviations estimate:

1
tlim n In Py(J(t) > et) < 0 for all € > 0. (1.1)
— 00

Consequently,
Zgy < PLP(I(t) > et) + P,
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which shows that A\(8) < (. By definition, A is nondecreasing. Due to Jensen’s
inequality, A is convex, and therefore continuous. Letting

pp = Eo [exp(83(1))d0 (X (1))],

it follows from monotone convergence that pg > 1 for all sufficiently large 3. Since
Zgn > pj, we conclude that A(B) > 0 for all 8 large enough. We can therefore
define a critical value of the parameter, 8., € [0,00), by letting

ﬁc’r = Sup{ﬂ : )‘(ﬁ) = O}

We summarize these findings in the following:

Proposition 1.1. X is a nonnegative, nondecreasing and convex function of (.
Furthermore, there exists Ber = Ber(d) € [0,00) such that A\(8) > 0 if and only if

B> Ber-

We name the parameter regimes 8 < B¢, 8 = Ber and 8 > B¢ the subcritical,
critical and supercritical phases, respectively.

Using merely Proposition 1.1 and the large deviations statement on the reference
measure (1.1), we are able to immediately prove the following:
Proposition 1.2.

(i) Suppose 8 < Ber. Then for any e > 0,

1
lim sup n In Pg 4(3(t) > et) < 0;

t—o00
(ii) Suppose > Ber. Then for e < X(B)/8
litrginf Ps 1 (3(t) > et) > 0.

Thus when 8 < B, the qualitative nature of the large deviations statement
for the reference measure (1.1) is preserved under the homopolymer, while when
B > B the homopolymer exhibits a completely opposite, positive-recurrent-like
behavior.

1.3. Organization. The essential results on the model are presented in Section
2, starting with a review of prior work in Section 2.1, and followed by our results
on convergence of the homopolymer measure in Section 2.2, and on convergence of
the scaled homopolymer measure in Section 2.3. An application of our results to a
wetting model is given in Section 2.4. The proofs of our results and many auxiliary
results are given in Section 3, with the exception of two lemmas the authors
consider as folklore, and whose proofs are given in the appendix for completeness.

2. Results

2.1. Previous work by Cranston and Molchanov. In [3], Cranston and
Molchanov considered the problem of the limit behavior of Pz as t — oo when
B > 0. Their results fall into two different notions of limit. First is the limit of
Pg +| 7, as t — oo while T' remains fixed. The second is the limit of X (¢) (some-
times X (t)/v/, depending on B and d) under Ps, as t — co. Here is a summary
of the results in [3], labeled here as CM-x, with x=LII or III.
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We need some definitions. First, let A denote the normalized discrete Laplacian
on Z%. That is, for u : Z* — R we have

Au@)= o0 37 (uly) —ulw)), (21)

ly—z|=1

where here and henceforth | - | denotes the ¢2-distance in C?. Recall that A is the
generator of the simple symmetric nearest-neighbor random walk on Z? with jump
rate 1 from each site. Next, define the perturbed operator Hg = A + Sdp(x). Let
Y5 denote the spectrum of Hs as an operator on ¢%(Z%). Since Hg is bounded
and self-adjoint, Xg is a compact subset of R.

Theorem CM-I. We have A(8) = max Xg. In addition:

(1) B> Ber if and only if A(5) is an isolated element in X 5. In this case A(5)
is the only strictly positive element in ¥g; and
(ii) Ber = Po(X does not return to 0) = sup{f : lim;_,oc Z5+ < 00}.

When S > S, since A(5) is larger than any other element in the spectrum, the
polymer can be easily analyzed through the spectral theorem, and up to leading
order, the behavior is determined by the eigenfunction. When g < .., A(8) is not
isolated (it is an eigenvalue only when d > 5), and the analysis is more delicate,
except for the case f < B, and d > 3, in which the partition function converges
to a limit in (0,00) as t — co. This suggests that the analysis of the polymer for
d > 3 and 8 < (., is simpler compared to the remaining phase 8 = ., for d > 3
and 8 <0 =S ford=1,2.

For the next result, we recall the notion of an h-transform, also known as Doob
transform. Let H be a linear operator on a subspace V of real-valued functions
on Z¢ and let h : Z% — (0,00). Let V" denote the vector space of all functions
u: Z% — R such that uh, + H(uh) € V. Then we define the linear operator H",
the h-transform of H, through

1
H'y = EH(uh), ueVh.

Theorem CM-II. Let 8 > 0.
(1) There exists a strictly positive function function ¢5 on Z¢ such that
. Zss
limy o ﬁz’ﬁy(tx) = ¢p(x).
(ii) Ppgt|F, converges weakly as t — oo to the distribution of the Markov
process whose generator is (Hg — A\(3))¥#, conditioned on X (0) = 0.

The discrete-time version of part ii in one dimension appears in [7].

Theorem CM-III. Let 8 > 0. Then the following hold:
(i) Suppose d > 3 and 3 < B, then lim;_,, Ps+(X(t)/Vt € -) = N(0,14);
(ii) Suppose d > 3 and 8 = ;.
(a) If d = 3,4 then

1¢12

. X(t Lem 6 Uiy =
/ e"b'ng,t(# €dz) = f01 2V/u du d=3
Rd

2
Vit Joe Ty, d = 4;

)
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(b) Tf d > 5 then limy o0 Py s (X (1) = 7) = 2000

(iii) If B > By then limy_ oo P4 (X () = 2) = %

The limit as a mixture of normals in part ii-(a) is from [4, Theorem 2.1]. The
variance here differs from that paper, due to our choice to work with the normalized
Laplacian (2.1), in accordance with [3].

2.2. Convergence of Polymer. The main goal in this section is to understand
the distribution of X, restricted to some fixed interval [0,T] under Pz, as t —
oo. We will show that as in Theorem CM-II, the polymer converges to a Doob
transform. Our model is essentially a “soft” version of random walk conditioned
not to hit the origin, and a discrete version of penalized Brownian motion, for
which similar results have been proved.

We begin with a general discussion motivated by Theorem CM-II. Let 5 € R
and consider the problem

{(Hﬁ —A(B))u =0; (22)

Define the hitting time 7,
To = inf{t > 0: X(¢t) = 0}.
For ¢ = (¢1,...,¢4) € R, let ®(p) = 52?21(1 —cos @), and let

1 1 —cos
por) = L cos((p.a))
7 J10,x]¢ ®(p)
We have the following result:

Theorem 2.1.
(i) Suppose B > B.r. Then the cone of bounded solutions to (2.2) is spanned by
the function Egze= B0,
(i) Suppose B < Ber. Then the cone of solutions to (2.2) is spanned by u, where

u(e) = 1 — BAo(x) d=1,2;
1— %Pw(ro =o0) d>3.

The solution to (2.2) given in Theorem 2.1 will be henceforth denoted by g,
in agreement with the notation in Theorem CM-II. We also comment that when
d=1, Ao(z) = |z|.

Theorem 2.2. The Markov chain generated by (Hg — \(B))¥*# is recurrent if and
only if 8 > Per. It is positive recurrent if and only if B > Ber or B = Ber and
d>b.

We now focus on the subcritical phase 8 < 8., = 0 for d = 1,2. Note that when
d > 3, the transience of X under the reference measure implies that the total time
spent at 0 is Exp(8.,), because it is the sum of a Geom(f3,,.)-distributed number of
independent Exp(1)-distributed random variables, each exponential random vari-
able representing the duration of a single visit to 0. As a result, when d > 3 and
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B < Ber we have limy_, o Zg; = 56 g € (0,00). The analysis carried out in [3] for
d >3, B € (0,B.) rests only on the fact that in this phase lim;_,o, Z5; € (0, 00)
and therefore extends seamlessly to 8 < ;.

What makes the parameter regime d = 1,2, 8 < 0, interesting is the following.
Firstly, this is the only parameter regime for which lim; .., Zg; = 0 (but not
exponentially). Secondly, it exhibits an interplay between recurrence for the ref-
erence measure, working in favor of returning to 0, versus the negative parameter,
which penalizes staying at 0. In spirit, this regime resembles the critical phase
for d = 3,4, with some extra care required due to recurrence which causes some
integrals (resolvents) to blowup.

Let Zg +(x) = E.[e??™]. Note that Zs; = Z5+(0). We have:

Theorem 2.3. Let 5 < 0. Then
_ 2 d=1;
(i) Zgs ~ { m
lnt d=2.
(ii) Zg (@) ~ wﬁ( )Zp.z-

Combining this theorem with a simple tightness argument leads to the proof of
the following extension of Theorem CM-II:

Theorem 2.4. Let § < 0 and let T > 0. Then Pg | F, converges weakly ast — oo
to the distribution of the Markov process whose generator is (Hg)¥?, conditioned
on X (0) = 0. The transition function for this process, qga, is given by

05(t,2,9) = G B [0, (X(0)8,(X(1)].

In what follows we will denote the distribution of the process generated by H;ff’
by @. As before, ), will denote the distribution of the process starting from x,
and ExQ will denote the expectation of the process starting from z. Observe that
there’s a tight relation between ) and Pg;. Indeed, if hq,..., h; are continuous
real-valued bounded functions on R an 0 < ¢; < --- < t, < t, then from the
definition of the transition kernel gg, we have that

/Hh (X, )dPg,, = H 1 AL

In particular, (and since ¢(0) = 1 from its deﬁnltlon)7
L= wﬁ(lxt)dQOLFt
’ Zﬁ,t )
=
V(Xt)
Let oy =sup{s <t¢: X(s) =0} and Ny = #{s <t: X(s) =0 and X(s7) # 0}.
We have the following corollary to Theorem 2.3 and Theorem 2.4:

Corollary 2.5. Let § < 0. Then,
(i) Pse(3(t) € -) = Exp(=B);

dPg and (2.3)

Zgs =B ——



SUBCRITICAL HOMOPOLYMER 431

(i) Pg(or € 1) = —PBpp(y,0,0)dy; and
(iii) Ppi(N; € -) = Geom(5;).

We comment that as is easy to verify, the limiting distributions above coincide
with the respective distributions of lim;_, o, J(t), lim;— o 0¢ and lim;_, o, N; under

Qo-

2.3. Convergence of the scaled polymer. In this section we will consider the
behavior of the polymer when it is space- and time-scaled. To this end, let us
introduce the scaled polymer. For n € N, let X(™ denote the process defined by
Xt(n) = X,1/v/n, t € [0,1]. This is the rescaled process. Our main goal is to
obtain a functional central limit theorem for X (™. As the polymer is a discrete
analog of the penalized Brownian motion of [9, Theorem 4.16, p. 251], it is not
surprising that the scaling limits obtained coincide with those for the penalized
Brownian motion. In fact, the only difficulty in the proof is in showing that the
discrete process does converge to its continuous counterpart. What makes this
convergence non trivial is the lack of stochastic analysis, scaling invariance, and
the fact that the limit processes involve diffusion with singular coefficients, that is
Bessel-3 process. We study the model through analysis of resolvents. We comment
that the model is also amenable to analysis through the powerful renewal approach
presented in [6], and more specifically in [2].

We will introduce some notation. The Brownian meander is defined as follows.
Let W = {W, : t > 0} be standard 1-dimensional Brownian motion, and let

L =sup{t <1: W, =0}. Then for ¢t € [0,1], let M; = % The resulting
process M = {M; : t € [0,1]} is called the Brownian meander. Recall that the
Bessel-3 process, which we denote by R = {R; : t > 0} is the Markov process on
[0,00) generated by

1d*> 1d

24 wde
Unless otherwise specified, we will assume that Ry = 0. If W = {W; : ¢ > 0}
standard Brownian motion on R?, then |W| = {|W;| : t > 0} has the same
distribution as R.

The Brownian meander and the Bessel-3 process are related through the Imhof

relations which state that for every bounded continuous function F' : D[0,1] — R,
we have

EIFOD] =[S EE@) 1, |2 ElF() = ElFOD )
In particular, it follows that
E[F(R)%-
E[F(M)] = Z&TJ (2.4)
Ry

From the Imhof relation, and using the fact that R; has density

2
\/;1[0,00)(37)‘7"6_362/27
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we conclude that ,
P(M; € ) = 1jg ) (w)ze™ " 1 dz. (2.5
In the results below, J denotes a Bernoulli random variable with P(J = 1) =
P(J =—1) =1, independent of R and M.

Theorem 2.6. Suppose d =1 and 8 < 0. Then
(i) Q(X™ €)= JR,
(ii) Pgn(X™ €)= JM.

An immediate consequence of this theorem is that QO(XT € ) = JR; and

n
Xn
Pﬂ,n(\/ﬁ S ) = JM;.

We continue to a short informal discussion of the case d = 2, explaining why,
in our opinion, it is less interesting. The bottom line is the penalizing does not

affect the scaling limit all. First, observe that from (2.3),
B[P (X))
Q 1 )
B¢ lgste]
It could be shown that 13 grows logarithmically. Therefore, the righthand side is
asymptotically equivalent to

E(?[F(X("))m]

51— ~ E¢[F(X™)],
0 lnczmxrp)
if under Qg, Xf") = O(1). The logarithmic growth of ¢g and the arguments of
Section 3.7.2 guarantee this is indeed the case, and, in addition, that the generator
of X" converges to %A on R2. The latter statement, along with a tightness
argument adapted from Section 3.7.1 to this setting, then imply that the law of
X (™) under Qq converges to Brownian motion in two dimensions starting from the
origin and it then follows that the polymer has the same limit.

/ F(XM™)dPg, =

2.4. Relation to a Wetting Model. In this short section we consider a modified
version of the polymer known in the literature as a wetting model [8][6, Sec 1.3].
Our goal is to show how results on the wetting model follow from our results on
the polymer. For 8/ € R, and t > 0, let ]5@/7,5 be the polymer measure on F;
defined as ~

dPpg: 4 eﬁlj(t)lAt

dP|ff, Zg/ﬂ:
where A; = {inf,<; X, > 0}, and Z@t is a normalizing constant. The following is
an immediate consequence of our analysis of the polymer model.

M p<
Wi B =

)

Theorem 2.7. Ps (X" € ) = {

N[ D=

We comment that the discrete-time version of the theorem is [8, Th. 1.2].
To prove the theorem (and also understand the case 8’ > %), consider the transi-
tion kernel
Bt z,y) = B[ 7D14,6,(X,)], t > 0,2,y € Z.
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This defines a semigroup on Z, whose generator Hpg is the restriction of Hgr to
functions vanishing on {—1,—2,...}. Observe that

3f()+ (8 =1)f(0) z=0

(Hy f)(x) = {A o ‘.

In particular, I:I/g/ is the generator of a Markov process if and only if 5/ = %,
and in this case it is the generator of random walk reflected at the origin. It
follows that P%W(X(") € ) = [W| on D[0,1] as n — oco. For ' > 3, the
analysis is identical to the supercritical phase for the hompolymer, that is, the
principal eigenvalue for H g is an isolated eigenvalue with an eigenfunction in
(?(Zy), and the corresponding results hold verbatim. As for 3’ < %, if ¢is a
positive harmonic function for H 57, then without loss of generality ¢(0) = 1 and
as a result ¢(1) = 2(1 — ') = 14 (1 — 28’). Since Hy: coincides with A on N,
this implies that for z € Zy, ¢(x) = 1+ (1 — 28")z, that is, ¢ coincides with
the restriction of ¥ep/_1 to Zy, where 1. is the function from Theorem 2.1-(ii)
for d = 1. Hence the Markov process generated by the A-transformed (I:Ig/)¢
coincides | X| under @ with parameter 8 = 24’ — 1. In particular, for any bounded
and continuous F : D[0,1] — R,

’ F(IX™))
E[F(X"™)ef 7M1, | = BY[—E_—U].
' O p(|1Xnl)
It follows from (2.3)
Py n(X™ €)= Py (XM € ).

and from Theorem 2.6-(ii) we have that Pg ,,(X(™ € ) = M.

3. Proofs

3.1. Preliminaries. By the Feynman-Kac formula, Hg generates a semigroup
whose transition function pg(t,z,y) is given by

palts,y) = Ea [¢705,(X(1))] (3.1)

Recall that ¥4 is the spectrum of Hg = A + 88o(z) on 2(Z%). For X\ &€ X5, we
define the resolvent Rf as Rf = (A — Hg)~'. Then

R{f(x) = /OOO e pp(t,x,y) f(y)dt = /OO eME, | f(X(1)eP W] d.

0

Abusing notation, we write Rf(x, y) for Rféy (z). We also write R, for RY. Due to
the special role of Rf (0,0) we denote it by I(\), and write I for I°. The resolvent
Rf can be obtained directly from R, through the resolvent equation, as we now
show. Suppose that A & 3o UXg. Then (A — H)Rf (x,y) = 0y(x) —|—BR§ (0,9)do(z).
Hence

RS (,y) = Ra(2,y) + BRY(0, ) Rx(x, 0),
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and so by letting x = 0, we obtain

R0 = 725 (32

which gives

BRx(z,0)Rx(0,y) .

R (2,y) = Ra(z,y) + L AT (3.3)
In particular,
-1
Poy= N __ (3.

18I\ 1- BT
By (3.1) Zg,i(2) = pp(t, 2, 1) = 3° cza ps(t, z,y). Also,
dz
ot _ 55, [oP050(X (1)) = Fps (1.0.0).
Thus,

t
Zpyr =1 +6/ pa(s,0,0)ds.
0
Assume that d = 1,2 and 5 < 0. Then lim; ,o Z5; = 0, and therefore

Zos =5 [ pals0,0)ds. (3.5)
t

We now derive an integral representation for R through Fourier transforms. By
reversibility and spatial homogeneity, Ry(x,y) = Ra(y,z) = Ra(x — y,0). The
Fourier series of Ry (-,0), denoted by Ry, is defined through

Ra(p) = Y Ra(z,0)e"*™, o € [0, 27",
z€EZLA

Since {% : & € Z4} form an orthonormal basis for L2([0,27]?), the inversion

formula is given by

1 o )
R —i{p,x)
R)\(l',()) (2,n-)d ‘/[0_,27r]d R)\(@)e d‘P

Taking the Fourier series of both sides of (A — A)Ry(z,0) = do(z), it follows that
(A + ®(9))Rr(p) = 1, where ®(p) = %Z?:l(l — cos ;) is the symbol of —A.
Therefore

. 1 e~ Hpz—y) p
M@) = /[] AT

1 cos({p,x — y))
= — ————"dp. (3.6)
7 Joe A+ P(p)
The second equality is due to the facts that the integrand is symmetric about
m with respect to each of the variables and that R) is real for real A. Setting

x =y =01in (3.6), we obtain

1 1
I\ = — — o,
W) =13 /[O,ﬂ]d At (o) Y
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and an estimate of this integral leads to the following known lemma. The proof is
given in the Appendix.

Lemma 3.1.

1 d=1;
( + Opeqi(1 )) — (1 +0ppq1(1)) as X =0 d =2,

where the subscript real means that the function is real-valued.

The next result is obtained by inverting the Laplace transforms in Lemma 3.1.

Proposition 3.2.

\/ﬂ;2t3/2 d=1;
ps(t,0,0) ~ i g

B2t(In t)? =2
Proof. By the Spectral Theorem, there exists a probability measure ug on g,
such that J

%\ :/ s (s). (3.7)
s A — S

and

pg(t,0,0):/ e dug(s).
Z/@

Since pg(t,0,0) — 0 as t — oo and Xg C (—o0,0], it follows that pg({0}) =0. In
addition, from (3.7), we observe that for A = sg+ie with € > 0, A—s = (s—s¢) +1¢,
therefore S(1/(A—s)) = ~ s=so7yer and so, —13(1/(A—35)) is an approximation
of the identity, and it follows that hg, the density of the absolutely continuous part
of ug is given by the formula

1
ha(s) = lim —=317°
(5) = lim =231 (s + o)
and that the singular part of pg is supported on {s : limsup o SI?(s+ie) = oo}
By Lemma 3.1 limy_0 |I(\)| = oo, it follows from (3.4) that I® is bounded near

the origin, which then guarantees that 115 is absolutely continuous near the origin.
As a result, there exists some ¢ > 0 such that

4
ps(t,0,0) = / ey (s) ~ / e h(—u)du+ O(e) ast— oo, (3.8)
25 0

When d = 1, lime o I(s + i€) = e " This gives hg(s) ~ V[;LS‘ ass /0.

Vl0slvats
Therefore by (3.8) we obtain

)
pa(t,0,0) ~ ﬂ\gi et udu + O(e™%)
2 o0
5\2/ U\ u/td(v/t) + O(e %) ~ 32;/1;’/2 ; e "Vudv

as t — oo.

- 52\/%5”/27
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Suppose now d = 2 and A = —s + € for some s > 0 and ¢ > 0. It follows from the
Lemma 3.1 that

s IO - BION)
=15
Therefore,
_1% 1 —SI(N) N ™
TN = ST IE Y B

so that pg is absolutely continuous on an interval (—d,0) and we have hg(s) ~
m. Furthermore, since pg(t,0,0) — 0, it is clear that 0 is not an atom for

pg. Therefore, it follows from (3.8) that

T [0 _ 1 _
pg(L0,0) ~ @-/0 e tum +O(€ 5t)
™

o 6te_v¥ ) -
- 52 /0 (ln(v/t))Qd( /t) + O( )

W/éte_” L dv il as t — oo
Pme? Jy © (w2 B |

Int

O

Next we study the solutions to (2.2) through Martin boundary theory. For
this we consider the simple symmetric random walk on Z? killed upon hitting 0.
The generator of this sub-markovian process is the restriction of A to functions

vanishing at 0, which could be formally written as H_,,. Let R, = limg_, o R;B .
Then (3.3) shows that

R,\(x, O)R)\ (0, y)
I(N) ’
and an immediate calculation shows it is indeed the resolvent of the killed walk.

In light of this discussion we identify the generator of the killed walk with H_ .
We need the following result:

Lemma 3.3. Let B = {e € Z%: |e| = 1}. Then for z # 0,
Ry (z,1p) = 2dP, (19 < 00).
Proof. We first observe that for all x # 0,
Ry (z,1p) = P,(18 < 00)Ry ™ (e1,1p).

Ry ™ (z,y) = Ra(z,y) — (3.9)

Let gg = P., (75 = o0). The number of visits to B starting from e; = (1,0,...) €
Z“, until the first visit to the origin is clearly Geom(qp + 7). Thus, the time
at B starting from ey, is the sum of Geom(qp + 55) independent Ezp(1) random
variables (and is therefore Exp(qp + 55)). As a result, Ry (e, B) = qBii'
Next, observe that pg, the probability that starting from the origin X will retti;n
to 0, is equal to Pe, (o < 00), and this is equal to 5 + (1 — gz — 55)po. Therefore,
2dpy = ﬁ, so that Ry *>°(e1, B) = 2dpo. In addition, for any x € Z¢, P,(y <
00) = P, (15 < 00)pg. Combining the two identities, the result follows. O
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In order to study the martin boundary of H_,, we define the function Ay as

L[ 1= cos((p,w))
A =I(A) — Ry\(w,0) = — ———"=dp. 3.10
) = 1)~ a0 = 5 [ SR 30
We observe that Ay € [0, 00) and that Ay (w) = 0 if and only if w = 0. In addition,
by dominated convergence, Ag(w) = limy\ o Ax(w) exists and is finite. We have
the following known result, whose proof is given in the appendix.
Lemma 3.4.

(i) The Martin boundary for H_., is spanned by Ag(x).
(ii) Ao(er) =1 and when d >3, Ag(z) = L=lre=)

BC’F‘

3.2. Proof of Proposition 1.2.

Proof. When 8 < f.;, we can choose a > 0 such that 5(1+a) < S and it follows
from Holder that

(Z(14a)p,e) Y 1H)

Zp.t 7
and the first assertion follows by taking logarithms and then letting ¢ — co. Next,
when 8 > 3. we have

Ps(3(t) > et) < Po(I(t) > et)™/(1+e)

1

lim sup n In Pg +(3(t) < et) < Be — A(B),
t—o0

the right-hand side being strictly negative, provided that ¢ < A(8)/8, immediately

leading to the second assertion. (I

3.3. Proof of Theorem 2.1.

Proof. We begin by proving existence. Clearly, for all A > A(8), the resolvent
operator Rf defined in (3.3) is a bounded positive operator on ¢?(Z%). Existence
of the positive resolvent automatically implies the existence of positive harmonic
functions for Hg — A. Let uy denote such a function satisfying ux(0) = 1. Now
let A, \¢ A(B). Tt follows from Harnack inequality that by possibly passing to a
subsequence (uy, : n € N) converges pointwise to a nonnegative harmonic function
for Hg — \(8), ux(g) satisfying uy(z)(0) = 1.

As for uniqueness, we first show that all solutions which vanish at 0 (or in fact
at any other site) are identically zero. Suppose that u is a solution satisfying
u(0) = 0, then since Hgu(0) = A(B)u(0) = 0, it follows that 5 2 jej=1 u(e) =0,
equivalently u(e) = 0 for all |e] = 1. By induction on |z|, it follows that u = 0.
Hence, in order to prove uniqueness, it is sufficient to show that there exists a
unique solution v with u(0) = 1.

We split the proof of uniqueness according to the value of 3.

Supercritical phase, 8 > ... Suppose that u is a bounded solution to (2.2) with
u(0) = 1. Then (e~ *Pty(X (t)) : t € Ry) is a bounded F;-martingale with respect
to the reference measure. In particular, u(z) = E,e A 0u(X (19)) = Epe AP0,
This proves uniqueness.

As a side remark, we observe that this allows to obtain S, directly, because
on the one hand, limg\ 5, E.,e *#™ = P, (1 < oc) while on the other hand,
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0 = (HgE,e XP)7)(0) = E. e A7 — (1 — B). Therefore letting 8 N\, B we

obtain 1 — 3., = Pe, (10 < 00).

Critical and subcritical phases, B < B-. Recall that here A(3) = 0. Now let u be

any solution to (2.2) with «(0) = 1 and let w(z) = (1 — do(x))u(x). Then

_u(0)
2d

Letting v(z) = u(x) — 53R, (%, 1), we observe that v is harmonic for H_.

Then by Lemma 3.4, is v = cAg(x). In particular,

Raoo(xv 13)

2d

where the second equality is due to Lemma 3.3. On rewriting the equation
Hpgu(0) =0, we have

H—ooﬂ(x) = ].B(ZL‘)

w = cAp(z) + = cAp(z) + Pp(10 < ),

1
5 > (a(e) = 1)+ B =0.
lel=1
This implies u(e;) = u(e;) = 1 — B, as well as cAg(er) + Pe, (10 < o0) = 1 — 5.
But P., (19 < 00) = 1 — . Therefore since Ag(e1) =1, ¢ = B — 8 and we have
proved that
u(x) = (Ber — B)Ap(x) + Pp(10 < 00).

When d = 1,2, the second term on the right-hand side is 1 and 8., = 0, which
leads to the formula in the theorem. When d > 3 we have

u() =1 = Py(10 = 00) + (Ber — mm
Ber — B

=1—Py(19=00) + 3 P.(19 = o0)
=1- Bi Py (10 = 00).

3.4. Proof of Theorem 2.2.

Proof. The resolvent for (Hz—A(3))¥* is equal to ﬁRf—h\(ﬂ) (z,y)¢p(y). In par-

ticular, the expected time at 0 starting from 0 is equal to R’f(ﬂ)(O7 0) =I°(\(B)) =

%. It is easy to see that S = ﬁ. Therefore, if 5 < B, it fol-

lows that I°(A\(8)) = I?(0) < oo, so that X is transient. If 8 = S, then
IP(\(B)) = IP=(0) = oo, and if B > B, then since 5 € ¢3(Z%) and Y3 is an
invariant measure for (Hg — A(B))¥#, it follows that the process is positive recur-
rent. Conversely, any invariant density p must satisfy (Hg — /\(ﬁ))#ﬂ =0, that is

v = ﬁ is a positive solution to (Hg — A(8))v = 0. Since by Theorem 2.1 such a
solution is equal to cig, it follows that the process is positive recurrent if and only
if p= cw% for some c¢. We know that this condition holds for 5 > ... It remains
to check 8 = B... But by Theorem 2.1-(ii), ¢g,..(z) = Py(10 < 00), and it is well

know that this decays as |z|?~¢, hence square integrable if and only if d > 5. O
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3.5. Proof of Theorem 2.3.

Proof. Part i of the theorem follows directly from (3.5) and Proposition 3.2.

We turn to the proof of part ii. Recall the function Ay defined in (3.10). Since
for every constant ¢ > —\, we have [~ e~ T9)tdt = (A4 ¢)~!, then from (3.6) we
obtain

e 1
Ax(w) = / e*/\t—d / e~ (1 — cos(p, w)) dpdt.
0 ™ Jio,x]?

=i (w)
In other words, Ay(w) is the Laplace transform of ¢ — 1, (w). By monotone
convergence,

Ap(x) = /000 ()t < . (3.11)

We need some estimates on 1. Below ¢ denotes a positive whose value may change.

Recall that
2

)

e
042217COSOZZ2SIH2§ZCO[

the last inequality holds for o € [0, 7). Therefore 1—cos(p, w) < (g, w)? < |p|?|w|?
and &(p) = 237 sin®(§) > c|o|?. Thus,

Fe(w) < clul? / ERIPLE

[0,m]¢

§c|w|2/ e~ tp2pd=1 g,

0

= C|w|2/ ey 2dy = w20t (@/2+Y) | as t — oo, (3.12)
0

We recall that Rf(m, 1) is the Laplace transform of the function t — Zg(z).

Furthermore, by (3.3)
8 1 BRx(2,0)\ _ 1—=BI(A) + BRA(x,0) _ 1—BA\(z)
Ry(z,1) =~ (1+ = .
A 1—BI(N) AL = BI(N)) A1 = BI(N))
Letting = 0 and recalling that Ag(0) = 0, it follows that the Laplace trz}nsform
of t = Zg, is m Since Ay (z) is the Laplace transform of ¢ — (), it

follows that
Zp(x) = Zgy — B(.(x) * Z5,.)(t)

= Zsy— B (/0(16)t+/(fe)t (Zg,t_sd?s(x)) ds) :

t

— Z5.— B /0 e (Z5.-s0u()) ds + O(1) /( Dy (2)ds

1—e)t

(I—-e)t _
= Zs,— (1+0(1))BZs, / Du(z)ds + o(Zs 1)

~ Zgi(1 —BAo(z)), ast— oo.
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The second line is due to the fact that Zg; < 1, the third line is due to part i of
the theorem and (3.12), and the last line follows from (3.11). O

3.6. Proof of Theorem 2.4.

Proof. We first prove convergence of finite dimensional distributions. Let 0 = ¢y <
ty <--<t, <Tandlet 0=xg,xq,...,2, €Z% Then

n H;:l pa(tivr — ti, T, Tit1)
Pg (N {X (i) = xi}) = 0 7o X Zgt—t,(Tn)

s

n—1
_ H pa(tit1 — ti, i, Tig1) Za e (Tig1) « Zg1—t, (Tn)
Zﬂyt(xi) Zﬂ,t(xn)

H wﬁ ) (tiv1 = ti, @i, Tig1)1hp(Tita), as t — oo,
K3

where the last line is due to theorem 2.3.

The formula for gg follows from the fact that ¢z = mpg(t, z,y)¥a(y), and
pe(t,m,y) = E, [6,(X(2)e’ D].

Let @ the distribution of X under the transition function gz. Using the formula
for gz and the Markov property for X under Ey, we conclude that

o Bo [$a(X ()i X (1) = i}
¥5(0)
Since 13(0) = 1, we have that Qo|r, < Po|r, and that the Radon-Nikodym
derivative is 15(X (T))e7 ().

To prove tightness, it is enough to show that for any e > 0, there exists some
set K. € Fr, compact in the topology on DI[0,T] such that

lgr(l) htn_l)élgf Pg(K.) =1.

ES (Mo {X () = 2] =

PITD) B PIE=T)
Observe that dPs ¢| £, /dPo| 7, = Z([, - . It then follows from Theorem
2.3-(ii) and Fatou’s lemma, that

liminf Py o(K) = Bo [65(X (1)) K| = Qo(Ko),

For each ¢, let K. be a compact set such that Py(K.) > 1 —e. Then since
Qolr, < Pyl|#,, it follows that lim. o Qo(K,) = 1, and the result follows. O

3.7. Proof of Theorem 2.6. The proof of the theorem consists of several stages.
3.7.1. Tightness.

Lemma 3.5. Let {Zﬁ") 15 € [0,1]}nen be a sequence of continuous-time Markov
chains with Z(") having a countable state space S,, C R. Suppose that
(i) {Zé")}neN are tight.
(ii) There exists to > 0, such that sup,cs, E|Zt(n) - Z(()")| < f@t) if t < to,
and f satisfies limy~ o f(t) =0
Then {Z™},en is tight in D0, 1].
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Proof. We will apply Aldous tightness criterion as it appears in [1, Theorem 34.1].
We need to show the following:

(i) For every s € [0,1], {Zg")}neN is a tight sequence.
(ii) If 7, is a stopping time for Z(", and {6, }nen is a deterministic sequence

decreasing to 0, then Z\"”

s — Zﬁ:) — 0 in probability as n — co.

To prove the first, observe that | Z{™| < Zszl |Zt(f) — " 14 1x{M], with tg = 0 <

tj71

tp <--- <tg =tandt; 1 —t; <4, where 0 is chosen so that sup,<s f(t) = ¢ < co.
Thus, {|Z,"] > R} ¢ {|Z§"| > R/(K + )} UK, {12, — 2| > R/(K + 1)}.

tit1
So that by the Markov property, Chebychev, and the Js+econd condition, we have
that
Kece

TRIE T
The right-hand side is independent of n, and tends to 0 as R — co. This completes
the proof of the first.

As for the second, it immediately follows from the second condition in the
theorem, the Markov property and the fact that Z(™ has a countable state space.

O

P(|z{"| > R) < P(1Z§"”| > R/(K + 1))

We will now show that the processes {X (™} in the statement of Theorem 2.6
are tight in D[0,1]. by showing that they satisfy the conditions of Lemma 3.5.
Specifically we will show

Proposition 3.6. Assume d =1 and < 0. Then for any xo € Z2,
t

: t
Ego‘Xt — X0| < / Po(XS = O)dS — 6/ Zﬁ,sds-
0 0

To continue we recall the definition of the rescaled D[0, 1]-valued processes X ()

given by Xt(") = Xni/+/n for t € [0,1], defined in the first paragraph of Section
2.3. Observe that if v, is an initial distribution for X, then it induces an initial
distribution V{") for X(™), a Borel measure on R, given by the relation
A = D (z) = m(VaA). (3.13)
{2€Z:z2/\/neA}

Note that the mapping v, — I/YL) from the space of probability distributions on
Z to the set of Borel measures on R is one-to-one, and therefore l/§n) uniquely

determines v,,. It follows from this proposition and Lemma 3.5 that

Corollary 3.7. Let {v, : n € N} be an sequence of initial distributions on Z such
that {VYL) :n € N} is tight. Then the family {Q,, (X™ € ) :n € N} is tight.
To prove Proposition 3.6 we will need the following;:

Lemma 3.8. For every x € Z., there a exists coupling (X, X") such that under
Q., the distribution of the process X' = {X] : t > 0} coincides with the distribution
of X under Qq, and |X¢| > |X}|, for allt, Q.-a.s.
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Proof. Let X’ be independent of X until (which may never happen) they either
meet, or are mirror images of each other. If they meet first, then they coalesce,
while if they are mirror images of each other, then the continue as such. In either
case, | X;| > | X]| for all t. O

Proof of Proposition 3.6. Let L = H;fﬁ. If f:Z — R and z € Z, we have

1) = B a4 1) = flo) + B (1o = 1) = o)

To obtain the bound on the increment, fix zo > 0, and let f(z) = |z — xo].

When = > ¢, we have f(z+1)— f(z) =1 and f(zx—1)— f(z) = —1. Whenz <
Zo, the signs are changed, and when = = xg, f(z+1)— f(z) = f(x—1)— f(z) = 1.
Therefore, we have

L5(x) = bay () 2220 D F ¥5(20 = )

2¢p(z)
1
+ 555 W@+ D = Y5 = 1) (Hasan — Liz<on)))
and since g(z) = 1 + |B|[z], it follows that for all z,
1/113(550 +1)+ Z/JB(:UO -1)= 27/}5(5”) + 2850(x0), and

Yp(e +1) = ¢z — 1) = 2[Blsgn(z), (3.14)
where, as usual, sgn(z) = 1 if x > 1, sgn(z) = —1 if # < 0, and sgn(z) = 0 if
x = 0. Therefore

££@)] < (1 B130(a0)ry () + 505 (3.15)

Next, since L is the generator of X under @Q, it follows that for any bounded
function g, with L£g bounded, g(X}) fo Lg(Xs)ds is a Q-martingale. In particular,
gy = min(f, N) is clearly such a function and 1f we let

T~ =inf{t > 0:|X; — x| > N — 2},
then

tATN tATN
ES f(Xiney) = ES gy (Xinry) = ES) / Lygn(X,)ds = ES, / Lf(X,)ds.
0 0
Now f(Xinry) — f(Xi—), and it follows from Fatou’s lemma that
INTN
EQ f(X-) < Jim E;t?o/ Lf(X,)ds.
0

As from (3.15) is Lf is uniformly bounded, it follows from right-continuity of the
paths and dominated convergence that the right-hand side converges to

t
Eg?o/o LFf(X,)ds

ES f(Xi <EQ/£f

so that



SUBCRITICAL HOMOPOLYMER 443

Replacing t by ¢ + € and letting € > 0, it follows again from Fatou’s lemma, that

t
EP f(X:) SESO/ Lf(X,)ds.
0

From this, the definition of f and (3.15) we obtain the upper bound:

t
EQ|X, — o] < / (1 -+ 60(20) |B) Qo (Xo = 0) + |5|Ea[m;xs £ 1o)ds
t
- / (1+ 8o(20)|1)ps(5, 0, 20)
|B| BI(s)(1 _
+ wﬁ(xO)El‘o[e (1 5-Lo)(Xé)]d8
-/ (4 b)) = —2Lpi 5,0, 0) + 22 (wo)ds
0 g (o) Y Ya(zo)
g/o PO(WS:O)dS+¢,6’|(BCl0)/o Zs.+(x0)ds. (3.16)

Observe that Zg(z0) = Eyo[e?M] = v3(z0)ES, W From Lemma 3.8 it

follows that ES ’1/15(1Xt) < E 'wﬁ(lxt) = Zgs. Thus, Zg(x) < Yp(x)Zs,, and so
the result follows from this and the right-hand side of (3.16) O

Let Y™ be the process defined through Yt(n) = (Xé"))Q. In order to simplify
some of the arguments and in particular avoid convergence to a diffusion with
singular drift, we will work with Y (") rather than X () itself. We first need to
show that the tightness of X (") is preserved under the square map.

Proposition 3.9. The map x +— z? from D[0, 1] into D[0, 1] where x? is defined
by 2%(t) = (x(t))? is continuous in the Skorokhod topology.

Proof. Recall that the Skorokhod topology can be generated by the metric
= inf -1 —
pz,y) = inf {[IA = I[| V]lz oA —yl}}

where A is the set of all continuous, strictly increasing functions from [0, 1] onto
[0,1], T is the identity function on [0,1], and || - || is the usual sup norm. If z,y €
D0, 1], a straightforward calculation shows that |22 — 42| < |lz — y||(||=]| + [|¥]])-
Now 22 o A = (z o \)2, therefore ||(z2 0 \) — 32| < ||z o X — y||(||z]| + ||y||). This
gives:

p(a?,y?) < fnf {IA=II[V [z o A =yll(lzll + 1)} < A +llzll + llylDolz, v),
and the result follows. O

From this we obtain the analog of Corollary 3.7 for Y (™). Before stating the

result, observe that if v, is an initial distribution for X, then in analogy to (3.13),

it induces an initial distribution Vén) for Y™ a Borel measure on R, given by

the following relation:

(A =Pz eR:a?e A= D w2 (3.17)
{z€Z:z2 /n€A}



444 IDDO BEN-ARI AND HUGO PANZO

Corollary 3.10. Let {v, : n € N} be an sequence of initial distributions on Z
such that {Vén) :n € N} is tight. Then the family {Q,, (Y™ € -) : n € N} is tight.

Proof. Let F denote the mapping # — 2 from Proposition 3.9. Fix € > 0 such
that Q(X®) € K) > 1—e for all t. But since F is continuous, F(K) is continuous,
and it follows that Q(F(X®) € F(K)) > Q(X® € K) > 1 —«. 0

3.7.2. Martingale Problem. Define the second order differential operator L£(>°)
through
L>g(y) = 2yg" (y) + 39 (4)-
Also, for t > 0 and n € N, let
t(”) =o(X™:s<t)=0(X,:s<nt).
We have

Lemma 3.11. Let g € C°(R), andt > s >0 and A € Qg")_ Then
t
1258 [Q(Y?”)) - / dw)g(Y;("))ds;A} — o(n~12).
0

Proof. Given any initial distribution v for X, f(X;) — fot Lf(Xs)ds is a Q-
martingale. We will convert this statement into the family of processes { X (},,cy.
We can write f(Xt(n)) = h(Xnt), where h(z) = f(z/v/n). Then

nt
M = (x() - / Lh(X.)ds
0

is a G™-martingale under Q,. Now Lh(z) = m (E(ygh)(x 4+ Z) — (gh)(x))+
Béoh(x), where Z is 1 with probability % and —1 with probability % From the

Taylor expansion of f, we conclude that
(Yph)(z + Z) = Yz + Z)
Z 1 1 Z
< (VR + 1V T+ P a5 + GO V) ).
where 2’ € (x — 1/4/n,x + v/n). Since Evg(x + Z) — g(x) + By = 0, it follows
that

Yp(z + Z)
Ys(z)

where (slightly abusing notation, note that here 2’ is a random variable which is
a function of Z and n):

Lh) = B (FanmZ + 1wy, ) + D)

D{(w) = w2 Bl (a + 2)2 [ (@' V),

and in particular,
D1 (@)] < en™2)f Pl (3.18)
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where ¢ is a universal constant. From (3.14), we have that Elyg(z + 2)Z] =
|Blsgn(x), so that

L',h(x): @)V + @)V )'\ﬁ;ing + D\ () + D{(x),
where
DY) = o f(0)|B150(a).
Therefore
) _ iy [T L — Blsen(Xs) )
MO = 1) = [ g (Xs/f)+f(Xs/f)fw( Sas — 571
= 1)~ [ Ly o g (e RS 4, gy
where

B¢ /’Dm ®+/ DY (x

Qg™ —1/2 £(3) L) [ _
BIET @Ol < en™ P f P oo + 1617 Qu(Xs = 0)ds.
0

Observe that

From Lemma 3.8, Q,(X; = 0) < Qo(Xs = 0) and since X is transient under @,
the integral is finite, therefore

sup EQ|E\™ (1)] < e(f, Byn~ V2.

In order to simply the drift expression, and prove the lemma, we will take f =
g(z?). Observe then that f/(z) = 2z¢’(2?) and that 3 f”(z) = 2:102 g"(x?) + g (2?).
Letting Y™ = (X())2 we obtain

n n ¢ 2 X’I’LS n
M = g(v,") - / 2V (V) + g/ (V) + g/ () A0 %eel g gy

o ® s . bs(Xns)
t
= g(v\") - / 2YWg" (VM) + 3¢ (Y(M)ds — BV (1) — BV (1),

0
where

n k ’ n Xns
B0 =2 [0 (2 1) s

t
1
ES ()] < 119 loe / 1
2 0 '(/)ﬁ(an)Q

Observe that

Now

t
1
EQIES (1)) < [l / E9— s,
2 0 z/},@(an)Q
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Lemma 3.8 gives B ;-5—5 < EY e < EY 350x0) = Zs.ns» and therefore
n t c
EI;Q|E§ )(t)| < |g'lloo Jy Zpnsds. For u>1, Zg, < > therefore

¢ 1 ! c c
Z,nsdsﬁf-l-/ dSS*,
/0 p Voo s Vs vn
and the constant ¢ depends only on 3. It follows that sup, ES |Eén) )] < Hg’||oo%.
Writing Et(n) = E§n)(t) —&-Egn) (t), then sup,, E§|Et(n)| = O(n~1/?), and since Mt(n)
is a gt(") martingale under @, , we have that

0= EQ [M™; 4]
t
— B9 [g(v{™) - /0 £ g(Y, )ds; A]

- Ez% [Et(n)lA]v
and the result follows. O

3.7.3. Convergence of Markov Chains. We fix some notation. Let R? denote the
process {R? : t > 0}, where R the Bessel-3 process introduced in Section 2.3. We
also write (Z, v) for a Markov chain the Markov process Z with initial distribution
v.

From [5, Theorem 8.2.3, p. 372] We first observe that the martingale problem
for £(°°) is well-posed. It is also well-known that £(°°) is the generator of R2. The
following is an immediate consequence of [5, Theorem 4.8.10 , p 234].

Proposition 3.12. Suppose that {v, : n € N} is such that yé") = Véoo) for some

Borel probability measure z/éoo) on Ry. Then

QVn (Y(TL) € ) = R27

and the process on the righthand side has initial distribution Véoo).

With this, we are ready to prove Theorem 2.6.

Proof of Theorem 2.6. The tightness of {X (™}, cy under Qo follows from Corol-
lary 3.7. We need to identify the finite dimensional distributions. For this purpose,
we will use the convergence of {Y(™}, cy to R?. Suppose that f € Cy(R). Let
f+ = f(lz|) and f_(z) = f(—|z|). Thus, fi are symmetric functions, coinciding
with f on positive half-line and negative half-line, respectively. Clearly,

ESLF(XI)) = EQUF (X ™) 1x,, 500 + ESLF(XT) 1 (x,<0p] + F(0)Qo (Xt = 0).

The third term on the righthand side tends to 0, as X is not positive recurrent
under @Qp. Due to the symmetry of X under @)y, we can write
1

EST Xm0 = 5 (B U+ (X)) - Qo(Xu = 0)

1
2

EQ[f+(X™)] +o(1).
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Therefore,
EJ[f(X™)] = EQ[f+( ™)+ 1 SEF LX)+ o(1).

However, since fi are symmetric, we can rewrite this in terms of Y™ i.e.,

ERUCE = 3881 (£ + ORIV ) 4] o)

By choosing A = R, we conclude that
Qo(X{™ €)= JR,. (3.19)

In order to complete the proof, we need to show that the finite dimensional dis-

tributions of X(") converge under Qq. To this end, similarly to the definition of

Vp, ugn) and Vén), define the following signed Borel measures on R:

pu(A) = EQ[ (o + 1)V ) La(Xo0)],
(n)

P (A) =3 cnnyymea Pu(2)}, and pg”)(A) =2 {s:22/neatPn(z). Observe then
that (3.19) could be rewritten as

A" = E[f(JR)L.(JRy)]. (3.20)
Fix 0<t; <---<t;<1,and let f1 = f, fa,... fi be in Cp(R). We have

l 1
QT 10x0) = [ B 66 ldpa ().
=1 i=2
(n)

We will decompose the integral into three domains as follows. Since p; ' converges
to an absolutely continuous signed measure on R, for any ¢ > 0, there exists
0 > 0 such that p,(D,) < ¢ for all n large, where D,, = {z : |z| < d/n}. Let
D, +={2€Z:z>/né} and D,,_ = —D,, . Then

l
B TLH) = [ ES[+Jdpa (2)
D, UD”FFUDn,

Jj=2

Since the functions fi,..., f; are uniformly bounded, it follows that

\/ B[ Jdpa| < ce.
D,

Next, if z € D,, 4, then we can write

l

l l
H Xt(Jn = H t, ); 7o > n] —|—EQH 7'0<n}.

But,
l

BT £5(XM)70 < nll < eQ(r0 < 1) < Q| ymg) (0 < 00),

Jj=1
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and where the constant ¢ depends only on fs,..., f;. By transience of X under

@, it immediately follows that the probability on the righthand side tends to 0 as
n — oco. In addition,

l
H X() T0>TL Hfj \/ T0>TL]
Hf] \/ Y(n (1)7

where |o(1)] < CQL\/;“;J (1o < 00). Combining the two results, we conclude that

l
BRI £(X, oz / EQ| H VY dpnt (2) + o(1),

Dy 4+ j=2

where p,, 4+ (A) = pp(AN D, ). A similar argument shows that

l
I L X8 Nl -/ £ 1 V¥ ldpu ) +o(1),

with pn +(A) = pp(AN D, _). Altogether,

l
/EQ H t(@n )dpn(z /Epn+ H (sgn( Xon Y;(@tl]

+ B, _ [H Fi(sgn(X§)Y, 1+ 0(1) + €O(1).

Jj=2

However, since pgni converge to A — 2 Eo[f(++f-)(£R:)1a(£R;)], respectively,

and hence pgni converge as well, it follows from Proposition 3.12, and (3.20) that

l l
By, ton [[] £(sen(X§)Y, ] = EIf(JR) Er, [] (TR, -0,); Re > 4],
o o
Thus,
l

l
ST = B R [T 55T Rey )i B> 0] +0(1) +€O(1).

j=2

The result now follows by letting € (and consequently ) to 0, and from the absolute
continuity of JR;. g
3.7.4. Convergence of the Polymer.

Proof of Theorem 2.6-(ii). In light of (2.4), we need to show that for F': D[0,1] —
R continuous and bounded,
EQ[F(X™)/ws(X")] _ E[F(JR)/R)]

li - . 21
i Zsm E[1/R] (3.21)
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To prove this limit, let’s first assume that F' is also nonnegative. Then

VAESIF(X™) (X)) > BV p(x™);1 x| > .

va(X1™")
Now %/Jﬁ(an)) =1- B\XYOL and so
(n) (n) (n)
1 €,00 X 1 €,00 X 1 €.00 X
e es(XT) ne - gynlxyYl T =B

But

EQ[F(X™) /4s(X"))] 1 o Vm (.1 ()
Zﬁ;n Z \/ﬁZB,n 0 ['I/JB(XYL))F(X )’ ‘Xl | > 6]'

It follows from Fatou’s lemma that

Q (n) (n)
f i 0 FX ™) /15(X3™)] Z\ﬁEgg[F(JR)
n—00 Zg,n 2 Rl

s Ry > 26].

Since F R% = \/g , it follows that

lim inf Egz [F(X(n))/wﬁ(an))] > E[F(R)/Ry; Ry > 2¢]

oo Zpn E[1/Ry]

Since ¢ is arbitrary and Q(R; = 0) = 0, it follows from the monotone convergence
theorem that
EFF(X™)/4s(X1")] | EFIF(JR)/Ri]

lim inf =2

n—00 Zgn ~  E[l/Ri]

(3.22)

Now assume that F' is bounded and continuous. Let ¢ = inf F', then F — ¢ is
nonnegative, so it follows from (3.22) that

L EQIF = (X0 (X)) BI(F(R) — ¢)/Ri]
n— o0 ZB,n = E[]./Rl}

ESF(X™) /4p5(X{™)

However, the lefthand side is equal to liminf,, ., T — ¢, and the
. o EQ[(c—F(R))/R1] ] '
righthand side is equal to ~ R © Thus,
EQ[F(X™)/ys(X\™)] _ E[F(JR)/R]
lim inf =2 L > . 2
i Zin = T E[/R)] (329

Similarly, letting ¢ = sup F', then ¢ — F' is nonnegative, and so from (3.22) we
obtain

po e Bl = FYXX) s (X1™)] _ El(e — F(JR))/R)]
n— 00 R,B,n = E[l/Rl]
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EZIF(X™) /s (X{™)]

The lefthand side is equal to ¢ — limsup,,_, , and the right-

Zaom
o _ B[F(JR)/R]
hand side is equal to ¢ A Thus,
EG[F(X™)/us(X[")] _ EIF(JR)/Ri]
lim sup —2 L2 < : 3.24
n~>oop Zﬂ,n o E[l/Rl] ( )
The desired limit (3.21) follows from the inequalities (3.23) and (3.24). O
4. Appendix

Proof of Lemma 3.1. (i) d = 1. We first assume A > 0 and then extend by

analytic continuation. When d = 1, we can change variables by letting
- :
cos p = % where z = €'? and ¢ € [0,27). Then dz = izdf. Thus,

1 [ dy
I = %/0 A+ 1—cos(p)
1 1/(iz)dz
7T‘/Cl A+2—z2-1/z
1 dz
_m'/cl 22A+2) —22 -1

1 dz
I\ =— .
) 2 /01 2A+2)z—22-1

Let 21,22 denote the solutions to f(z) = (2A +2)z — 22 — 1 = 0. Then
z122 = 1 and z7 + 22 = 2\ + 2, which implies that exactly one solution is
inside the unit circle, denote it by z;. Then we have

1 1 2
I\ = —m‘/c1 —(2721)(2722) = —2Res(f;21) = o

Finally, 255 = ~ 2)\+2 =v(A+2)A
1
I\ = ———.
A2+ A)
(ii) d = 2. In what follows ¢ denotes a positive constant whose value may
change. Observe that ®(p) = sin®(p;/2) + sin®(@2/2). Therefore,
1
I(\) =4r72 / :
*) [0,7/2]2 A+ sin2(a1) + sinz(ozg)

Change variables to z1 = sin(ay) and z = sin(as), to obtain dz;/da; =

cos(a;) = 4/1 —a3. Therefore

1

1 1
I\ :471'_2/
() [071]2>\+x%+x%1/1_m%1/1_x%
1 1 1 1
:87772// .
o Jor Ataf+ad /1 -2 /142

dIldl‘Q
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Change to polar coordinates to obtain

Y w/4 pl/cos6 r

where h(r,0) = e ( 7 e ( 7 1 > 0. We can break the

integral into two. Since we’re 1nterested in the behavior when A is near
the origin, let us fix some § > 0, and assume that |[\| < §2/2. We then
write the integration domain as the union of A = {r < 6,0 € [0,7/4]}
and its relative complement B, and write I4 and Ig for the integrals over
the respective sub domains. On B, function 175 is uniformly bounded,
Hence

Z5] < e

1
1
——dr)’<c¢
/o Vv1— 22 )=

We turn to integration on A. We integrate by parts:

/4
IA:ﬂz/ / 5Elm)\—i—r)(1—|—h)drd9
4 )
== In(A+ 7 )(1—|—h)|1§8—/ In(A + 73R (r,0)dr | d6
™ Jo 0
1 1
S Py SR
= n 2 + A, Asys
where
4 71‘/4
Ia, = — In(\ + 6%)(1 + h(5,6))dd; and
™ Jo
/4 oh
Ia,. = —2/ / (A + 73R (r,0)drdf and b’ = —.
7r r

Clearly, 14, is uniformly bounded. As for I, , first observe that b’ is

bounded on A. As a result, Now

6
c/ |In(\ 4 72)|dr.
0

Note that if A = a + ib, then In(A +7%) = 1 In|(a + r?)? + b?| + a(A, )
where « is equal to to i times the argument of A+72. Thus, |In(A+7?)| <
2|lnja + r?||+ ¢ If a > 0, |In]a + r?|| < |Inr?|, and the integrability
of Inr? over [0, 6] guarantees that 14, is uniformly bounded over A\ with
nonnegative real part. If a < 0, then a = —|a|] and so r* + a = (r —

Vi0al)(r +y/]al), so that In|a + r%| < |In|r + /]a|| + |In|r — /]a|| <
In|r|+ |In|r —|y/]al|, and so,

5 5
/ |1n|a+r2\|dr:c+/ [In|r — +/|al|dr < c,
0 0

so that 4., is again uniformly bounded over A with negative real part.

EE

la,.| <
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It remains to consider the imaginary part of I(\). It is easy to see that
the imaginary part of Iz = O(S\). Thus, it remains to consider 314.
Consider A = —s +ie with s > 0, and leave the easier details for s < 0 to
the reader (in fact, this regime is not used in our paper). From (4.1) we
observe that

€

-Gy = — (14 h(r,0))drdo.
ST 4 /4(T2—8)2+€2( + h(r,0))dr

Now change variables to u = r? — s, then 7 = /s + u and so dr/du =

1 31+u. Note also that h(r,0) = h(v/s+ u,0) jointly continuous and

uniformly bounded on the domain of integration. We then have that

4 71'/4 S €
Sl = —C _a+n .
Sla=— ; /0 62+u2( + h(vs + u,0))dudd

Since %ﬁ is an approximation of the identity and h is bounded on A,
and remembering that Im Iz = O(€), it then follows from the dominated
convergence theorem that

4 w/4
Clim ST = & / (1+ h(y/5,6))d0
e—0 ™ Jo
4 [/ df
= —/ =1+o(1).
TJo \/1—scos20\/1—ssin?6
O
Proof of Lemma 3.4. We first show that H_,,Ag = 0. To prove this observe that
1 , 1—eiwe) 1 ,
AAg(w) = = o) N° 2 dp = 7/ el gy = 8o (w).
o(w) d /[Om]d € Z 24P (p) L — 0.7 € P o(w)

le]=1

We turn to uniqueness, which we prove according to dimension. Suppose d > 3.
Let u be a positive harmonic function for H_,. Of course, u(0) = 0. It follows
that Au(z) = ¢100(x), where ¢; = 5 > jej=1 u(€) > 0. Let now k(z) = ¢1Rodo(z).
Then A(u+k) = 0. As is well-known, the Martin boundary for A is spanned by 1.
Therefore u + k = ¢21, or equivalently, u = co1 — k. Since k is bounded, it follows
that w is bounded. Observing that k(x) = c3P, (79 < o), and using the fact
that u(0) = 0, it follows that u(x) = P,(70 = o0), up to a positive multiplicative
constant.

Next, suppose that d = 1,2. We can rewrite (3.9) as

(L) = Ax(2))(I(A) = Ax(=y))

Ry ™(z,y) = —Ax(z —y) + I(N) —

= —A,\(x — y) +

= Ax(@) + Ax(—y) — Az —y) - — T
By recurrence, limy\ o I(\) = co. Therefore

Ry (z,y) = Ao(2) + Ao(—y) — Ao(z —y).
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In addition, from the second equality in (3.10) we obtain that {Ag(—y)—Ao(x—y) :
y € Z%} are the Fourier coefficients of a function in L!([0,27]¢). The Riemann-
Lebesgue lemma implies then that lim,| o Ao(—y)—Ao(z—y) = 0. Consequently,
for any z, 79 € Z% — {0} we have

Lim 0 (‘ray) — ‘40('1:)7
lyl—oo Ry ™ (20,y)  Ao(zo)

which proves that the Martin boundary for H_, is spanned by Ay. O
Proof of Corollary 2.5.

(i) This follows immediately from Theorem 2.3 as

Egie™™0 = 7 z b
5.t s-xt/Zpt S
which is the Laplace transform of an exponential random variable with

rate —f.
(ii) Let U be open subset of (0,00). We will show that

hmlanﬁt o, €U) > /ﬂpgSOO
Since by (3.5) —Bps(s,0,0)ds is a probability density, this proves the

claim.
We first prove an auxiliary result. Suppose that |e| = 1. Then clearly,

Zgu(e) = Pe(T > u) —|—/0 Zgy—sdPe(T < 8) > Po(T > u) + Zg oy Pe (T < ).

Dividing both sides by Z3 , and taking u — oo, we have

Pe
g(e) > limsup Pelr > ) + 1.
U—>00 Zﬁ,u
However, 9g(e) =1 — 3, so that
P,
limsup 20> o g
U—>00 ZB,u
73 P.(t > “Z ZBu—s
Zﬁ,u Zﬁ’“ 0 ZB u

The left-hand side converges to ¥z(e), and therefore it follows from Fa-
tou’s lemma, that

P.(r>u

¥p(e) > liminf ) —|—/OodP (r <s).
0

uU—r 00 Zﬂvu

From this, it follows that liminf, % > —f. We conclude that

lim P.(7 > u)

U—> 00 Z,B,u

=B (4.2)
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Suppose that I = (a,b) C (0,00). Then we have

b—a
Zg.1Ps (00 € T) > Eolo(X,)e?@ / e PePPP(T >t —a— p)dp
0

b—a
= pg(a,0, 0)/ e PTPPdpP, (1 >t —a — p)dp
0
> pp(a,0,0)(b — a)e”C=VAHED P (r > ¢ —b). (4.3)

For each n, partition U into disjoint open intervals each of length < 277,
with the n 4+ 1-th partition embedded in the n-th partition (we omit a
countable set on each partition). Let f, be the function which is constant
on each element of the n-th partition. If this partition is given by the
intervals (ay, j,bn ), j =1,..., then let

fa(s) = Z (Pﬁ(an,ja O,O)e*(bn,j*an,j)(l*f’lﬁl)Pe(T >t — bmj) 1(an,j,bn,,v)(5)-

(iii)

J
It follows from (4.3) that

1
Pg (o €U) > —— [ fa(s)ds.
Zsy Ju
However, the continuity of 8z(-,0,0) and the fact that P.(7 > t —-) is
nonincreasing, it follows that f,(s) — pg(s,0,0)P.(7 > ¢t — s) a.e. with
respect to the Lebesgue measure. It then follows from Fatou’s lemma
that

P.(r>t—s
Ps(oy € U) = / pas,0,0) > 129)
U Bt

Applying Fatou’s lemma again and (4.2), we obtain

ds.

liminf Pg (0, € U) > —ﬁ/ pa(s,0,0)ds.
t—o00 U

The result follows.

By Theorem 2.4 for every T > 0, the distribution of the polymer measure
Pg |7, converges to the distribution of a Markov chain with generator
H;}ﬁ . By Theorem 2.2, the latter is transient. In particular, the num-
ber of visits to the origin starting from the origin, N, is Geom(p), with
p = Qc(10 < o0), where |¢] = 1. The weak convergence of the poly-
mer measure and the continuity of Ny guarantees that the distribution
of Np also converges, and that the limit is stochastically dominated by
Geom(p). In addition, the transience of the limit, guarantees also that
limy o0 limy 00 Pg (N7 € U) = Qo(Noo € U). Next, observe that

P,B,t(Nt c U) Z Pﬁ’t(Nt < U,O't S T) = Pﬁ’t(NT c U) - PB,t(Ut > T)

However, by part ii, limgp_ oo limy_yo0 Pg(0p > T) = 0. It then follows
that

liminf Py +(Ny € U) > Qo(Noo € U),

t—o00
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which proves that the distribution of IV, under Pg; converges to Geom(p).
It remains to find p. We have

Noo
: Q — gQ ,
tll)rgo Eg3(t) = Ey ZO Jjs
j=

where J; are IID exponential random variables with rate 1 — 3, the rate
of jump from the origin by ). However, the right-hand side is also equal
to

il " ps(5,0,0)05(0)ds = I°(0)

But by (3.4) and the Lemma 3.1 which guarantees that limy_,o I(\) = oo,
it follows that I°(0) = %B Thus,

L_EOQNOO_ 1
-8 1-8  p(1-p)

and the result follows.

O
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