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Keywords: Intuitionistic fuzzy relation, Intuitionistic fuzzy equivalence relation,
Intuitionistic fuzzy join semi L-coset filter, Intuitionistic fuzzy join semi L-quotient
filter

INTRODUCTION

L. A. Zadeh in 1965 introduced the notion of fuzzy set to describe vagueness
mathematically in its very abstractness and tried to solve such problems by assigning
to each possible individual in the universe of discourse a value representing its grade
of membership in the fuzzy set. Intuitionistic fuzzy sets were introduced in 1983 by
K.T. Atanassov[6]. P.Burillo and H. Bustince [20,21] have introduced the
intuitionistic fuzzy relations and their properties. D. K. Basnet and N.K. Sarma[7]
discuss the Intuitionistic fuzzy equivalence relation. K.V.Thomas and Latha S.
Nair[2], discuss the Intuitionistic fuzzy equivalences and congruences of a Lattice .
In this paper, we discuss some properties of intuitionistic fuzzy join semi L-quotient
filter.

Definition : An Intuitionistic fuzzy relation(IFR) R on L is called (s, t) reflexive
in µ(x, x) = s and � (x, x) = t for all x ��L.

Definition : An intuitionistic fuzzy (s, t) reflexive relation is called (s, t)
equivalence relation (IFER) if R is Symmetric ie)R–1 = R and R is transitive (ie)
RoR�R.

Definition : A(s, t) equivalence Relation R on L is called (s, t) congruence if for
all a, b, c, d�L
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µ(a�c, b�d) ��min{µ(a, b), µ(c, d)}

� (a�c, b�d) ��max {� (a. b), � (c, d)}

Note : If R is an intuitionistic fuzzy Equivalence relation (IFER) then
µ(x, x) � sup

x,y�L
 µ(x, y) and  � (x, x) � inf

x,y�L
 �(x, y)

Theorem
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This is a contradiction to A�AoB
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This is a contradiction to A�AoB

Hence s
1 
� s

2
 & t

1
 � t

2
.

Note

 Let A, B � IFR of L with sup
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A
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1
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Definition

Let s, t � [0,1] with s + t ��1. Then the sub collection Pr
(s,t)

 of IFS of L is called a (s,t)
- partition of L, if the following are satisfied.

(i) For each A�Pr
(s,t)

, µ
A
(x) = s, �

A
(x) = t for at least one x ��L.

(ii) For each x ��L, there exist only one A�Pr
(s,t)

 satisfying µ
A
(x) = s, �

A
(x) = t.

(iii) If A, B ��Pr
(s,t)
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A
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�
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A
 (z), �

B
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B
(x)
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Let Pr
(s,t)

 be a (s,t) - partition of L and x ��L. Then the unique member of Pr
(s,t)

which takes the value (s, t) at x is denoted by [x]
pr

Definition

For a (s, t) equivalence relation R on L, we call the set Pr
(s,t) 

= { [x]
R
/ x ��L} a quotient

set with respect to R and denoted by L/R. The members of L/R are called (s,t)
equivalence classes of L.

Definition

Let A be an intuitionistic fuzzy join semi lattice (IFJSL) and <µ, �> be any
intuitionistic fuzzy join semi L-filter (IFJSLF) of A. Then the intuitionistic fuzzy
join semi L- filter (IFJSLF) < µ

y
*, �

y
*> of A, where y�A defined by µ

y
*(z) = µ(z�y),
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�
y
*(z) = �(z�y) for all z�A is termed as the intuitionistic fuzzy join semi L- coset

filter (IFJSLCF) determined by y.

Theorem

Let <µ, �> be any IFJSLF of a IFJSL A. Let < µ
y
*, �

y
*> for all y�A be an IFJSLCF of

< µ, �> of A. Then < µ
y
*, �

y
*> is also a IFJSLF of A.

Proof

Let < µ, � > be any IFJSLF of a IFJSL A.

For all x, z�A,  µ
y
*(x�z) = µ((x�z) �y)

= µ((x�y) � (z�y))

� max {µ(x�y), µ(z�y)}

= max {µ
x
*, µ

z
*}

         µ
y
*(x�z) � max {µ

x
*, µ

z
*)

similarly  �
y
* (x�z) = � (x�z) � y

= � ((x�y) � (z�y))

= min {� (x�z), � (z�y)}

= min {�
x
*,  �

z
*},

Hence IFJSLCF is an IFJSLF of A.

Definition

Let < µ, � > be any IFJSLF of a IFJSL A. Then intuitionistic fuzzy join semi
L- quotient filter (IFJSLQF) <µ*, �*> of < A

µ
, A�> = <A/µ

t
, A/ �

t
 > is defined by µ*(x �

µ
t
) = µ(x) for all x�A and �*(x � �

t
) = � (x) for all x�A where µ

t 
= {x/µ(1) = µ(x) = t}

and �
t 
= {x/ �(0) = �(x) = t}.

Theorem

It < µ, � > be an IFJSLF of a IFJSL A. Then µ
y
* = µ

1
* & �

y
* = �

0
* if µ(y) = µ(1) and

� (y) = � (0) for all y ��A.
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Proof

Let µ(y) = µ(1) . => (1)

Then for all x ��A,

µ(x) ��µ(1)  => (2)

From (1),(2) we get µ(y) ��µ(x).

Case (i)

If µ(y) <µ(x).

Then µ(x�y) � max {µ(x), µ(y)}

= µ(x)

If µ(y) = µ(x)

Then x, y ��µ
t
 where t = µ(1).

µ(x�y) � max {µ(x), µ(y)}

= µ(y) = µ(1)

µ(x�y) = µ(y) = µ(1) = µ(x).

Thus in either case

µ(x�y) = µ(x) for all x�A,

(ie) µ
y
*(x) = µ(x) = µ

1
*(x)

Hence µ
y
* = µ

1
*

Also, let �(y) = �(0) => (3),

Then for all x ��A,

�(x) � �(0) => (4),

From (3)& (4) we get �(y) � �(x)

If � (y) < �(x) then �(x�y) � min{�(x), �(y)}

= �(y)

If �(y) = �(x), then x, y ��µ
t
 where t = �(0)

�(x�y) � min{�(x), �(y)}

= �(y) = �(0)
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Hence �(x�y) = �(y) = �(0) = �(x)

Thus �(x�y) = �(x) for all y�A

(ie) �
y

*(x) = �(x) = �
0

*(x)

�
y
* = �

0
*

Hence if �(y) = �(0), µ(y) = µ(1) then µ
y
* = µ

1
* and �

y
* = �

0
*

Theorem

If <µ, � > is an IFJSL of a IFJSL A, then µ(y) = µ(1), �(y) = �(0) iff µ
y
* = µ

1
*, �

y
* = �

0
*

for all y�A,

Theorem

If < µ, � > is an IFJSLF of a IFJSL A, then A/µ
t
 � Aµ,where t = µ(1) and A/ �

t
 � A �

where t = �(0).

Proof

Let A be an IFJSL and <µ, � > be IFJSLF of A.

To prove that A/µ
t
 � Aµ.

First we prove that g:A => Aµ is a map defined by g(y) = µ
y
* for all y�A is an into

intuitionistic Fuzzy join semi L-filter homomorphism (IFJSLFM).

µ
yvz

*(x) = µ((y�z) � x) = µ(y � x) � µ(z � x)

= µ
y
* v µ

z
*

Hence g is an IFJSLFH

Now g(y) = µ
y
* if f µ

y
* = µ

1
*

IFF
 µ(y) = µ(1)

This shows that kernel of g is equal to µ
t
.

A/µ
t
 � Aµ

Next we prove that g:A => A � is a map defined by g(y) = �
y
* for all y � A is an

IFJSLFH
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Now �
yvz

* (x) = � ((y�z) �x)

= � (y�x) � � (z�x)

= �
y
* � �

z
*

G is an IFJSLFH.

g(y) = �
y
* iff �

y
* = �

0
*

iff � (y) = �(0) This shows that kernel of g is equal to �t.

A/ �
y
 � A �

Theorem

If <µ, � > is an IFJSLF of a IFJSL A, then the intuitionistic fuzzy join subset IFJSS
µ* of Aµ and ��* of A � by µ*(y � µ

t
) = µ(x) and �* (yv �

t
) = �(y) where y�A is a IFJSLF

of < Aµ, A �>

Proof

Let < µ, �> be any IFJSLF of a IFJSLA.

T.P.T IFJSS µ* of Aµ defined by µ* (y^µ
t
) = µ(y)

Where y�A is an IFJSLF.

Let x, y�A. Then µ*((x � µ
t
) � (y �/ µ

t
) = µ*(x � y � µ

t
)

= µ(x�y) ��max {µ(x), µ(y)}

= max {µ* (x � µ
t
), µ*(y � µ

t
)}

µ* ((x � µ
t
) � (y � µ

t
)) ��max {µ* (x � µ

t
), µ* (y � µ

t
)}

�����((x � µ
t
) � (y � µ

t
) = �* (x ��y µ

t
) = �(x�y)

� min {�(x), �(y)}

= min { * (x � �t) , �* (y � �
t
)}

������ * ((x � µ
t
) � (y � µ

t
)) ��min { �*(x� �

t
), �*(y�  �

t
)}

Hence < µ*, ��* > is an IFJSLF of < Aµ, A�>
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Theorem

Let < µ, �> be any IfJSLF of a IFJSLA . Let <µ*, �*> be any IFJSLF of the quotient
IFJSL A/F, where F is any IFSS of A. Then Correspondence to < µ*, �*> in A/F,
there exist a IFJSLF of A.

Proof

Let < µ*, �*> be any IFJSLF of A/F. Define IFSS < �, ��* >of A by �(y) = µ*(y�F)
and �*(y) = �*(y�F) for all Y�A.

�(y�z) = µ* (y�z�F)

= µ* (y�F) v (z�F)

� max{ µ* (y�F), µ* (Z�F)}

= max {�(y), �(z)}

�(y�z) � max{�(y), �(z)}

Also ��*(y�z) = �* (y�z) �F

= �* (y�F) � (z�F)

� min { �* (y�F), �* (z�F)}

Hence �*(y�z) � min { � *(y), �*(z)}

Hence < �, ��* > is an IFJSLF of A.
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