
191 International Journal of Control Theory and Applications

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 9  •  Number 45  •  2016

Review- Program Comprehension

Raj Singha B.D. Mazumdarb and A.K. Vyasc

aJodhpur National University Jodhpur (Raj.) Lovely Professional University
E-mail: er.rajsingh@gmail.com
bDepartment of Computer Applications School of Management Studies Varanasi, U.P
cDepartment of Mathematics,Faculty of Engineering and Technology Jodhpur National University

Abstract: Program appreciation research has been described by both the speculations that give rich clarifications about
how developers understand programming and additionally the apparatuses that are utilized to help with perception
assignments. A Cognitive Model portrays the subjective procedures and interim data structures in software engineer’s
head .We have audited a percentage of the key psychological hypotheses of system perception that have developed
in project appreciation. Utilizing these speculations we investigate what number of apparatuses that is well known
to bolster program appreciation. In particular, we have examined how the subjective hypotheses and supporting
devices are connected and think about the exploration strategies that were utilized to build the speculations and
assess the devices. The checked on speculations and devices are further separated by qualities, program attributes,
and the setting for the different perception errands. At long last, we anticipate how these subjective components will
influence in the project appreciation devices and techniques. The software maintenance task is very time consuming
and tedious job. The industries spend 60-70 % of the time in maintenance. We have proposed the cognitive model,
which can help in reducing the cost program comprehension during software maintenance.
Keywords: Software maintenance, program comprehension, cognitive models, agents, program comprehension
approaches.

1.	 INTRODUCTION
Today major amount of programming work is accomplished on sophisticated software applications which we
called Integrated Development Environment (IDE). IDE are commonly favored by programmers because of
Rapid Application Development (RAD). It provides programmers some special tools like; Source Code Editor,
Build Tools, Debugger, Compiler or Interpreter, Version Control System etc.

These functionalities present more than one perspectives of the same program, which is in development
process. These representation forms are known as program visualizations. It provides programmers not to treat
programs as Code Text produced as Program Entities, Which are executed in conditions. Program visualizations
are presented either in textual or, graphical form and presents different information about the program e.g. If
there is simultaneous use of both Unified Modeling Language (UML) diagram and Flow control diagram to

192International Journal of Control Theory and Applications

Raj Singh, B.D. Mazumdar and A.K. Vyas

tackle different perspectives of single software project. These visualizations are used by the programmer to
debug a program. Different programmers use these functionalities (Tools) according to their interest, which
depends on factors like:-Programming language expertise adjustment with the IDE and personal preferences. It
means that effective usage of visualizations depends over the skill of a programmer. These skills are in generating
and testing hypothesis from the program output and visualization. Novice programmers having no knowledge
of IDE faces problem of understanding and using IDE in skilled way. It is necessary to develop a platform and
training process for guiding these novice programmers. In case of program comprehension the main emphasis
is on understanding the programs written by others. Majority of program or, code comprehension research is
focused on capturing the logical (thinking) ways of programming through comprehension models, instead of
Eye Tracking Methodologies or, Models. Recently researches are mainly focused on Visual Attention Tool,
which is called Restricted Focus Viewer (RFV). It may be called Eye Tracker. For this purpose researchers are
working on studying the psychology of the programmers.

	The main focus of the present research is centralizing on investigation through theoretical hypothesis
and empirical methods of Cognitive Processes active during the time of programming. First develop cognitive
model of program comprehension and debugging methods. Second empirical study of programmers, it was
designed and controlled to explore the processes involves in program comprehension and debugging.

2.	 COGNITIVE MODEL
	It is worried with comprehension of procedures that the human cerebrum uses to handle complex undertakings
including seeing, learning, recollecting, and considering, anticipating is moving around the framework. Essential
objective of an intellectual model is to logically clarifying more than one of the above subjective procedures and
their collaboration (8). They uncover data identified with subjective and perceptual imperatives.

It shows up in numerous fields that arrangement with insight, going from recognition to critical thinking
and deciding. It fuses mental models which are as indicated by Johnson – Laird’s hypothesis (37). It gives
essential structure.

Mental Model (46), (47) plays a focal and bringing together part in speaking to protests, situation, groupings
of occasions far and wide, social and mental activities of regular schedule. Mental model are improved forms
of complex situation made in the working memory. It is less demanding to imagine, decipher and foresee
activities. Built Mental model depend on:

1.	 Perception.

2.	 Comprehension.

3.	 Imagination.

Some of the cognitive models which are proposed and studied is in the areas of Text comprehension,
Graph and picture comprehension, Program comprehension and human Computer Interaction.

Text comprehension (38) is important in research activities because of reading and understanding the
code. Text and diagram comprehension offers a cognitive strategies and resulting mental representations. A
cognitive model portrays the subjective procedures and impermanent data structures in software engineer’s
head. An intellectual element incorporates the accompanying:

1.	 Knowledge Level

2.	 Social Level

3.	 Co-operation

4.	 Co-ordination

5.	 Belief

193 International Journal of Control Theory and Applications

Review- Program Comprehension

6.	 Commitment

7.	 Goal to Achieve

8.	 Capacity

3.	 PROGRAM COMPREHENSION METHODS
Program comprehensions have two major key strands:

1.	 The first is observational examination which makes progress toward a comprehension the project
structure, control stream and working i.e. mental model that software engineer’s utilization when
comprehension programs.

2.	 The second includes device based methodology, which focuses on creating semi-computerized
apparatus support 	to enhance program understanding.

It provides analysis of how two approaches of research are related. During 1970’s various non-technical
and random methods were applied for cognitive based code comprehension. Some technical methods are evolved
for cognitive based code comprehension. To understand and describe developer’s mental representation mental
model was used. This mental module was evolved from a cognitive module. As per shown in the Figure 1.

Figure 1: Program comprehension methods

These plans and rules of programming could support in developing cognitive model.
At the end we have Artificial intelligent based technical research for code comprehension was evolved

from mental model. The mental model encodes the software engineer’s present comprehension of the system. It
comprises of a detail of the system objectives and the usage regarding the information structures and calculations
utilized. As per shown in the Figure 2.

Cognitive
(thoughts)

Behavioral
(action)

Affective
(feelings)

Relationships
with others

Figure 2: Program comprehension model

194International Journal of Control Theory and Applications

Raj Singh, B.D. Mazumdar and A.K. Vyas

4.	 PROPOSED COGNITIVE MODEL

When a person involved in studies to investigate debugging strategies with multiple ways of visualizations in
IDE’s, this limited the use of representations. We have to select a few strategies among them during the time of
experiment. But restricting the strategies gives not a proper solution to the professional programmers. For this a
special type of IDE (jGRASP) is used, which offers a combination of visualizations (it is used performance wise
and professionally both). It gives programmers unrestricted access to many static and dynamic visualization
aids with program code.

It could generate a problem when question get arise. Defining such problem is called “Problem Statement”.

A cognitive model has 3 (three) main components, As per shown in Figure 7:

1.	 Cognitive Aids / Representations used while debugging.

2.	 A cognitive process is either primed by a cognitive aid or, a process that is inherently evoked.

3.	 Mental Representations are derived from the cognitive processes and cognitive aids. Programmer
constructs and manipulates anybody’s mental representations in case of interacting with the
programming environment and understanding the information presented.

In case of program plans three types of comprehension process were used:

4.1. Top-down comprehension.

4.2. Bottom-up comprehension.

4.3. Systematic and as needed comprehension.

4.4. Integrated comprehension.

4.1.	 Top-down comprehension

If there should be an occurrence of Top-down perception (4) process begins with a speculation about the general
way of the project. This introductory hypo is then refined auxiliary speculation. Auxiliary theory is refined and
assessed in a profundity first way. Top-Down understanding (49) is utilized when the code is commonplace.
It takes after steps:

1.	 Knowledge Base is related to gathering information from different servers connected within a
Network or, WAN (15). As per shown in the Figure 6.

2.	 Situation Model is related to situation arises during code decoding process. As per shown in Figure 3.

a)	 In case of Normal way Reading of source code, the code decoding and comprehension process
fluency is good.

b)	 In case of Learning (Lexical Analysis) of source code i.e. Dyslexic, the code decoding fluency
is poor whereas the comprehension process is good.

c)	 In case of Learning without training i.e. Hyperlexic, the code decoding fluency is good whereas
the comprehension process is poor.

d)	 In case general program or, module learning difficulties code decoding and comprehension
process fluency are both poor.

195 International Journal of Control Theory and Applications

Review- Program Comprehension

Figure 3: Situation model

3.	 Program Model is inter-related with Program Assessment, Capacity, Planning, Implementation and
Evaluation. As per shown Figure 4.
a)	 Assessment of the program counts its importance and valuation of code.
b)	 Capacity of program means its impact and scope.
c)	 Planning of the program is used to give it a proper structure and sequence of steps.
d)	 Implementation of the program is to decide area to implement, training and size.
e)	 Evaluation of the program is related to program nature.

Figure 4: Program model

196International Journal of Control Theory and Applications

Raj Singh, B.D. Mazumdar and A.K. Vyas

4.2.	 Bottom-up Comprehension
In case of Bottom-Up comprehension assume that programmers first read code statements and then, mentally
chunk or, group these statements into higher level abstractions. It follows reverse process of Top Down
comprehension. These abstractions are aggregated further until a high-level understanding of the program is
attained (26), Shnaiderman and Msyer’s cognitive framework differentiates between syntactic and semantic
knowledge of programs. According to Pennington (46), (47) describes a Bottom up model. She observed that
programmers first develop control-flow abstraction of a called Program Model.

Once the program model is fully assimilated the situation model is develop. It encompasses knowledge
about data -flow abstraction and functional abstraction. The assimilation process describes how the mental
model evolves using the programmer’s knowledge base together with program so user code and documentation.
It may be top-down or, bottom-up depending on programmer’s initial knowledge.

4.3.	 Systematic and As-needed Comprehension
Littman et al. (59) describes two comprehension strategies

4.3.1.	 Systematic Comprehension

	Systematic is where a programmer systematically reads through code in detail, looking at both the control-flow
and data-flow abstractions is used to obtain a thorough understanding of the code.

4.3.2.	 As-needed Comprehension

	As-needed comprehension is the method where the programmer only looks at the code related to a particular task.
Parts of the code are looked at only when the programmer needs to understand them. As-needed comprehension
description could be thought of as describing both checklist and scenario defect detection methods gets
highlighted.

Littman (59) in 1986 watched that developers either deliberately read the code in subtle element,
following through the control-stream and information stream reflection in the system to pick up a worldwide
comprehension of the project or, that they take an as required methodology concentrating just on the code
identifying with a specific current workload.

Subjects utilizing a precise system procured both static learning (data about the structure of the project)
and easygoing information (connections between segments in the project when it is executed). This empowered
them to frame a mental model of the system. This technique is considered as learning base procedure.

4.4.	 Integrated Comprehension
Von Mayrhauser and Vans coordinated the Top-Down, Bottom-Up, Systematic and as required Comprehension
techniques. An integrated metamodel created by Von Mayrhauser and Vans expands on four noteworthy
segments (models) like, as per shown Figure 5.

1.	 Top-Down Model

2.	 Program Model

3.	 Situation Model

4.	 Knowledge Base

197 International Journal of Control Theory and Applications

Review- Program Comprehension

Figure 5: Integrated model

Figure 6: Knowledge-base

The initial three models portray the cognizance forms used to make mental representation at different
levels of reflection. The fourth segment depicts the learning base expected to perform a cognizance process.
Program that is precisely planned and very much reported will be simpler to comprehend, change or, reuse in
future.

Pennington’s trial (46) demonstrates that decision of dialect affects cognizance process. There are 3
segments to his model. The information base encodes the software engineer’s aptitude and foundation learning.
COBOL software engineer’s reliably fared better at noting questions identified with information stream than
FORTRAN developers though, FORTRAN software engineers reliably fared superior to anything COBOL
developer’s for control stream questions. Sorts of methodology such as Modular, Structured or, Object Oriented
writing computer programs are utilized. Tremendous specialists built up the conventional subjective hypotheses
for system perception. Examines the ramifications of the created speculations on instrument outline and at
times. Likewise, how instruction and project outline could be enhanced to address program understanding
difficulties. Program (by Curtis) perception research gives numerous counsel on how apparatuses can be made
strides. The device planners use current speculations to comprehend the elements that are required.

198International Journal of Control Theory and Applications

Raj Singh, B.D. Mazumdar and A.K. Vyas

Figure 7: Proposed cognitive model

Cognitive Models and Tool implications
1.	 Documentation.

2.	 Browsing and navigation support.

3.	 Searching and Querying.

4.	 Multiple Views.

5.	 Context Driven Views

6.	 Cognitive Support.

5.	 TOOL REQUIREMENTS EXPLICITLY IDENTIFIED
Several researchers studied expert programmers in industrial settings and consequently recommended specific
requirements for improving tools to support comprehension like;

199 International Journal of Control Theory and Applications

Review- Program Comprehension

1.	 Concept assignment problem.

2.	 Reverse engineering tools needs.

3.	 Importance of search and history.

4.	 Information needs for maintainers.

5.	 Software visualization tool needs.

6.	 METHODS FOR DETERMINING PROGRAM COMPREHENSION TOOL REQUIREMENTS

6.1.	 Program Comprehension Research Tools
The field of program comprehension research has resulted in many diverse tools to assist in program
comprehension. Program comprehension tools generally implement a reverse engineering process. As per
shown in Figure 8, basic activities in reverse engineering process includes:

1.	 Extraction.

2.	 Analysis.

3.	 Presentation.

Figure 8: Program comprehension tool

Extraction apparatuses incorporate parsers and information gathering devices to gather both static and
element information. Static information is acquired by extricating actualities from the source code. A Fact
Extractor ought to have the capacity to figure out what Artifacts the system characterizes, uses, imports and
fares and also relationship between those curios. The advancements fundamental truth extractors depend on
procedures from compiler build particle (1) e.g. Present day Fact Extractors incorporate CAN, a quick C/C++
extractor, from the Columbus figuring out apparatus.

Dynamic information is acquired by analyzing and separating information from the run time conduct of
the system. Such information can be removed through a wide assortment of follow investigation instruments
and strategies.

Investigation apparatuses bolster exercises, for example, grouping, idea task, highlight distinguishing
area examination, cutting and measurements figuring’s. There are various programming procedures that can be
utilized amid figuring out to distinguish programming parts.

200International Journal of Control Theory and Applications

Raj Singh, B.D. Mazumdar and A.K. Vyas

Dynamic investigation for the most part includes instrumentation of the source code. With element
investigation just a subset of the system might be applicable however dynamic follows can be huge posturing
noteworthy difficulties amid the examination of the information. Static examination can be utilized to prune the
measure of data took a gander at amid element investigation. Presentation instruments incorporate Code editors,
Browsers, Hypertext viewers and Visualizations.

7.	 TOOLS FOR COMPREHENSION
The visualization tools are created for object oriented programming. Both inspection and visualization tools
may have features that can help to support cognitive strategies for program and code comprehension. Tools will
be compared to the criteria defined by Linos.

Figure 9: Code comprehension tools

Both inspection and visualization tools may have features that can help to support cognitive strategies for
program comprehension. As per shown in Figure 9.

7.1.	 Inspection Tools

Inspection Process:
Step 1: Getting an overview of the project description.
Step 2: In the preparation step, each member of the group works on their own and attempts to gain an

understanding of the documents which is being provided.
Step 3: In this step, it is used to check that all problems that were raised in the inspection process have

been dealt with.
This inspection process is developed by Fagan (14) in 1972 and then, updated by himself in 1986 (15).

As per the comparison shown for inspection tools and their features in the table1.
Table 1

Inspection tools and their features

S. No Name Type Features

1. ASSIST (Asynchronous
or, Synchronous Software
Inspection Tool) (61),(62)

Distributed Defect finding Aids, Enhanced Document representation,
Facility for metric collection and analysis, provision of

facilities for distributed inspection, provides online checklists,
Generic software inspection template

2. Scrutiny (53) Distributed It mainly supports documents. It inspect by following the steps
…Initiation -> Preparation -> Resolution ->

Resolution -> Completion

201 International Journal of Control Theory and Applications

Review- Program Comprehension

S. No Name Type Features

3. ICICLE (Intelligent Code
Inspection in a C Language

Environment) (67)

Individual It supports mainly C language constructs through two
phase inspection like ; individual inspection

and meeting.

4. Collaborative Software
Inspection (CSI) (63)

Distributed It provides an online inspection environment by favoring
four types of collaborative inspection meeting such as; same
time and place , same time and different place , different time

and same place , different time and place. It supports both
synchronous (group meeting) and asynchronous

(individual checking) activities.

5. WiP (54) Distributed It attempts to solve the problem of having a scattered
inspection team by utilizing www and is designed to distribute
the documents to be inspected. It allows document marking,
search documents, allow selection of checklists and gather

inspection statistics. It provides access to users to find source
documents and checklists.

7.2.	 Visualization Tools

The visualization tools are created for Object oriented programming. It acts as an interface between two powerful
information processing systems i.e. The Human Mind and The Modern Computer.

Table 2
Program visualization tools

S.No Name Features

1. Easy CODE (C++) (69) It is a PC based commercial windows package from Siemens AG Austria.
It uses structured program techniques to visually display programs. It is a

improved version XperCASE.

2. With Class 98 (67) It is an Object oriented CASE tool developed by MicroGold software for
Windows on PC. The program allows the construction of graphical model in an
Object Oriented methodology and allows selecting from several OO methods.
It includes unified method, Run Baugh method, Coad Yourdon method, Booch
method, etc. With the use of this designing of class diagrams, detailing class

attributes and methods are possible.

3. SNiFF + (70) It supports C, C++, Java, Fortran program developing environment. It
provides features including version and configuration management, project

management, code comprehension and debugging, browsing document
and document building management. It contains filtering and visualization

techniques.

4. ISVis (55) It helps to visualize interaction patterns in executing program on Sun Solaris,
SunOS and IRIX platforms This program is carry out large amount of real

information and able to carry out abstractions, data simplifications. It leads to
“Visualize interaction patterns in program execution”

5. Look! (65) It is C++ debugging and visualization tool available for Windows, SunOS,
Solaris and AIX. It provides views of Object creation relationship, class

clusters , Object Networks , message Flow and dynamic class views

202International Journal of Control Theory and Applications

Raj Singh, B.D. Mazumdar and A.K. Vyas

This visualization process is developed by Gershon et al. (17) in 1972 and then, updated by himself in 1986
(15). It involves manipulating information, data and knowledge and converting it into a visual representation in
more than one dimension, which utilizes the human visual system. A comparison is shown in table 2, various
visualization tools. Visualization tool has become very common practices for identify the relationship between
the various program. As graphical representations of code is much more correct and beneficial for novices and
programmer, also more understanding as compared to normal textual information.

8.	 CHALLENGES IN PROGRAM COMPREHENSION
We have concluded from the review that there is need to develop agent based code comprehension models
(72,73). The human factors like experience, knowledge and intension are the basic factors which can affect the
cost of program comprehension (74). The source code contains various relationships in variables, classes and
functions, the tools have implications to identify the relation dependencies. The software visualization tools
can perform specific tasks only, but the relations within the code is always remains a challenge. So there is no
such tool or model which can reduce comprehension task. The review also reveals the need for higher-level
abstractions and visualizations Semantic and visual support required for software maintainers during routine
maintenance tasks (75). Cognitive agents execute a decision cycle in which they process events and derive a
choice of action from their beliefs and goals. Current state-of-the-art debuggers for agent programs provide
insight in how agent behavior originates from this cycle but less so in how it relates to the program code (76).

9.	 CONCLUSION
Code comprehension process is an approach of understanding the cognitive and social aspects of program
comprehension using conventional methods of agents as well as technical support. Code comprehension plays
a remarkable role for software re-engineering. It is an A.I. Based technique using the automated support of
software tools. It replaces any multi agent with computer based multi-agent system. In future we need to
develop the agent based model for code comprehension. This can automate the code comprehension process
during software maintenance.

REFERENCES
[1]	 Aho AV, Sethi R, Ullman JD. Compilers : Principals, Techniques and Tools. 2000.

[2]	 Ball T, Eick SG. Software visualization in the large. Computer. 1996 Apr;29(4):33-43.

[3]	 Creswell JW. Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications; 2013 Mar 14.

[4]	 FP Jr B. No Silver Bullet Essence and Accidents of Software Engineering. Computer. 1987 Apr 1(4):10-9.

[5]	 Brooks R. Towards a theory of the comprehension of computer programs. International journal of man-machine studies.
1983 Jun 1;18(6):543-54.

[6]	 Rao AS, Georgeff MP. A model-theoretic approach to the verification of situated reasoning systems. In Proceedings of
the 13th international joint conference on Artifical intelligence-Volume 1 1993 Aug 28 (pp. 318-324). Morgan Kaufmann
Publishers Inc..

[7]	 Blackwell AF, Jansen AR, Marriott K. Restricted focus viewer: a tool for tracking visual attention. In Theory and application
of diagrams. 2000 Sep 1; (pp. 162-177). Springer Berlin Heidelberg.

[8]	 Blackwell AF, Jansen AR, Marriott K. Restricted focus viewer: a tool for tracking visual attention. In Theory and application
of diagrams . 2000 Sep 1 ; (pp. 162-177). Springer Berlin Heidelberg.

[9]	 Busemeyer JR, & Diederich A. Cognitive modeling. Los Angeles: Sage. 2010.

[10]	 Carney RN, Levin JR. Pictorial illustrations still improve students’ learning from text. Educational psychology review.
2002 Mar 1;14(1):5-26.

203 International Journal of Control Theory and Applications

Review- Program Comprehension

[11]	 Cheng PC, Lowe RK, Scaife M. Cognitive science approaches to understanding diagrammatic representations. Artificial
Intelligence Review. 2001 Mar 1;15(1-2):79-94.

[12]	 Cox R, Brna P. Analytical reasoning with external representations: Supporting the stages of selection, construction and
use. Journal of Artificail Intelligence in Education. 1995; 6 (2/3), 239-302.

[13]	 Crane HD. The Purkinje image eyetracker, image stabilization, and related forms of stimulus manipulation. Visual science
and engineering: Models and applications. 1994 Mar 30:15-89.

[14]	 Cross II JH, Hendrix TD, Umphress DA, Barowski LA, Jain J, Montgomery LN. Robust generation of dynamic data
structure visualizations with multiple interaction approaches. ACM Transactions on Computing Education (TOCE). 2009
Jun 1;9(2):13.

[15]	 Cutrell E, Guan Z. What are you looking for?: an eye-tracking study of information usage in web search. InProceedings of
the SIGCHI conference on Human factors in computing systems 2007 Apr 29 (pp. 407-416). ACM.

[16]	 Ducasse M, Emde AM. A review of automated debugging systems: knowledge, strategies and techniques. InProceedings
of the 10th international conference on Software engineering 1988 Apr 1 (pp. 162-171). IEEE Computer Society Press.

[17]	 Duchowski A. Eye tracking methodology: Theory and practice. Springer Science & Business Media; 2007 Sep 14.

[18]	 Gentner D. The mechanisms of analogical learning. In S. Vosniadou, & A. Ortony, Similarity and Analogical Reasoning.
1989; (pp. 197-241). Cambridge: Cambridge University Press, England.

[19]	 Romero P, Cox R, du Boulay B, Lutz R. Visual attention and representation switching during java program debugging:
A study using the restricted focus viewer. In Diagrammatic Representation and Inference 2002 Apr 18 (pp. 221-235).
Springer Berlin Heidelberg.

[20]	 Romero P, du Boulay B, Cox R, Lutz, R. Java debugging strategies in multi representational environments. 15th Annual
Workshop of the Psychology of Programming Interest Group (PPIG). 2003b. Keele University, UK.

[21]	 Romero P, Lutz R, Cox R, Du Boulay B. Co-ordination of multiple external representations during Java program debugging.
In Human Centric Computing Languages and Environments, 2002. Proceedings. IEEE 2002 Symposia on 2002; (pp. 207-
214). IEEE.

[22]	 Schnotz W, Bannert M. Construction and interference in learning from multiple representation. Learning and instruction.
2003 Apr 30; 13(2):141-56.

[23]	 Schnotz W, Bannert M. Support and interference effects in learning from multiple representations. In European Conference
on Cognitive Science 1999 Oct 30 (pp. 447-452).

[24]	 Shah P, Carpenter PA. Conceptual limitations in comprehending line graphs. Journal of Experimental Psychology: General.
1995 Mar;124(1):43.

[25]	 Shah P, Hoeffner J. Review of graph comprehension research: Implications for instruction. Educational Psychology
Review. 2002 Mar 1;14(1):47-69.

[26]	 Shah P, Mayer RE, Hegarty M. Graphs as aids to knowledge construction: Signaling techniques for guiding the process of
graph comprehension. Journal of Educational Psychology. 1999 Dec;91(4):690.

[27]	 Shneiderman B, Mayer R. Syntactic/semantic interactions in programmer behavior: A model and experimental results.
International Journal of Computer & Information Sciences. 1979 Jun 1;8(3):219-38.

[28]	 Sime J. An investigation into teaching and assesment of qualitative knowledge in engineering. InEuropean Conference on
Artificial Intelligence on Education 1996 Sep (pp. 240-246).

[29]	 Soloway E, Adelson B, Ehrlich K. Knowledge and processes in the comprehension of computer programs. InChi et al 1988
Jun (Vol. 123, pp. 129-152).

[30]	 Soloway E, Lampert R, Letovsky S, Littman D, Pinto J. Designing documentation to compensate for delocalized plans.
Communications of the ACM. 1988 Nov 1;31(11):1259-67.

[31]	 Green TR. Cognitive dimensions of notations. People and computers V. 1989 Sep 5:443-60.

[32]	 Busemeyer JR, Diederich A. Cognitive modeling. 2010. Los Angeles: Sage.

204International Journal of Control Theory and Applications

Raj Singh, B.D. Mazumdar and A.K. Vyas

[33]	 Carney RN, Levin JR. Pictorial illustrations still improve students’ learning from text. Educational psychology review.
2002 Mar 1;14(1):5-26.

[34]	 	Cheng PC, Lowe RK, Scaife M. Cognitive science approaches to understanding diagrammatic representations. Artificial
Intelligence Review. 2001 Mar 1; 15(1-2):79-94.

[35]	 Gernsbacher MA, Varner KR, Faust ME. Investigating differences in general comprehension skill. Journal of Experimental
Psychology: Learning, Memory, and Cognition. 1990 May; 16(3):430.

[36]	 Gilmore DJ. Models of debugging. Acta psychologica. 1991 Dec 1;78(1-3):151-72.

[37]	 Grubb P, Takang AA. Software maintenance: concepts and practice. World Scientific; 2003 Jul 7.

[38]	 Johnson-Laird PN. Mental models: Towards a cognitive science of language, inference, and consciousness. Harvard
University Press; 1983.

[39]	 Just MA, Carpenter PA. A capacity theory of comprehension: individual differences in working memory. Psychological
review. 1992 Jan;99(1):122.

[40]	 Katz IR, Anderson JR. Debugging: An analysis of bug-location strategies. Human-Computer Interaction. 1987 Dec
1;3(4):351-99.

[41]	 Kintsch W, Van Dijk TA. Comment on se rappelle et on résume des histoires. Langages. 1975 Dec 1(40):98-116.

[42]	 Mautone PD, Mayer RE. Cognitive aids for guiding graph comprehension. Journal of Educational Psychology. 2007
Aug;99(3):640.

[43]	 Mayer RE. Learning strategies for making sense out of expository text: The SOI model for guiding three cognitive processes
in knowledge construction. Educational psychology review. 1996 Dec 1;8(4):357-71.

[44]	 Narayanan NH, Hegarty M. On designing comprehensible interactive hypermedia manuals. International journal of human-
computer studies. 1998 Feb 28;48(2):267-301.

[45]	 Narayanan NH, Hegarty M. Multimedia design for communication of dynamic information. International journal of
human-computer studies. 2002 Oct 31; 57(4):279-315.

[46]	 	Nathan MJ, Kintsch W, Young E. A Theory of Algebra-Word-Problem Comprehension and Its Implications 		
for the Design of Learning Environments. Cognition & Instruction. 1992; 9 (4), 329.

[47]	 Pennington N. Comprehension strategies in programming. InEmpirical studies of programmers: second workshop 1987
Dec 1 (pp. 100-113). Ablex Publishing Corp..

[48]	 Pennington N. Stimulus structures and mental representations in expert comprehension of computer programs. Cognitive
psychology. 1987 Jul 31;19(3):295-341.

[49]	 Romero P, Cox R, Du Boulay B, Lutz R. A survey of external representations employed in object-oriented programming
environments. Journal of Visual Languages & Computing. 2003 Oct 31;14(5):387-419.

[50]	 E. Soloway, B. Adelson, and K. Ehrlich, “Knowledge and Processes in the Comprehension of Computer Programs,” in The
Nature ofExpertise, M. Chi, R. Glaser, and M. Farr, eds.A. Lawrence Erlbaum Associates, Hillsdale, N.J., 1988, pp.129-
152.

[51]	 Trabasso T, Van den Broek P. Causal Thinking and the Representation of Narrative Events. Journal of 	 Memory 	a n d
Language. 1985; (24), 612-630.

[52]	 Van Oostendorp H, Goldman SR, editors. The construction of mental representations during reading. Psychology Press;
1998 Nov 1.

[53]	 Canfora G, Mancini L, Tortorella M. A workbench for program comprehension during software maintenance. InProgram
Comprehension, 1996, Proceedings., Fourth Workshop on 1996 Mar 29 (pp. 30-39). IEEE.

[54]	 	Gintell J, Arnold J, Houde M, Kruszelnicki J, McKenney R, Memmi G. Scrutiny: A collaborative inspection and review
system. In Software Engineering—ESEC’93. 1993 Sep 13 (pp. 344-360). Springer Berlin Heidelberg.

[55]	 	Harjumaa L, Tervonen I. A WWW-based tool for software inspection. InSystem Sciences, 1998., Proceedings of the Thirty-
First Hawaii International Conference on 1998 (Vol. 3, pp. 379-388). IEEE.

205 International Journal of Control Theory and Applications

Review- Program Comprehension

[56]	 Jerding DF. ISVis [Internet]. Cc.gatech.edu. 2016 [cited 31 March 2016]. Available from: http://www.cc.gatech.edu/
morale/tools/isvis/isvis.html

[57]	 	Dennett DC. The Intentional Stance. The MIT Press. 1987

[58]	 	Weiss G. Multi- Agent Systems. MIT Press. 1999.

[59]	 Wooldridge M. Agent-based software engineering. InSoftware Engineering. IEE Proceedings-[see also Software, IEE
Proceedings] 1997 Feb (Vol. 144, No. 1, pp. 26-37). IET.

[60]	 	Littman DC, Pinto J, Letovsky S, Soloway E. Mental models and software maintenance. In Empirical Studies of 	
Programmers , 1986; pp. 80-98. Ablex Publishing Corporation.

[61]	 	Macdona F, Miller J, Brooks A, Roper M, Wood M. A review of tool support for software inspection. InComputer-Aided
Software Engineering, 1995. Proceedings., Seventh International Workshop on 1995 Jul 10 (pp. 340-349). IEEE.

[62]	 	Macdonald F, Miller J. Automated Generic Support for Software Inspection, 10th International Quality Week, San 	
Francisco, 1997 May 27-30.

[63]	 	MacDonald F, Miller J. A software inspection process definition language and prototype support tool. Software Testing,
Verification and Reliability. 1997 Jun 1;7(2):99-128.

[64]	 	Mashayekhi V, Drake JM, Tsai WT, Riedl J. Distributed, collaborative software inspection. Software, IEEE. 1993
Sep;10(5):66-75.

[65]	 	Von Mayrhauser A, Vans AM. Program comprehension during software maintenance and evolution. Computer. 1995 Aug;
28(8):44-55.

[66]	 	Cain J, McCrindle R. Software visualisation using C++ lenses. Proceedings Seventh International Workshop on Program
Comprehension. 1999 May: 20-26.

[67]	 	Robson DJ, Bennett KH, Cornelius BJ, Munro M. Approaches to Program Comprehension. Journal of Systems 	
Software. 1991 February; Vol. 14, No. 2, pp. 79-84,

[68]	 	Sembugamoorthy V, Brothers L. ICICLE: Intelligent code inspection in a C language environment. InComputer Software
and Applications Conference, 1990. COMPSAC 90. Proceedings., Fourteenth Annual International 1990 Oct (pp. 146-
154). IEEE.

[69]	 	Shneiderman B. Software psychology: Human factors in com. Computer and Information Systems. 1980.

[70]	 Siemens EasyCODE (C++) [Internet]. http://siemens-easycode-c.software.informer.com/ 2016 [cited 31 March 2016].
Available from: . Österreich S. Siemens EasyCODE (C++) [Internet]. Software Informer. 2016 [cited 31 March
2016]. Available from: http://siemens-easycode-c.software.informer.com/

[71]	 	Software Development: Product review: SNiFF+ for Linux [Internet]. Linuxfocus.org. 2016 [cited 31 March 2016].
Available from: http://www.linuxfocus.org/English/March2000/article140.shtml

[72]	 Young P. Program comprehension. Visualisation Research Group, Centre for Software Maintenance, University of Durham.
1996 May 28.

[73]	 Tiarks R, Röhm T. Challenges in Program Comprehension. Software technik-Trends. 2012; 32(2):19-20.

[74]	 Raj Singh D. Agent Based Code Comprehension Model Using Semantic Knowledge Base. International Journal of
Engineering Research and Technology [Internet]. 2014 [cited 1 April 2016];Vol. 3 - Issue 5 (May - 2014)(Vol. 3 - Issue
5 (May - 2014). Available from: http://www.ijert.org/view-pdf/9575/agent-based-code-comprehension-model-using-
semantic-knowledge-base.

[75]	 Siegmund J, Schumann J. Confounding parameters on program comprehension: a literature survey. Empirical Software
Engineering. 2014;20(4):1159-1192.

[76]	 Gonen B, Fang X, El-Sheikh E, Bagui S, Wilde N, Zimmermann A. Ontological Support for the Evolution of Future
Services Oriented Architectures. TMLAI. 2014;2(6).

[77]	 Koeman V, Hindriks K. Designing a Source-Level Debugger for Cognitive Agent Programs. PRIMA 2015: Principles and
Practice of Multi-Agent Systems. 2015;:335-350.

