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HIGHER ORDER NONLINEAR EFFECT IN DUSTY PLASMA

Ranjit Kumar Kalita & Jnanjyoti Sarma

Abstract: The combined effects of dust ions and higher order nonlinearity are taking into
account with the dust charge variation. The model of dust charge variation, taken here, is
of the form Ie + Ii = 0, Ie and Ii being the electronic and ionic currents. The basic set of fluid
equations for plasma consisting of dust cold ions, cold ions and hot electrons (nonisothermal
and isothermal) reduces to modified Korteweg-de Vries equation to linear homogeneous
equation for second order potential and ultimately highlights new features in plasma. Using
reductive perturbation method stationary solutions of the coupled equations are obtained
in the case of dust ions, retaining terms up to the third order. The numerical analysis for
the stationary solutions is also discussed.

Keywords: Ion-acoustic waves, Dusty plasma, Modified Korteweg-de Vries equation,
Hgher order nonlinearity.

1. INTRODUCTION

Dusty plasmas are ionized gases containing small particle of solid matter. These particles
become electrically charged. The dust grain can be charged both positively and negatively
[1]. Often their charges are varying large, so that they repel one another strongly. These
charge particles can be suspended in plasma, levitated against by any modest electric field
that might be in the plasma.

Substantial attention has been given to study the wave propagation and nonlinear
structure in dusty multi ion plasmas because of it vital role for understanding different
types of collective process in space and theoretical works in last few years. More recently
there has been a considerable amount of theoretical as well as experimental work on waves
in dusty plasma because of its relevance in various astrophysical scenarios, beginning with
the work Bliokh et al., [2]. At the out set of last decade of the last century, Rao et al., [3]
theoretically demonstrated the existence of very-low – velocity DA wave in unmagnetized
dusty plasma, whereas Shkula et al., [4] reported the existence of dust ion acoustic wave in
dusty plasma. Both these waves are low-frequency modes exited in dusty plasma.

Various authors have derived the Korteweg-de Vries (KdV) Kadomtsev-Petviashvili
(K-P) [5, 6] and equation which represents propagation of nonlinear waves in multicomponent
plasma in diverse situation including in presence of dust. In this paper modified KdV equation
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is derived by using the reductive perturbation method analysis and numerical analysis is
discuss using different standard values of various parameters.

2. THE MODEL EQUATIONS

The basic sets of model equation for dust acoustic (DA) wave in unmagnetized plasma,
which includes variable dust charge and non thermal ions are given by
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Together with Poisson equation
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The electron density of the electron is given by as [7]

ne = exp (�) (4)

The dust charge Qd on a grain changes because of the currents according to the equation
as [8] is ddQ

dt I�
�

��  and for dust charge we have taken the model

Ie + Ii = 0. (5)

The electron and ion current are as [10] where Ie = A1ne exp (nozd) and Ii = A2ne exp (1 – yozd),
where 
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Here ad is the radius of the dust particle and wpd

– 1 is the dust plasma period.

3. NORMALIZATION

With the purpose of under studying the parameter space, which limits the existence DA
solutions, we normalizing all the parameters. According to [9] the dust particle number
density nd is normalized to nd0, dust particle velocity ud is normalized to 

1
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�, zd and md are the electrostatic potential, number of charge and mass of dust particles
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respectively. zd is normalized to zd0. ni is the number of density of ions which is normalized
to ni0 and ne is the number of electrons of which is normalized to ne0. Q is the ratio of dust
mass md to ion mass mi.Total charge neutrability at equilibrium in as [9] is ne0 + nd0 zd0 = ni0.

4. REDUCTIVE PERTURBATIVE ANALYSIS

To derive the KdV type equation for law frequency DA wave, we use the following
expression in � about the equilibrium states as
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The stretching coordinate in this case as [7] are

1 3
2 2( ),x vt vt� � � � � � � . (7)

Here � is the phase velocity of the wave and the relative dust-ion contradiction as [11]
is d

i

n

n� � , a small dimensionless expansion parameter (0 < � < 1) measuring the weakness
of the dispersion.

Substituting (6) and (7) in (1)-(5) and equating the coefficient of different powers of �,
we have the following results.
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The above expression are derived under the assumption that wave frame is moving
under the sound velocity
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Now from (12) and making use of (8) and (9) we have for ions
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For the dust, from the same order equation in �, we obtained
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Also from (5) and comparing the coefficient of powers of �, we have the following
results.
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Using the value of zd1 and zd2 in (11) we have
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Eliminating zd2 and nd2 from (14) and (18) and using (19) and (21) we get
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The second order quantities ni2, nd2 ui2 and ud2 can be expressed in terms of �1 and �2 as
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5. CONTRIBUTION TO THE mKdV EQUATION

Eliminating nd3, ni3 and �2 from (14)-(16) and using (23) we get
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The source term is a function of �1 given by
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6. STATIONARY SOLUTION

Many authors solve the modified KdV equation including [12]. In order to solve to solve
(22) and (24), we use the renormalizing method of Kodamas and Taniuti [13], according to
which (22) and (24) are modified as
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In (26) and (27) the parameter �� is introduce in such a way that the resonant term in
S (�1) is cancelled by the term 1��

����  in (27).

Let us obtain the stationary solutions by the new variables � as
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Using the boundary conditions
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We can integrate (29) and (30) and obtain
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The solitary wave solution of (31) is given by
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In order to cancel the secular term associate with S (�1), we set the coefficient of
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In order to solve (37), we introduce a new variable [7]

� = tan (a�). (38)

Under this transformation (37) becomes
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Equation (39) has two independent solutions in terms of associated Legendre function
with the right hand side equal to zero and is given by
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We can obtain the particular integral of (5.14) by using the variation of parameter as
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The constant of integration are put to zero using the boundary conditions. Substituting
(43) and (44) into (42) gives the particular solution in the old variable as
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Neglecting the higher orders, equation (46) ultimately reduces to
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Complementary function of (39) is given by
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The secular term in the solution of the homogeneous equation associated with (39) can
also be eliminated by the renormalizing the amplitude.

7. NUMERICAL ANALYSIS

Reductive perturbative method has been used to study the effect of nonlinear dust acoustic
waves. Using stretch variables for space and time, the first order KdV soliton is obtained.
To get higher order correction, a non linear partial differential equation in �2 has been
solved. To support further, we have chosen some typical numerical values. For numerical
analysis of electro acoustic soliton the Earth’s magnetotial, if we put as [7] � = 0.1; as [4]
nd0 = 0.53, Q = 0.1, ad = 13.81 � 10– 5, zd0 = 3 � 104 : as [14] Te = 5.0 eV, as [15] Ti = 0.1 eV,
then we get a = 2.8120, M1 = – 5.9413 � 1024, M2 = – 3.6014 � 1014, We take 0

0
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With the help of these values the equation (33) and (46) becomes
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Figure [1]

Figure [2]
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Figure 1 shows the graphical representation of (50) and Fig. 2 that of (51).

8. CONCLUSION

The dust acoustic solitons have been studies taking into account the dust charge fluctuations.
The second order correction to the KdV equation is derived. According to the normal form
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analysis by Kodama[16], the collision between the soliton is elastic only within the
approximation to the KdV equation through the higher effect shows that the collision is
inelastic, which leads to the change of soliton amplitude. In the case of dusty plasma, the
effect of higher order non linearity is particularly significant for the parameters considered
here. The second order nonlinearity is important in describing solitary waves in dusty plasma.
The numerical result depicts distinctly that higher order non linearity is an important rule in
the study of solitary wave in dusty plasma.
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