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ABSTRACT

This work focus on robust control applied to photovoltaic system for operating at maximum power point in all

conditions. The boost converter is driven by robust backstepping controller to realize this objective. To make the

control initially faster, a variable step-size is used to estimate the reference voltages that must be obtained to

achieve the MPP and guarantee the maximum power extraction, modifying the conventional Perturb and Observe

(P&O) method. The performance of the developed system has been analyzed by means a simulation platform in

Matlab/Simulink helped by SimPowerSystemsBlockset. The obtained results illustrate that the used approach can

effectively improve the MPPT in terms of tracking speed (in transitory) and efficiency (in steady state) simultaneously.
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1. INTRODUCTION

The photovoltaic (PV) energy is a perfect solution to power the autonomous devices and isolated

houses, as well as to produce electricity on a large scale through distribution networks for grid-connected

systems. The power–voltage (P-V) characteristic of a PV array is nonlinear and time varying with the

changing of atmospheric conditions [1]. Maximum power point tracking (MPPT) techniques are used

in photovoltaic systems for maximize the PV output power which depends on weather conditions

(irradiance and temperature). Among all the MPPT strategies, P&O techniques are widely used due to

its low cost and ease of implementation. With its conventional algorithms using fixed step-size, it is

impossible to satisfy both performance requirements of fast dynamic response and good accuracy

during the steady state. This is because, for big perturbation steps, the maximum power point is reached

quickly, but, the power loss caused by perturbation in the steady state will also increase. With a smaller

perturbation step can reduce the power loss caused by perturbation in the steady state but will slow

down the tracking speed.

In order to overcome the disadvantages of the conventional P&O algorithm, various approaches have

been proposed in literature, between them, Predictive & Adaptive method [2-4], modified P&O method

with adaptive duty cycle step size [5, 6], fuzzy logic controller [7-10], adaptive P&O method with variable

step-size [11-19], as well as, a new direction in development of MPPT is to use the artificial intelligent

control algorithms such as fuzzy logic, neural network and neuro-fuzzy, amongst others.

The variable step-size method is able to improve the steady-state performance and the dynamic response.

However, to solve the convergence problem of the tracking process, it is necessary to use a constant value.

The choice of this constant is very significant, it makes the response time of the PV system slow in the fast

changing irradiation. Thus reducing the overall output power [19].
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Further, diverse sliding mode approaches to track the MPPT have been addressed in many literatures.

Among these algorithms, a robust control of the photovoltaic system with improved maximum power point

tracking [20], where the second order sliding mode controller based on super twisting algorithm is applied,

a first order sliding mode controller is presented in [21-23].

In addition, for robust control based in backstepping MPPT [24-33], in [24] a desired array voltage is

designed on line using an extremum-seeking algorithm, in [26] the MPOP is managed through the use of an

incremental conductance algorithm that generates the desired cell current, in [24, 27, 29] the reference

voltage is synthesized on line by fixed step-size P&O technique.Some recent control methods are addressed

in [34-40].

The different parts of this paper correspond to the following guide line. In the next section, we present

the PV system, including the used PV array model and the design of reference voltages, this section also

includes the dynamic model boost converter. The proposed design of the control for make the system

operating at maximum power point is developed in Section 3, where the robust backstepping controller is

detailed. Section 4 presents the simulation results and the corresponding analysis. And finally section 5

describes the main conclusions.

2. PHOTOVOLTAIC SYSTEM MODELING

A block diagram of the proposed controller system is illustrated in Figure 1. A DC/DC boost converter is

used to interface PV output power to the load (resistive load in this paper) to track the maximum power of

the PV array. The MPPT controller keeps adjusting the duty cycle of the power converter to reach the MPP

of the solar panel.

Figure 1: Block diagram of PV system

2.1. PV generator modeling

Figure 2 shows the equivalent circuit of the solar cell. The mathematical model of PV generator involving

an array of cells connected in series and in parallel is,
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V
pv

 is the panel voltage, I
pv 

is the panel current, R
s
 is the equivalent series resistance of the module, R

P 
is

the equivalent shunt resistance, A is the ideality factor, K is the Boltzmann’s constant, q is the electron

charge, T is the temperature in Kelvin and I
Ph

, I
s 
are the photocurrent and saturation current, respectively.

2.2. DC/DC Boost Converter

The DC-DC converter is a necessary stage in the PV systems, which is used as a power interface between

the PV panel and the load, to operate at maximum power when the MPPT algorithm adjusts the duty cycle.

The regulation is achieved by PWM and the switching device MOSFET or IGBT.

Figure 2: Equivalent circuit of PV cell

Figure 3: Model of DC/DC boost converterunder SimPowerSystems

The output voltage v
o
 is expressed by following relationship,

1

pv

o

v
v

d



(2)

Since the duty ratio d is between 0 and 1 the output voltage is higher than the input voltage.

The dynamic model for the boost converter can be illustrated by,

1 pv pv L

L pv o

C v i i

L i v d v
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
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Where d is averaging value of (1-d), v
pv

 and i
pv 

are the average states of the output voltage and current

of the PVG, i
L
 is the average state of the inductor current.
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2.3. Variable step-size MPPT

The operating principle of P&O MPPT is summarized in three positions and two directions as shown in

Figure 4 and Table I demonstrate the possible positions and directions during the perturbation and observation

process and also the required action in each case to achieve the maximum power output [14].

Table 1

Operating Principle of P&O Mppt

Position Variation Action

1 dp=0 No action

2 +dp/+dv Increase C

3 +dp/-dv Decrease C

4 -dp/-dv Increase C

5 -dp/+dv Decrease C

Figure 4: P&O MPPT positioning [14].

In the conventional P&O algorithm, the duty cycle perturbation step size is a fixed value as,

   1ref refv k v k C    (4)

During steady-state MPPT operation, small perturbation reduces the power losses caused by the

oscillations around the MPP. However, during transient MPPT operation, larger perturbation is chosen for

faster convergence to the new MPP. Variable step-size algorithms are usually developed in order to achieve

compromise between the speed and the accuracy of the tracking.

In This study, the variable step-size used to solve the problem mentioned above is shown as follows[15]:

   1ref ref

p
v k v k N

v


   


 (5)

where N is the scaling factor determines the performance of the MPPT system and is adjusted at the design

process [10].

3. BACKSTEPPING CONTROLLER DESIGN

The aim of backstepping technique is to identify a virtual control state and force it to become a stabilizing

function, this procedure generates a corresponding error variable. As a result, the error variable can be

stabilized by proper selection of control input via Lyapunov stability theory.
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Step one:

The first error considered in designing the backstepping controller is voltage error,

1 pv refe v v  (6)

By deriving (6), we obtain the following error dynamics equations:

1
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Choose Lyapunov function candidate as 2

1 10.5V e  , its time derivative is computed by,,
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The choice of 
1 1 1e k e   lead us 2

1 1 1 0V k e    and consequently the first subsystem is asymptotically

stable (for k
1
 > 0).

1 1

1 1

pvL
ref

pv

vi
v k e

C C r
    (9)

In (9), i
L
 behaves as a virtual control input, for L refi i  we can find the stabilizing function:

1 1 1 1ref pv refi k C e i C v       (10)

Step two:

The next error variable is defined as,

2 L refe i i  (11)

This represents the difference between the virtual control and its reference value. Now, Replacing (10)

into (7), the dynamic of current error is given by,
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The derivate of reference currant is,

1 1 1 1ref pv refi k C e i C v       (13)

By deriving (11), we obtain the second error dynamics equations:
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The novel proposed Lyapunov candidate function is,

2

2

2 1 0.5V V e   (15)

Its derivate is,

2 1 2 2V V e e    (16)
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Substituting (8) and (14) into (16), gives that
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Finally, the backstepping control of DC-DC boost converter for maximum power tracking is given by
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After replacement of synthesis control into (17), the derivate of Lyapunov function is negative

2 2

1 1 1 2 2 0V k e k e    , consequently, the system is globally asymptotically stable (for k
1
 > 0 and k

2 
> 0).

4. SIMULATION EVALUATION

Experiments in Simulation have been performed in order to check the PV system performances. A

performance comparative between the backstepping control and the well-known P & O variable step-size

is shown to prove the validity of the proposed control. Tests are carried out to test the stability of the studied

approach to track the MPP in different conditions fast varying insolation, temperature and resistive load.

The PV module parameters under the temperature of 25°C and the irradiation of 1000 W/m2 are listed

in Table II.

Table 2

UDTS50 PANEL CHARACTERISTICS [34]

Standard irradiation 1000 W/m2

Standard temperature 25°C

Short-circuit current 3.43 A

Open circuit voltage 21.28 V

Optimal voltage 16.65 V

Maximum power 52.66 W

Series resistor 0.4 

Number of the cell 36

The Figures (b), (c) and (d) show the PV power, PV current and PV voltage, respectively (for all three

tests figures 5, 6 and 7).

Figure 5 shows PV system performances for constant resistive load (20), fixed temperature (298K)

and fast varying irradiation levels. Figure 5(a) shows the irradiation variation profile (500, 800, 1000, 800,

500W/m2).

It can be clearly seen from Figure 5(b) that, for both MPPT methods in steady state, the PVG achieves

the maximum power, the tracking speed is very slow (between 0.03 and 0.06s) for the variable step-size

method with N equal to 0.00001 when the irradiation is suddenly changed.

Figure 6 shows PVG performances for constant resistive load (R = 20), fixed irradiation (1000W/m2)

and fast varying temperature levels. Figure 6(a) illustrates the profile of temperature variations (288, 298,

and 323 K).

We can see in Figures 6(b), 6(c) and 6(d) that, for both MPPT methods, in steady state, the PVG

achieves the maximum power. However, the response time of classical variable step-size (for N=0.00001)

is very slow (0.05s).
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___ variable step-size without backstepping control
___ variable step-size with backstepping control

Figure 5: PV system performances with variable irradiation (T = 298K, R=20W),

where (a): Irradiation [w/m2], (b): PV power [W], (c): PV current [A], (d): PV voltage [V].

(a) (b)

(c) (d)

___ variable step-size without backstepping control
___ variable step-size with backstepping control

Figure 6: PV system performances with variable temperature (G=1000W/m2, R=20W),

where (a): Temperature profile [K], (b): PV power [W], (c): PV current [A], (d): PV voltage [V].

(a) (b)

(c) (d)

Figure 7 shows PVG performances for constant irradiation (1000W/m2), fixed temperature (298K) and

fast varying resistive load levels. The profile of resistive load variation (20, 25, and 30W), as shown in

Figure 7(a). For both MPPT methods, in steady state the PV system achieves the maximum power as

illustrated in Figure 7(b). However, the response time is very slow (0.05s) for variable step-size MPPT

without backstepping controller (N=0.00001).



554 Noureddine Benbaha, F. Zidani, M. S. Nait Said, S. Boukebbous and H. Ammar

These results demonstrate very clearly that in all cases, the proposed scheme (variable step-size with

backstepping controller) exhibits fast dynamic response and stable steady-state output power, even when

the weather conditions are rapidly changed.

5. CONCLUSIONS

This paper has studied and justified a backstepping control design strategy. The control aim is to regulate

the PV array output voltage in order to track the Maximum Power Point. This object is adopted by including

the dynamic model of the DC-DC boost converter in photovoltaic system, for this, both fast dynamic and

accuracy steady state performances under rapidly changing in weather conditions and load are achieved.

Furthermore, the obtained simulation results clearly illustrate the robustness and effectiveness of the proposed

method at any conditions than the conventional variable step-size method.
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