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A Metameric Genetic Algorithm with New 
Operator for Covering Salesman Problem 
with Full Coverage
Siba Prasada Tripathy* Amit Tulshyan** Samarjit Kar*** and  Tandra Pal****

Abstract : Post disaster management is a tough and challenging task which carries risks of plenty of lives. 
To carry on the relief and mass fatality management activities, it is very diffi cult to reach to all the places of the 
affected area. Hence, we need Covering Salesman Problem (CSP), a variant of Traveling Salesman Problem 
(TSP), which can be used to tackle such type of situations. A customer is said to be covered, if it lies within 
a pre-specifi ed distance of a visited facility on the tour. In this paper, we consider a CSP problem with full 
coverage and propose a Metameric Genetic Algorithm (MGA) with a new crossover operator. The results are 
compared with those of  various algorithms existing in the literature which shows that the proposed algorithm 
performs better with respect to cost as well as execution time. Standard TSP instances are considered for 
evaluating the performance of the CSP, implemented with the proposed algorithm.
Keywords : Traveling Salesman Problem, Covering Salesman Problem, Genetic Algorithm, Metameric structure.

1. INTRODUCTION

The situation after an artifi cial or a natural disaster becomes exacerbated which lead to heavy demise of 
lives. At the time of humanitarian relief operation and mass fatality management [1], the rescue or relief 
team attempts to serve each of the places in the affected area. 

Due to limited time or resources, it is diffi cult for the team to reach every node in a single attempt. 
Hence, by traversing some of the places [4] and inviting nearby localities to the visited spot is a better way 
to accomplish the task. A Travelling Salesman Problem (TSP) [2] is to fi nd a least cost Hamiltonian path 
on a given fully connected graph. There are many variations of TSP [3] considering different aspects and 
accordingly solved by numerous methods. Covering Salesman Problem is a generalization of TSP [4].

The CSP can be defi ned as to fi nd the tour with minimum length traversing subset of points (i.e., 
nodes in a graph) such that every customer which is not on the tour is bounded by a predetermined 
covering distance from any of the visited nodes, called facilities. The CSP can be applied in mass fatality 
management, humanitarian relief transportation, telecommunication network [1], [5], etc.

CSP is fi rst introduced in [4], where the goal is to fi nd a Hamiltonian tour with a minimum length 
visiting a subset of nodes routing in such a way that it maximizes the covering nodes lying within a 
predefi ned distance and not in the tour. This work is extended in [6], where the geometric version of the 
covering salesman problem is demonstrated with bounded error ratio and polynomial time approximation 
algorithms. Problems in integer programming, mentioned in [7] can be overcome by diving a graph  into 
a number of sub-graphs [7] which is also a variant of the TSP.
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Many works in the literature introduce different variants of TSP including the pickup-and-delivery 
[8], multi-depot multiple TSP [9], online TSP [10], clustered TSP [11], generalized TSP [12], [13], etc. 
Detail of the variants of TSP are presented in [3]. In covering tour problem (CTP) [14], several classes of 
constraints are demonstrated using an exact branch and cut algorithm with polyhedral properties taking 
large instances up to 600 vertices. There are three groups of vertices S1, S2 and S3, where all the vertices 
of group S1 are visited by the tour, those of group S2 are covered by the tour and remaining which are not 
visited as well as not covered by the tour form the group S3.

The authors in [15] introduces the multiple vehicle cumulative covering tour problem being motivated 
to solve the problems in humanitarian logistics. The objective is to determine a set of tours that must be 
followed by a fl eet of vehicles in order to minimize the sum of arrival times (latency) at each of the 
visited locations. There are three types of locations mentioned in the work such as mandatory, optional 
and unreachable. A variant of TSP in [12] demonstrates cluster optimization neighbourhood, fragment 
optimization neighbourhood and TSP-inspired neighbourhood in Generalized Travelling Salesman 
Problem (GTSP) where many disjoint clusters are formed by considering the set of vertices.

There is a variant of CSP proposed in [16], where some natural generalizations of covering salesman 
problem are proposed. The authors reviewed the relaxation of visiting or covering one vertex only once. 
Considering some rural health care delivery systems, the authors in [16], considered overnight stay and 
visiting a place more than once. The authors also proposed two mathematical formulations on CSP based 
on the node and the fl ow of the tour where a given amount of nodes must be covered. Also proposed two 
meta-heuristic algorithms: Memetic Algorithm (MA) and Variable Neighbourhood Search (VNS) which 
then compared with the exact models.

A hybrid heuristic algorithm has been developed in [17], combining Ant Colony Optimization (ACO) 
[18] and a dynamic programming approach for CSP where the starting node is a dummy vertex which 
does not cover any other node and the tour completes by covering a subset of nodes in order to meet the 
required demand.  Recently, in [19], a CSP is considered to maximize the coverage demand within a time 
limit developing a branch and cut algorithm and assumed that the demand of the vertex is fully covered 
if it is a part of the tour and partially covered if it is not a part of the tour but close to the traversed vertex.

In this paper, we defi ne CSP with full coverage and solved it with a new metameric genetic algorithm 
[21] with a new crossover operator.

2. PROBLEM DEFINITION 

Depot

Facility

Customer

Figure 1:  An example of CSP
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We consider CSP which resembles to the emergency conditions while handling the dead bodies during 
mass fatality management, including relief and rescue operations right after various natural or artifi cial 
disasters. The problem also includes rural health care delivery for vaccination to prevent epidemic diseases 
as well as for assuring security in any war like environments. In such type of situations, to complete the 
task or operation, the team should visit a subset of places covering the pre-specifi ed number of other 
places as shown in Fig. 1. In Fig. 1, the journey starts from a node called depot, traverses a subset of nodes 
called facilities and covers some other nodes called customers and comes back to the depot.

3. PROPOSED ALGORITHM (MGA_GPX)
We have developed a modifi ed Metameric Genetic Algorithm (MGA) [21] with a new crossover operator 
termed as Global Parent Crossover operator (GPX) for CSP, explained below in detail.

Metameric Genetic Algorithm (MGA) is a special kind of genetic algorithm characterized by its 
chromosomes, consisting of a series of metavariables. Each metavariable G contains two variables. First 
one represents a facility point Fi and the second one NCFi represents  the corresponding number of nearest 
customers covered by the facility Fi. The structure of a chromosome is given in Table 1.

Table 1
Metameric form of Chromosome structure 

G0 G1 –      –      – Gn

F0, NCF0
F1, NCF1

–      –      – Fn, NCFn

  MGA deals with the implementation of genetic operators for variable length chromosomes, which 
differ in their sequence or structure. While moving from one node to another, NC number of  nearest nodes 
or customers are considered to be covered by a node representing a facility Fi.  Apart from these NC nodes, 
next node is chosen from TN nodes for the next node to be visited. Here TN is the nearest three nodes which 
are not in NC nearest nodes. In the algorithm, a gene corresponds to a node or city and a chromosome 
corresponds to a path, represented by a sequence of nodes. This algorithm can be considered as variable 
length chromosome based Metameric Genetic Algorithm because of its dynamic nature of the length of 
the chromosome. The steps involved in modifi ed MGA are explained below.
 1.  Setting MGA Parameters and instances : Parameter setting for MGA is given in Table 3, where 

TN  represents three nearest customers to be considered while moving from one facility to another. 
 is the probability of selecting a facility to be removed from the tour in mutation. If improvement 
has not been occurred continuously for 5 times, the algorithm will be terminated. For this proposed 
algorithm, Pc is the crossover probability and Pm is the mutation rate. Using all these parameters, 
the proposed MGA has been implemented and applied to the instances of CSP. 

 2.  Construct initial population : We have considered two rules, described below, for initialization of 
population. 80% chromosomes of the population are generated using Rule 1 and rest 20% are generated 
using Rule 2.

 Rule 1: After setting the genetic parameters, initialization of population starts. For the next 
vertex to be visited by the tour it considers TN  consisting of three nearest neighbour  out 
of which the node covering maximum number of customers is selected. The facilities 
are selected incessantly until the total demand is met.

 Rule 2: This rule states that the next node is chosen randomly out of  TN neighbouring nodes 
without considering the coverage capacity. 

 3. Evaluate Fitness : The fi tness of each chromosome is calculated by adding the lengths of the 
edges visited by the tour. 
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 4. Crossover using GPX operator : A new crossover operator named as GPX operator has been 
proposed, where we assume a Global Parent (GP) chromosome. GP Chromosome contains all the 
genes (i.e., nodes) available for a particular instance of the problem. Table 2, given below, shows 
the GP for the TSP instance eil51. The pseudocode of crossover with GPX operator is given in 
Algorithm 1. 

  In the proposed crossover, the children chromosomes are generated in two phases. In the fi rst 
phase, we consider two parents, P1 as parent 1 and P2  as parent 2, which generate two intermediate 
children named as IC1 and IC2  using single point crossover. Then, IC1 and IC2 both take part in 
crossover separately with the Global Parent (GP) Chromosome. The genes, those are not are yet 
covered, are copied to the intermediate children considering the genes with its corresponding 
NC and placed there with minimum insertion cost. Finally two children child1 and  child 2 
will be generated after crossover. Here, the insertion cost is determined by calculating the total 
length, keeping the gene at every index position separately in the chromosome. Hence, the time 
complexity of calculating minimum insertion cost is O(l), where l is the length (variable) of the 
chromosome. Thus, the time complexity of crossover is O(mn), where m is the population size 
(PS) and n is the maximum size of the chromosome in the pool.

Table 2
Global parent chromosome for eil51 instance

0 1 2 … 50
hAlgorithm 1:  Pseudocode of crossover with GPX operator

for iter = 0 to PS × Pc // PS is the population size and Pc  is the crossover probability 
 fi nd two different chromosome from the population randomly, such as P1 and P2

Rp   a random crossover point where Rp < size of smaller parent
for i  = 0 to (Rp – 1)
 IC1 [i]  P1[i]  
end for
for  i  = Rp to (P2. length – 1)
 IC1 [i]  P2 [i] 
end for
remove duplicate gene(s) from IC1 if any
for i = 0 to(Rp – 1)
 IC2 [i]  P2 [i]  
end for
for i = Rp to( P1. length – 1)
 IC2 [i]  P1 [i] 
end for
remove duplicate gene(s) from IC2 if any
 while all cities are not covered by child1 do
 eCity  extract an uncovered city from global parent (GP)
 mIndex  index with minimum insertion cost
 IC1[mIndex]  eCity 
end while



249A Metameric Genetic Algorithm with New Operator for Covering Salesman Problem with Full Coverage

 Child1  IC1

while all cities are not covered by child2 do
 eCity   extact an uncovered city from GP
 mIndex  index with minimum insertion cost
 IC2[mIndex]  eCity 
end while
 Child2  IC2

end for
 5. Induced mutation :  For mutation, a random facility is extracted from the tour with probability 

 and other nearest unvisited nodes are substituted with the extracted facility with minimum 
insertion cost. If it does not give better result, this mutation is discarded and continue the process 
with mutation rate Pm. Thus, the mutation may reduce the tour length.

 6. Selection : Two types of selections we have considered: binary tournament selection method and 
Roulette wheel selection method for selecting the pool for next generation. 50% of population 
chromosomes are selected by applying binary tournament and remaining 50% are selected by 
Roulette wheel selection method.

4. COMPUTATION RESULTS AND DISCUSSION

The proposed MGA is implemented with the GPX operator and then applied to 16 standard TSP instances 
given in [20]. In the standard instances, each customer covers its 7, 9 and 11 nearest customers, resulting 
in 48 instances. Then, the results of proposed MGA has been compared with two existing methods Current 
and Schilling [4] and Memetic Algorithm [5] which are shown respectively in Table 4 and Table 5. The 
Table 4 contains the results of 48 instances where NB and TB respectively represent the number of nodes 
visited by the tour and time taken by the algorithm for best result.

The algorithm is executed fi ve times and the best and average performance are given in the Table. 
The algorithm for MGA terminates if there is no improvement for consecutive 5 times. We compared our 
results with the results of Current and Schilling [4] and we found 37 out of 48 instances giving better result 
for our proposed MGA_GPX.

The result indicates that the proposed heuristic MGA_GPX outperforms the Current and Schilling [4] 
heuristic for covering salesman problem where all the customers are covered. The bold texts in the table 
shows the better results for that corresponding instance.

Table 5 reveals that the proposed algorithm outperforms the Memetic algorithm [5] with respect to its 
execution time by 25% though it worsens the length of the tour by 14%.

Table 3
Parameters for the proposed MGA

Parameters Values

TN 3

β 0.5

Pc 0.8

Pm 0.3
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Table 4

Comparison of results of CSP using MGA_GPX with the Current and Schilling [4] 

Name
Current and Schilling [4] Proposed MGA_GPX

NC Best obj. NB TB Best obj. NB TB

eil51
7 194 7 0.07 172 9 0.169
9 169 6 1.92 163 7 0.307
11 167 5 0.59 155 6 0.339

berlin52
7 4019 8 19.39 3999 10 0.382
9 3430 7 26.08 3514 7 0.502
11 3742 5 0.22 3261 6 0.207

st70
7 297 10 232.24 289 10 0.372
9 271 9 173.87 262 10 0.374
11 269 7 13.21 261 8 0.331

eil76
7 241 11 1.15 226 13 1.502
9 193 9 7.43 204 10 0.584
11 180 8 30.48 185 8 0.342

pr76
7 53255 11 54.2 50896 13 4.243
9 45792 10 6743.66 45672 11 3.656
11 45955 7 0.11 43573 10 3.373

rat99
7 572 14 22.74 534 17 1.025
9 462 12 1749.66 457 13 0.531
11 456 10 88.87 454 12 0.899

kroA100
7 10306 15 6303.03 10203 16 2.067
9 9573 12 524.49 9512 13 1.4
11 9460 10 409.45 9316 11 1.681

kroB100
7 11123 14 45.62 10473 16 1.945
9 9505 12 2112.57 9948 13 2.302
11 9049 10 1056.27 9196 10 3.727

kroC100
7 10367 15 3391.82 10451 17 1.443
9 9952 12 35.91 9592 14 1.871
11 9150 10 1389.84 8866 11 1.92

kroD100
7 11085 14 10.29 10599 15 1.972
9 10564 11 6.18 9316 14 1.931
11 9175 10 968.39 9055 13 1.230

kroE100
7 11323 15 1971.32 10542 17 2.351
9 9095 12 1918.72 9161 13 1.585
11 8936 10 609.81 8761 11 1.206

rd100
7 4105 14 24.43 3844 16 0.773
9 3414 12 1798.14 3386 13 0.831
11 3453 10 8.6 3050 12 0.717

kroA150
7 12367 22 2252.5 12543 26 3.412
9 11955 17 2454.99 11193 20 3.856
11 10564 15 5483.07 10300 17 8.215

kroB150
7 12876 21 196.85 12782 25 3.875
9 11774 18 2760.03 11278 21 5.725
11 10968 14 26.64 10246 17 2.187
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Name
Current and Schilling [4] Proposed MGA_GPX

NC Best obj. NB TB Best obj. NB TB

kroA200
7 14667 28 537.6 15014 33 8.639
9 12683 23 1504.07 13215 25 6.527
11 12736 19 398.25 11955 22 7.108

kroB200
7 14952 29 365.08 14865 33 4.23
9 13679 23 637.66 12987 26 3.496
11 12265 20 493.64 12342 22 4.466

No. best                    11                                                    37

Average 9805.917 1017.941 9548.1 2.302

Table 5
Comparison of results of CSP using proposed MGA GPX with MA [5]

                                        Avg. length Avg. Time

MA 9025.54 1.59

MGA_GPX 10304.21 0.40

Error in MGA_GPX Increased by 14% Decreased by 25% 

5. CONCLUSION

The goal of the proposed algorithm for CSP is  to cover all the customers in a devastated area by traversing 
a subset of facilities where a node may be a customer or a facility which can be applied in real life scenarios 
such as after natural as well as artifi cial disasters. The results show the superiority of proposed meta-
heuristic algorithm compared to two other existing algorithms. In future, this problem can be extended for 
uncertain environment, where the cost of the edges or the demand of the tour will not be represented by 
crisp values.
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