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ABSTRACT

In this paper, in the light of Budiansky’s work on elastic buckling formulation, we present the dynamic buckling of
piezoelectric smart structures in a general way. Using the virtual work principle of smart structures, the governing
equations for pre-buckling, buckling and post-buckling states have been formulated. The critical load and the
coefficients of post-buckling path have been given explicitly.
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1. INTRODUCTION

1.1. Buckling [1-14]

As we known, for thin walled structures the membrane stiffness is generally much greater than the bending stiffness.
A thin wall structure can absorb a great deal of membrane strain energy without excessive deformation taking
places. Whereas, it deforms much more in order to absorb an equivalent amount of bending strain energy. When the
structure is loaded in such a way that most of its strain energy is in the form of membrane compression, should there
be a way that this stored-up membrane energy be converted into bending energy, the shell may fail rather dramatically
in a process called “buckling”, i.e. as it exchanges its membrane energy for bending energy. Very large deflections
are generally required to convert a given amount of membrane energy into bending energy.

The way in which buckling occurs depends on how the structure is loaded and on its geometrical and material
properties. The prebuckling process is often nonlinear if there is a reasonably large percentage of bending energy
being stored in the structure throughout the loading history.

 According to the percentage of bending energy, the two basic ways in which a conservative elastic system may
loose its stability are: nonlinear collapse (snap-through, or over-the-lump) and bifurcation buckling. Nonlinear
collapse is predicted by means of a nonlinear analysis. The stiffness of the structure or the slope of the load-
deflection curve, decrease with increasing load. At the collapse load the load-deflection curve has zero slope, and if
the load is maintained as the structure deforms, failure of the structure is usually dramatic and almost instantaneous.
This type of instability failure is often called “snap-through”, a nomenclature was derived from the many early tests
and theoretical models of shallow arches, caps and cones. These nonlinear systems initially deform slowly with
increasing load. As the load approaches the maximum value, the rate of deformation increases until, reaching a
status of neutral equilibrium in which the average curvature is almost zero, these shallow structures subsequently
“snap-through” to a post-buckled state which resembles the original structure in an inverted form. The term
“bifurcation buckling” refers to a different kind of failure, the onset of which is predicted by means of an eigenvalue
analysis. At the buckling load, or bifurcation point on the load-deflection path, the deformation begins to grow in a
new pattern which is quite different from the prebuckling pattern. Failure or unbounded growth of this new deflection
mode occurs if the post-bifurcation load-deflection curve has a negative slope and the applied load is independent
of the deformation amplitude.



1.2. Smart Structures [15-48]

In the past, material systems and structures were designed based on their passive response to external loads. In
recent years, the construction and operation of large or precision space structures, which are extremely flexible and
inherently low in natural damping, has sparked a keen interests in “intelligent” or “smart” structures which provide
an active response to external loads. Such smart structures have a network of sensors and actuators which monitor
and control the response of the structures, respectively. Smart structures are those structures made of smart materials,
in other words, are those which incorporate actuators and sensors that are integrated into the structure and have
structural functionality, as well as integrated control logic, signal conditioning and power amplification electronics.
Such actuating, sensing and signal processing elements are incorporated into a structure for the purpose of influencing
its states or characteristics, be they mechanical, thermal, optical, chemical, electrical or magnetic. For example, a
mechanically intelligent structure is capable of altering both mechanical states, i.e. its position or velocity, or its
mechanical characteristic, i.e. its stiffness or damping. An optically intelligent structure could, for example, change
colour to match its background.

According to Crawley (1994) [22], there are three historical trends which have combined to establish the
potential feasibility of smart structures. The first is the transition to laminated materials. In the past, structures were
manufactured from large pieces of monolithic material which were machined, forged, or formed to a final structural
shape, making it difficult to imagine the incorporation of active elements. The exploitation of the off-diagonal
terms in material constitutive relations is a second trend which enables intelligent structures at this time. These off-
diagonal terms of full constitutive relations, include characteristics of its mechanical, optical, electromagnetic,
chemical, physical and thermal properties The third and perhaps most obvious advance comes from the electrical
engineering and computer science disciplines. With their advances in microelectronics, bus architectures, switching
circuitry, fiber optic technology and artificial intelligence and control disciplines.

In the next decades, it is expected that there will be widespread applications of the technology under development,
in its current and evolutionary forms. The breath of application of this technology is expected not only to span the
aerospace industry but become widespread in the construction, automotive, and machine tool industries as well.

1.3. Buckling of Piezoelectric Smart Structures

Actuating materials currently under use include shape memory alloys, magneto-strictive materials, piezoceramics
and electricstrictive materials. Piezoelectric materials which exhibit mechanical deformation when an electric field
is applied and, conversely, generate a charge in response to mechanical deformation can be used as actuators and
sensors, respectively. The axial forces and the corresponding moments generated by the actuator can be used to
resist the forces acting on the structures. Piezoelectric smart structures have been investigated by several researchers
[15-48].

The majority of the work has been concentrated in the area of active vibration control of structures, and the
dynamic buckling of a structure due to an axial load has received scant attention from the scientific community,
which is not the case of “Everybody loves a buckling problem” [10] for the conventional structures. Buckling of
smart structures belongs to dynamic buckling, which is generally meant to describe the buckling of structures under
transient loads. It is obvious that all loads are transient.

Baz and Tampe (1989)[44] devised an active buckling control system to enhance the elastic stability characteristics
of long slender beams. They used an external shape memory alloy (SMA) actuator in the form of a helical spring to
counterbalance the applied compressive load. Baz, et al. (1991)[45], achieved buckling control of a fiberglass
composite by activating shape memory alloy wires embedded along the neutral axis. Their results showed that the
critical buckling loads could be increased three times when compared to that of an uncontrolled beam. Mollenhauer,
et al. (1992)[46], analyzed the buckling of a stiffened aluminum panel with SMA actuators using a commercial
software package. Murali Krisha and Mei (1992)[47] presented a FEM formulation based on the von Karman large
deflection plate theory for composite plates with piezoelectric actuator layers, and calculated the critical buckling
voltage of the structures. Similar to Lee (1990)[30], Chan and Bhatia (1993)[20] used the first-order shear deformation
plate theory (FSDT), to study the dynamic buckling behavior. Their numerical results have demonstrated the
effectiveness of the closed-loop system, incorporating the sensors and actuators, in enhancing the critical buckling
load of the plate.



Beside the study of the above specific cases, there is a little general discussion on the dynamic buckling of the
smart structures. In this paper, to fill the gap, we present the dynamic buckling of smart structures in a general way.
Using virtual work principle of smart structures, the governing equations for pre-buckling, buckling and post-
buckling states have been formulated. The critical load and the coefficients of post-buckling path have been given
explicitly.

The following remarkable results have been obtained for the problem satisfied by these simplifications:

• The split of the critical load, in other words, the critical load can be decomposed into non-piezoelectric and
piezoelectric parts, which is the mathematics-physical foundation of closed-loop control.

• The post-buckling coefficients �1 and �2 depend explicitly on the mechanical field; but post-buckling mode
u2 depends on both mechanical and electric fields.

• The generalized load-”shortening” is only depended on the mechanical field, and piezoelectric has no any
contribution!

• The control mechanism of smart structures includes two aspects: one is control of pre-buckling motion and
another is control of electric energy in the buckling state.

2. GENERAL FORMULATION OF SMART STRUCTURES

In order to serve to later sections but not for completeness, some general formulations of the structures will be
highlighted as follows:

2.1. The Electric-mechanical Lagrangian Function
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2
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where, H = H(�, E) is electric enthalpy density, � is strain tensor and E is electric displacement andu�  is velocity..
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2.2. Constitutive Equations

In general case, we have
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For linear case, we have

� = c� – eE, D = –e� + kE, (2)

With these relations (2), the electric entropy H can be rewritten as
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For laminated smart structures, the above constitutive equations must be transformed into arbitrary coordinates.
These operations would not change the constitutive equations in form. In this paper, for clarity of interpretation and
also to avoid loss of generality, we omit specific transformation, and assume our constitutive equation will always
take the right forms of your problems.

2.3. Electric Potential

For electric field, if we denote its potential as �, the electric displacement is given by

E = –��, (4)



2.4. Hamilton’s Principle

From Budiansky (1974)[11] and Sun (1992)[8], we can always write Hamilton’s principle in a very simple form

[ , ] ,D E d u u u��� � � �� � � � � �� � , (5)

Since �� = �� [u]�u, and �E = E�[�]��, the above Hamilton principle can be rewritten as
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In the above relations, we have endowed the symbol � have three meanings: it is the stress state �; it is a linear
operator on stains, making ��� the total work of the stresses acting through ��; and it is a function �[�] of strain.
Same interpretation is also valid for both D(E) and E. This understanding of the symbol � is very useful in the
deriving of buckling and post-buckling equations, and the buckling load of the practical problems.

2.5. Some Simplifications

The results found are very general, for more so than would usually be required, and in various particular problems
one or more of the following simplifications can be invoked.

(i) linear stress-strain relation, �(n) = 0 for n> = 2;

(ii) quadratic strain-displacement relation, �(n) = 0 for n> = 3;

(iii) linear shortening-displacement relation, �(n) = 0, for n> = 2.

In many problems all three of these conditions are met. Limitation to elastic strains makes (i) valid in all but
rubberlike or hyperelastic materials. A quadratic strain-displacement (ii) relation is, of course, obtained when the
Lagrangian strain tensor, or a simplified variant thereof, is employed. The linearity of �[u] occurs in dead-loading
situations(though not in hydrostatic loading) or for conservative system.

Another simplifying assumption, independent of (i)-(iii) above, is that of a (iv) linear fundamental state.

�[k�0] = k� [�0] �[ku0] = k�[u0] �[k u0] = k�[u0]
 D[kE0] = kD[E0], E[k�0] = kE[�0] (7)

This assumption provides the common situation associated with buckling problems in which the prebuckling
displacement, stresses, and strains vary linearly with �, and the load � appears linearly in the bifurcation eigenvalue
problem. We will define assumption (iv) to mean a special kind of linearity associated with the function �[�], �[u]
and �[u], and the fundamental solutions u0, �0, and �0, in which not only do the identities hold for any constant k but,
in addition, the operators �0

(n), �0
(n), �0

(n) are all independent of � for n>–1. This guarantees that the fundamental
solution of the field equations will be linear in �, and it also makes (6.2) a linear eigenvalue problem. If there is no
special noting, the above simplification will be used to all following formulations.

3. BIFURCATION ANALYSIS

In order to discover conditions for bifurcation buckling, we assume first that there exist a fundamental solution
u0(�), �0(�), �0(�), D0(�), E0(�) that varies smoothly with l as the load increases from zero. The above variational
equation requires that
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for all �u and ��. Now suppose that , for some range of �, there is another solution
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that intersects the fundamental one at generalized buckling load lc, in the sense that

lim[ ( ), ( ), ( ), ( ), ( )] 0.
c
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It will be further assumed that u0(�), �0(�), �0 (�), D0(�), E0(�) exist for l greater than lc, so that a true bifurcation,
rather than a limited point, is implied by (9) and (10).

The bifurcation buckling mode will be defined as
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and also define the associated stress and strain modes by
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where � � represents a suitable norm; note �u1�= 1.

Since the u, �, �, � given by (9) must satisfy equilibrium
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and, under the assumption that �, �, � and G are analytical in the vicinity of u0(�), a Taylor-series expansion gives
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for sufficiently small ��-�c�. Substitute (14) into (13) and notice (8). Dividing (13) by �v�, and letting ���
c
, gives
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Applying the simplifications we have 
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as the variational equations governing the dynamical buckling mode u1 and the critical load �
c
.

If we let �u = u1, and ���= �1 in Eq. (16), we have the dynamic buckling loads as follows:

2
1 1 1 1 1 ,c c

c

u u D E� �� � � � �
� � � �

� �
  where 

2
1

( )
,c

c

d
u

d

� � ��� � �
�

(17)

From this remarkable Eq. (17), we can easily see that the dynamic buckling loads of smart structures can be
decomposed into two terms, one is no-piezoelectric part and another is with piezoelectric term, which is very

important for the close loop feedback control in terms of  1 1 ,cD E��
�

which is clearly indicate that feedback control

can only applied to the first derivative of piezoelectric energy with respect to the first buckling mode u1. That is the
mathematics-physical foundation of active control of smart structures.

4. POST-BUCKLING ANALYSIS

In order to determine v in (9) for � � �
c
, introduce the scalar parameter x defined by

� = <v, u1>, (18)

where the bracket symbol represents any bilinear inner product, the only restriction on this inner product is that <u1,
u1> � 0. Indeed, it is particularly convenient to choose the norm �v��= <v,v>1/2, for then <u1, u1> = 1, and this choice
will be assumed henceforth.



Following the similar way given by Budiansky, for � = �
c
 + �1� + �2�

2 +..., we have the following results:
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If �1 = 0, we have
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where 
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� . In the case of �1 = 0, we have the governing equation of u2,
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This is the governing equation of post-buckling state, and it is a non-homogeneous equation. There is an apparent
lack of uniqueness in the solution. Once u2  is found, �2 as given by (20) can be computed. In practice calculation of
u

i
 (i = 1, 2,...) can be found by perturbation procedure.

It is seen that the post-buckling coefficients depend only on the buckling mode u1, but the calculation of �2

would generally require the determination of u2 as well, and so on, and the coefficients �1 and �2 are only explicitly
depended on the mechanical field; actually post-buckling mode u2 depends on both mechanical and electric fields.

An anti-symmetric bifurcation corresponds to �1� 0, and in symmetric bifurcation the load rises or falls during
buckling according to the sign of �2. The results for �

i
 are, of course, not valid if ��= 0.

5. GENERALIZED LOAD- “SHORTENING” RELATION

For some problems, the load-”shortening” relation may be interesting. The load- “shortening” relation for a perfect
structure has been obtained by using the normal energy approach (Budiansky, 1974). In this paper, the generalized
load-”shortening” relation will be obtained by the variational principle.

For small �, then v � �u1 and we have

2
0

1
,

2
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This relation is quite general including cases in which the prebuckling variation of shortening with � is not
linear. The generalized load-”shortening” is only depended on the mechanical field, and piezoelectric field has no
any contribution on the shortening!

In the case of symmetric bifurcation, it is useful to define the initial postbuckling stiffness of the perfect structure

as  
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6. CONCLUSION

The majority of the work has concentrated in the area of active vibration control of structures, and the dynamic
buckling of a structure due to an axial load has received scant attention from the scientific community. Some
investigations for specific problems have shown that the critical buckling load of a structure could be increased few
times more when compared to that of an uncontrolled one. In this paper, to fill the gap, we presented the dynamic
buckling of the smart structures in a general way. Using the virtual work principle of smart structures, the governing
equations for pre-buckling, buckling and post-buckling states have been formulated. The critical load and the
coefficients of post-buckling path have been given explicitly.



We believe that following remarkable results have been obtained for the problem satisfied by these simplifications:

• The split of the critical load, in other words, the critical load can be decomposed into non-piezoelectric and
piezoelectric parts, which is the mathematics-physical foundation of closed-loop control.

• The post-buckling coefficients �1 and �2 depend explicitly on the mechanical field; but post-buckling mode
u2 depends on both mechanical and electric fields.

• The generalized load- “shortening” depends only on the mechanical field.

• The control mechanism of smart structures includes two aspects: one is control of pre-buckling motion and
another is control of electric energy in the buckling state.
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