
A Framework for Heterogeneous Environment to Build an Application using CORBA

A Framework for Heterogeneous Environment

to Build an Application using CORBA

Mahesh Pawar1, Anjana Pandey1, Sachin Goyal1 and Ratish Agrawal1

1 Department of Information Technology, University institute of Technology, State Technological University (RGPV),

Bhopal, Madhya Pradesh, India, Emails: mkpawar24@gmail.com, anjanapandey@rgtu.net, sachingoyal@rgtu.net,

ratish@rgtu.net

Abstract: The main intention of object oriented development is to facilitate the independent flexible composition

of software components for software reuse artifacts. The major component based software technologies such as

CORBA, EJB, DotNet have shifted the attention from conventional programming to component based programming

approach that enables rapid development of applications. However, achieving component interoperability in a

fully automatic manner is still an intimidating job. In this paper, a robust framework has been proposed that

handles compatibility issues between incompatible software components and let them communicate to each other.

In this work several tools and techniques have been developed to make a component interoperable in a practical

sense. This work extends the interoperability between various technologies with reasonably complex software

tools. This framework generates a generalized code that enables component interoperability through an IDP

(Interface, Data type and Protocol) tool. This work contributes to common understanding of IDL (Interface Definition

Language), IDL compiler and modeling of components to build an interoperable application. The framework also

possesses the capability to act as an intermediate interface for clients that are incompatible with server to enable

communication between them. To test the framework, a case study of vending machine application has been

developed whose different components were implemented using different languages and platforms i.e. Python,

C++, Java and C#.Net for creating a mixed environment with CORBA as middleware. we have used omniORB for

C++ to IDL mapping, omniORBpy for Python to IDL mapping, idlj for JAVA to IDL mapping and

IIOP.NETIDLtoCLS for C#.NET to IDL mapping.

Keywords: Component Interoperability, mixing of Component objects, component cross communication, Components

Heterogeneity

1. INTRODUCTION

In traditional software engineering, software development process comprises a sequence of activities such as

analysis, design, coding, testing and integration. The major role of software engineering is to come up with a

standard set of tasks, standard techniques, and standard tools that have a considerable effect on the primary

dimensions that all engineering disciplines address: cost, quality and time to market.

Mahesh Pawar, Anjana Pandey, Sachin Goyal and Ratish Agrawal

About 70 to 80%of software engineering deals with changing the existing software. It is still in its relative

infancy as compared to more traditional engineering disciplines like Mechanical engineering, Civil engineering

and so on. Traditional software engineering is facing various challenges raised by software industry and end

user, which includes rapid increase in size and complexity of software etc. There is a rapidly increasing demand

for development of component based technology in software industries [1].

It is because industries are moving from traditional domain specific programming approach towards the

software systems that are built up from platform and language independent components. There are many other

engineering disciplines where the components are well developed and acceptable according to the system because

of standards and rules are predefined.

Similarly, component based software engineering (CBSE) offers an opportunity to programmers through

which, they can employ the existing plug incompatible software components rather than implementing everything

from scratch. CBSE also offers significant benefits to component based systems such as enforcing management

of dependencies, making system flexible, lowering down maintenance cost and strengthening the software. The

proposed model is based on CORBA middleware technology.

The main reasons that CORBA offers several benefits [2]:

• CORBA middleware has very powerful features, which support various programming languages and

operating systems.

• CORBA is an open standard technology in which developer can select an implementation from various

CORBA vendors.

• CORBA standards support mapping of a variety of programming languages, such as C, C++, LISP,

Python, JAVA, COBOL, Ada, PL/I etc.

• CORBA makes it feasible to develop servers that handle unlimited number of objects.

2. RELATED WORK

Interoperability can be well-defined as the ability of two or more entities to communicate and cooperate with

each other regardless of variation in implementation language and execution environment.

Traditionally there are two levels of interoperability: The Signature Level: specifies the names and

signatures of operations and The Semantic Level: specifies the significance of operations. The syntactic

interoperability is now well defined and at this stage, various architects and middleware vendors are

trying to establish interoperation standards. An architecture description languages (ADLs) are used to

express and manipulate the structure of a component based system [3] [4] [5]. It also establishes the

relationship and interaction of components. Most ADLs also represent a formal basis for interoperation

of components. The CAPE-OPEN (CO) is a major technology for enablement of interoperability. The

CO currently does not include standard warning concept. The Model based computing contains a similar

high level description of a system [6] but this explanation is more commonly leveraged to generate a

subsequent application.

Another view is computing model often depends upon the structure within components. Model based

computing is commonly used in embedded system programming. Rastofer proposed a meta-model, which is

suitable for both component instances and component model [7]. Re-modeling of an abstract component model

is simple, effective and popular. This approach focuses on modeling the component model structure but does not

consider the behavior. A formal model that defines behavior and in depth information of Enterprise JavaBeans

(EJB) component model was presented in by Sousa et al.[8]. Authors performed EJB formal recognition of the

structure and established many inconsistencies.

A Framework for Heterogeneous Environment to Build an Application using CORBA

Ptolemy’s component based system is also intended for embedded systems [9]. It permits use of several

models of computation that provides a wide array of possibilities to express a problem domain. Ptolemy’s

computational models fundamentally differ from each other and include dataflow, time triggered, synchronous,

isolated events and process networks etc.

They aim to combine various component models that can rely on different models of computation. It is a

very low level tool and we are more interested in alliance of component models. The originators of ASSIST [10]

presented a parallel and distributed high performance computation framework that sets up a binding between

ASSIST programs and the CORBA component framework [11]. The bridge between the two different

environments is generated by means of a conventional compiler. ASSIST program considers a component as

independent executable method within a CORBA framework. The CORBA components can invoke this stand-

alone method to interface with parallel ASSIST program. The interoperability of ASSIST and CORBA is an

illustration of a hand written bridge scenario for which, they try to provide abstractions that facilitate easier

conception. ASSIST allows fair interoperability levels with respect to the CORBA framework.

3. COMPONENT INTEROPERABILITY FRAMEWORK

The proposed interoperability framework binds various parameters with IDL generated code that combines two

or more components. With a binding standard language and the IDP (Interface, data type and protocol) mapping,

this work focuses to evaluate various aspects. Regularity of all aspects of the software component lies within the

framework.

By exploiting this regularity, we enable the rapid development and evaluation of generalized code. Once

the component model differences are understood and expressed in a standard format, they can easily be coupled

with other component models. This framework is found effective in creating code that communicates between

two different sets of interfaces and data types.

Our approach introduces a binding standard language based upon the meta-modeling techniques that adds

semantic information to mapping and code generation process. This framework can be considered significant

because it addresses several issues regarding the data type, interfaces, and protocol differences between component

models. The main contribution of this framework is mapping between IDL generated code and IDP, which is

augmented with data models.

The purpose of IDP mapping is to create ontology between component objects. The data models, assisted

by IDP mapping, create a definition of data types and their handling for individual component model. The

output of this meta-model, binding language as input to IDL tool and the generated code is mapped with IDP to

produce the generalized version of Interface and a data type.

This framework mainly deals with the creation of a static, direct and generalized code between two or

more existing component objects.

This section describes our approach to component interoperability, and demonstrates a framework that

makes the interoperability practically possible. This work begins the discussion with IDL tool, which is augmented

with meta-modelling, standard language binding and data model. The semantic tool (IDP) that we have designed

for achieving the component interoperability. The component of framework is shown in Figure 1.

An IDL is a specification language used to is a specification language used to interpret software components’

interfaces.

It describes an interface in a language-independent manner, which enables us to access those objects

across the network. But it should be noted that IDL does not deal with details about how to traverse through the

network.

Mahesh Pawar, Anjana Pandey, Sachin Goyal and Ratish Agrawal

An IDL is compiled using IDL compiler (an IDL tool), which converts the definition of an input interface

to a high level language. Another compiler integrates the component’s source code with the converted interface

source code andproduces the distributed component object.

This process is explained with the help of a simple example below:

//Interface Definition Language for Division interface (Division.idl)

interface Division

{

double div(in double a, in double b); };

The above IDL contains the definition of division operation and an interface containing the method to

compute this operation. This IDL definition is compiled with the help of a language specific IDL compiler.

To illustrate the compilation process of this IDL definition, an IDL to C++ mapping compiler (omniORB)

is used. After compilation the division.idl (as shown in Figure: 2), it generates the division.hh and divisionSK.cc

files in C++ language, which act as stub and skeleton respectively. To further process these IDL generated files

for performing division operation, it requires implementing the following files (as illustrate in Figure..3) in

C++.

Figure 1: Framework for Interoperable version of Interface and data

Figure: 2 Division IDL processing using OmniORB

A Framework for Heterogeneous Environment to Build an Application using CORBA

In addition, to write the client and server programs to invoke the division operation. These files (i.e. client.cpp

and server.cpp) are required to implement the client and server.

4. A CASE STUDY OF COMPONENT BASED VENDING MACHINE

This section applies the component interoperability framework to build an application model of well-known

vending machine [12]. It is generally used to dispense various items such as Cold-drinks, coffee, Ice-creams etc.

to buyers.

In this application model (as shown in Figure: 4), various components are implemented in C++, JAVA,

PYTHON and C#.Net [13]. The vending machine accepts coins as user inputs in any succession and dispenses

the products. If input amount is more than the cost of item, which user is currently buying then machine returns

back the change.

It also supports an abort feature, which means a user can abort the transaction at any time and get the

inserted money back without buying any item. Our vending machine consists of following major components,

which have been implemented using different programming languages:

• Select Item: It is used to select the item(s) from item list. The items and their costs are verified by this

C++ Component.

• CoinCheker: It checks the validity of inserted coin. This Python Component displays the values of

coin inserted by the client for buying the item(s).

• ComputeChange: It compares the item cost with value of coin(s) inserted by the user, and returns the

value of remaining amount. This task is performed by Java Component.

• Dispenser: It returns the item and change (if any). This component is implemented in C#.Net.

5. RESULTS

There are four different scenarios in which we have evaluated the result of different components they performed

the task to dispense the item form vending machine as required by the user.

Figure 3: Implementation of division operation in C++

Mahesh Pawar, Anjana Pandey, Sachin Goyal and Ratish Agrawal

Scenario1: omniORB C++ SelectItem Component and C#.NET client

In this omniORB C++ server (as shown in Figure:5) and C#.NET client communication, he/she selects the soft

drink item from the list of products, which is displayed in the client application. The selected item will go to the

C++ server, where it verifies the selected item and send their price to the client. In our example user select the

product coca cola from the client application, it will reflect to the C++ server. The server will display the user

choice and the price of the item (Rs.15) will send to the client.

Scenario2: omniORBpy Python CoinCheker Component and C#.NET client

In this scenario, he/she insert the Coin of Rs.20, which is validated by the python server (as shown in Figure: 6).

Python server will send the valid value of the coin to the C#.NET client. Here for coin checker purpose we

simply display the message for the validity of the coin.

Scenario3: idlj Java ComputeChange Component and C#.NET client

In the third scenario, user has inserted the Coin of Rs.20, and price of product is Rs.15, now the Java server plays

the role of comparison (as shown in Figure 7) between product price and user inserted money. Java server will

get these values and perform the ComputeChange operation and return the value of Rs.5.

Figure 4: Vending Machine client-server communications in heterogeneous environment

A Framework for Heterogeneous Environment to Build an Application using CORBA

Scenario4: IIOP C#.NET Dispenser Component and C#.NET client

In this scenario, the communication between client and server is robust due to same environment of client and

server. The dispenser component will dispense the item and return change (if any).

Dispenser component also perform the task of difference money (for example if user insert the coin of Rs.

10 and the product price is Rs. 15 then Dispenser server display the message to insert Rs.5 more (as shown in

Figure: 8) to purchase the item.) Here we perform all the validations of interface level and application level so

that the overall performance of the application is in a robust way.

All the component of vending machine tested well and every component performs their task in an appropriate

way.

Figure 5: Snapshots of C++ server component

(left) and C#.Net client for SelectItem component (right)

Figure 6: Python Server (left) and C#.Net client

(right) for CoinChecker Component

Mahesh Pawar, Anjana Pandey, Sachin Goyal and Ratish Agrawal

Figure 8: C#.Net Server (left) and C#.Net client

(right) for Dispenser component

Figure 7: Java server (left) and C#.Net client

(right) for ComputeChange component

6. CONCLUSION AND FUTURE WORK

The proposed framework has opportunities of using CORBA middle-ware standard and its services for

integrating the component objects developed in different programming languages. The works have been

tested, in which a C#.Net client written in C#, running on Microsoft Windows can communicate directly

with a C++ server by using the IIOP protocol. Additionally, It is also explained how to write the C#.Net

client using IIOP.NET, which can communicate with C++ server, running on Linux. The benefits of channel

IIOP.NET should be recognized by C#.Net programmers, who still interoperate with OmniORB code.

CORBA is a benchmark that supports the architecture of various programming languages, thus making it

very reasonable means to develop component based applications. The major limitations to implement

A Framework for Heterogeneous Environment to Build an Application using CORBA

CORBA based component applications include the need to learn variety of programming languages, IDL

language and data types for mapping.

Under this work, a framework is designed, which is based on standard library files for data types, interfacing,

syntax and semantics to build component based applications. One aspect of the future work is that CORBA

services are used with various external tools such as IDL compilers of various vendors. The IDL compilers pose

challenges for configuring, versioning problem and interoperability with standard language compiler.

Second aspect of this component Interoperability framework is that the IDL compiler does not generate all

syntactical constructs, which are described in the IDL specification. The third aspect is to use the component

interoperability framework in a variety of programming languages and operating systems to build applications.

This will prove its applicability and any mismatch of the framework.

REFERENCES

[1] M. K. Pawar, R. Patel, and N. S. Chaudhari, “Survey of Integrating Testing for Component-based System,” International

Journal of Computer Applications, vol. 57, pp. 21–25, November 2012. Published by Foundation of Computer Science, New

York, USA.

[2] CORBA explained Simply at http://www.ciaranmchale.com/corba-explained-simply.

[3] R. Allen and D. Garlan, “Formalizing architectural connection,” in Proceedings of the 16th international conference on

Software engineering, ICSE ’94, (Los Alamitos, CA, USA), pp. 71–80, IEEE Computer Society Press, 1994.

[4] E.M. Dashofy, A. van der Hoek, and R. N. Taylor, “An infrastructure for the rapid development of xml-based architecture

description languages,” in Proceedings of the 24th International Conference on Software Engineering, ICSE ’02, (New York,

NY, USA), pp. 266–276, ACM, 2002.

[5] D. C. Luckham, “Rapide: A language and toolset for simulation of distributed systems by partial orderings of events,” in

Princeton University, 1996.

[6] M. Fromherz and V. Saraswat, “Model-based computing: Using concurrent constraint programming for modeling and

model compilation,” in Principles and Practice of Constraint Programming CP ’95 (U. Montanari and F. Rossi, eds.), vol.

976 of Lecture Notes in Computer Science, pp. 629–635, Springer Berlin Heidelberg, 1995.

[7] U. Rastofer, “Modelling with components - towards a unified component meta-model,” in Proceedings of the Model-based

Software Reuse Workshop, Malaga, Spain: Springer-Verlag, June 2002.

[8] J. a. P. Sousa and D. Garlan, “Formal modeling of the enterprise javabeanstm component integration framework,” in

Proceedings of the Wold Congress on Formal Methods in the Development of Computing Systems-Volume II, FM’99,

(London, UK, UK), pp. 1281–1300, Springer-Verlag, 1999.

[9] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Readings in hardware/software co-design,” ch. Ptolemy: a framework

for simulating and prototyping heterogeneous systems, pp. 527–543, Norwell, MA, USA: Kluwer Academic Publishers,

2002.

[10] M. Vanneschi, “The programming model of assist, an environment for parallel and distributed portable applications,” Parallel

Comput., vol. 28, pp. 1709–1732, Dec. 2002.

[11] S. Magini, P. Pesciullesi, and C. Zoccolo, “Parallel software interoperability by means of corba in the assist programming

environment,” in Euro-Par 2004 Parallel Processing (M. Danelutto, M. Vanneschi, and D. Laforenza, eds.), vol. 3149 of

Lecture Notes in Computer Science, pp. 679–688, Springer Berlin Heidelberg, 2004.

[12] M. K. Pawar, R. Patel, and N. S. Chaudhari, “Way to Component based Vending Machine,” CiiT, International Journals of

Software engineering, vol. 4, no. 10, pp. 447–451, 2012.

[13] M. K. Pawar, R. Patel, and N. S. Chaudhari, “Interoperability between .Net framework and Python in Component Way,”

IJCSI, International Journals of Computer Science issues, vol. 10, no. 03, pp. 165–170, 2013.

