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ABSTRACT

The Chow test is not robust when the errors are heteroscedastic as well as
dependent. The presence of heteroscedasticity and dependency will affect level of
significance as well as power of the test, especially when the sizes of the samples
are small. The present paper not only resolves the problem of simultaneous
existence of heteroscedasticity and dependency in the error terms, but also extends
the existing method of comparing two linear regressions to one where it is possible
not only to compare the equality between the sets of coefficients in the two linear
regressions, but also, in case they are not equal, to provide detailed informations
about the inequality of the sets as well as to accomplish all these for not just only
two linear regressions but for the two linear regressions of all possible pairs of
linear regressions out of any number of given linear regressions, and then to use
the results of all these comparisons in order to form clusters among the regressions
on the basis of some principle stated therein. The procedure is then illustrated
through comparison of the decadal growth rates of the population of India, using
NSSO data.
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1. INTRODUCTION

Testing the equality between sets of coefficients in two linear regressions by
Chow Test (Chow 1960)[1] is well known. Chow however assumed
homoscedasticity as well as independence of the regression errors. It is already
demonstrated in the literature that the Chow test is not robust under
heteroscedasticity (Toyoda 1974[2], Schmidt and Sickles 1977[3], Ali and Silver
1985[4] and Tansel 1987[5]). If the regression errors are heteroscedastic then the
estimates may not be efficient. The presence of heteroscedasticity will affect
level of significance as well as power of the test. This means that if there is
heteroscedasticity in the errors, but we perform Chow test assuming
homoscedasticity then the result may be much different from the actual
especially when the sizes of the samples are small. The situation is similar if
the regression errors are dependent.
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Under homoscedasticity and independence assumption in the Chow Test, if
the null hypothesis of equality between the sets of coefficients is not rejected
then there is no problem (as in the examples in his paper). But if rejected, then,
naturally, one is probed to the questions:

(a) at which component/s the sets differ, and
(b) for each of these components, between the two coefficients of the two

regressions concerned, which one is larger/smaller.
Chow test, however, does not provide any answer to these questions at all.

This problem can be resolved with some modifications of the model (Saha and
Pal 2014)[6]. Saha and Pal introduced the concept of “component wise complete
comparison” (CCC)2  in order to overcome this problem. The test procedure for
CCC between every two successive regressions out of any number of given
successive regressions was developed. If both heteroscedasticity and dependence
of errors are present then the problem of CCC aggravates and needs further
modifications. The earlier paper[6] was then extended in order to incorporate
heteroscedasticity and dependency in errors (Saha 2016)[7]. The test procedure
for CCC between every two successive regressions out of any number of given
successive regressions, when the errors are heteroscedastic as well as dependent,
was developed. The present paper, retaining the simultaneous existence of
heteroscedasticity and dependency of errors in the last one[7], extends it in order
to develop a test procedure for CCC between not only every two successive
regressions out of any number of given successive regressions, but between the
two linear regressions of all possible pairs of regressions out of any number of
given regressions, and then to use the results of all these comparisons in order
to form clusters among the regressions on the basis of this simple principle:

all those regressions which satisfy the condition that the vectors of coefficients
of any two of these regressions do not differ from each other significantly will
form a cluster.

The rest of the paper can be outlined as follows. In Section 2, we put the
problem in the formal terms, problem of finding test procedure for CCC between
the two regressions of all possible pairs of regressions out of several given
regressions, when the regression errors are heteroscedastic and dependent.
Section 3 is devoted for the methodology for solving this problem and then for
discussion about process of clustering. In Section 4 we consider a numerical
example in order to illustrate the methodology and the process of clustering
while in Section 5 we put our conclusions.

2. THE MODEL

We consider the problem of finding test procedure for CCC between the two
regressions of all possible pairs of regressions out of m given regressions as
follows:

y (1) = a1
(1) + a2

(1)x2
(1) + a3

(1)x3
(1) + ... + ak

(1)xk
(1) + u (1),

y (2) = a1
(2) + a2

(2)x2
(2) + a3

(2)x3
(2) + ... + ak

(2) xk
(2) + u (2),

y (m) = a1
(m) + a2

(m)x2
(m) + a3

(m)x3
(m) + ... + ak

(m)xk
(m) + u (m), ...(1)
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where, the superscripts denote the individual regressions, n1, n2, ..., nm are the
nos. of observations for these regressions and the errors are Heteroscedastic
and dependent in the sense as formulated by the assumptions given under:

(i) E (u (i)) = 0n�1, �i  = 1, 2, ..., m,××

(ii) E ((u (i))(u (i))�) = �i
2 Inxn, �i = 1, 2, ..., m,

(iii)E ((u (i))(u (j))’) = �ijInxn, �i � j = 1, 2, ..., m,

(iv) �m�m = (�ij)m�m, say, is a positive definite matrix, ...(2)

where, �ii = �i
2, for all � = 1, ..., m, and, ni 

 = n, � i = 1, 2, ..., m, (i.e., the sample
sizes for the different regressions are the same, say n).

It is admitted that a particular type of heteroscedasticity and dependency,
jointly, of the errors in the regressions in (1) has been adopted—this is in the
light of the model adopted in the Zellner’s (1962)[8] SURE Estimation Procedure,
and the solution here is, also, similar to that of Zellner’s.

For the problem stated we proceed as follows. Firstly, for CCC between
first and second regressions in (1), first and third regressions, ..., first and m-th
regressions, one requires to decide whether the differentials:

c j
12 = a j

2 – a j
1 < 0 or = 0 or > 0, for all j = 1, 2, ..., k,

cj
13 = a j

3 – a j
1 < 0 or = 0 or > 0, for all j = 1, 2, ..., k,

c j
1m = aj

m – aj
1 < 0 or = 0 or > 0, for all j = 1, 2, ..., k.

Similarly, for second and third regressions, second and fourth regressions,
..., second and m-th regressions, one requires to decide whether the differentials:

cj
23 = aj

3 – aj
2 < 0 or = 0 or > 0, for all j = 1, 2, ..., k,

c j
24 = a j

4
 - a j

2 < 0 or = 0 or > 0, for all j = 1, 2, ..., k,

cj
2m = aj

m – aj
2 < 0 or = 0 or > 0, for all j = 1, 2, ..., k.

Lastly, for (m – 1)-th and m-th regressions, one requires to decide whether
the differentials:

cj
m–1,m = aj

m – aj
m–1 < 0 or = 0 or > 0, for all j = 1, 2, ..., k.

A moment’s reflection shows that the desired CCC, i.e., CCC for all pairs of
regressions out of the m regressions in (1), will be over when all the decisions
enlisted just above, in (m – 1) groups, so to say, are completed. Our task is to
device tests for all these decisions.

3. THE METHODOLOGY

As indicated at the end of the preceding Section, Methodology consists of (m –
1) steps as ahead.

1. To build up tests in order to decide upon the differentials cj
12, cj

13, ..., cj
1m, for

all j = 1, 2, ..., k:

Firstly, we combine the m regressions in (1) into a single regression equation
model as follows.
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...(3)
The solution for the single equation model is same as that of finding solution
separately for each equation in (1). The benefit of writing a single equation
model is that the error terms in (1) are now constituents of the one error
vector of this single equation model and hence we can now conceive the
heteroscedasticity and dependency of these error terms easily,
heteroscedasticity and dependency in the sense as formulated by (2). In
addition to setting idea for heteroscedasticity and dependency of the error
terms, we also want to decide upon the differentials cj

12, cj
13, ..., cj

1m, for all j
= 1, 2, ..., k. For that we slightly change the model further as follows.
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Let us, for convenience, rewrite (4) as:
Y = Xc + U,  ...(5)

where, YN�1 = the Y-vector in (4), XN�K = the X-matrix in (4), cK�1 = the
coefficient-vector in (4) and UN�1 = the disturbance-vector in (4), N = nm and
K = km.

However, we cannot now run the usual regression with (5) in order to
estimate c and perform tests for deciding upon the differentials cj

12, cj
13, ...,
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cj
1m, for all j = 1, 2, ..., k, simply because model (5) is a Generalised Least

Squares Model (GLSM)[9]. The estimation procedure will depend on the
variance- covariance matrix of the regression error, which is given as:

(D(U))N�N = V, say, =
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or,

V = �m�m � In�n , ...(6)

where, �m�m is:

�
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So the model (5) is a GLSM with the variance-covariance matrix of the
regression error as given by (6). The GLS estimator of c based on (5) is given
as:

c* = (X �V –1X)–1X �V –1Y, ...(7)

and its dispersion matrix is:

D(c*) = (X �V –1X) –1. ...(8)

But due to (6), V  is unknown as �m�m is so. So it is not possible to use (7) and
(8) in practice, particularly for the testing purposes we are aimed at.
Henceforth let us proceed following Zellner[8] .

Firstly, we need to estimate V. For that we need to estimate �m�m and that is
done as follows. The steps are:

(i) Apply OLS separately to each of the regressions in (1); let the residual
vector for the i-th regression be denoted as ei, for all i = 1, 2, ..., m,

(ii) Estimate �i
2 as: si

2 = (e i�¹e i)/(n – k), for all i = 1, 2, ..., m,

(iii)Estimate �ij as: sij = (e i�¹ej)/(n – k), for all i � j = 1, 2, ..., m.

Then, estimated �m�m, say, Sm�m, is: Sm�m = (sij)m�m, where sii = si
2, for all i = 1,

2, ..., m. Then, V is estimated as:

ˆ .� �� � ...(9)
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Now we replace V in (7) by as given by (9) and form the estimator:

ˆ ˆ** ( ( ) ) ( ) .� � �� �� ...(10)

Then it follows that (n1/2) (c** – c) has asymptotic normal distribution and
the dispersion matrix of c** is:

 D(c**) = (X � ( ˆ)–1X)–1 + 0(n
–1),

where 0(n
–1) denotes terms of high order of smallness than n–1.

So, for large value of n, c** is normally distributed. Also, evidently, for large
n, 0(n

–1) is negligible and then,

D(c**) � (X � ( ˆ)–1X)–1.

So, for large n, we have:

c** ~ NK (cK�1 , (X � ( ˆ)–1X)–1 ). ...(11)

Now, the tests that we require are obvious, provided that n is sufficiently
large which we assume for rest of the paper. Representing,

c** = (c**1 c**2 c**3 ...c**K)�,
c = (c1 c2 c3 ...cK)�, and

(X � ( ˆ)–1X)–1
 = (aij)K�K ,

we have: (c**i – ci) / (aii)
1/2 N(0, 1), for all i = 1, 2, 3, ..., K.

Hence for the null hypothesis: H0 : ci = 0,
the test statistic is:

T = c**i /(aii)
1/2, and ...(12)

 T ~ N(0, 1), under H0, for all i = 1, 2, 3, ..., K.
Needless to say that each of the tests here is a normal test.
This completes tests for CCC for (m – 1) pairs of regressions: first and second,
first and third, ..., first and m-th.

2. To build up tests in order to decide upon the differentials cj
23, cj

24, ..., cj
2m, for

all j = 1, 2, ..., k:
The entire procedure here is exactly similar as in the step 1). but with the
last (m – 1) regressions in (1) instead of all the m regressions in (1).
This completes tests for CCC for (m-2) pairs of regressions: second and third,
second and fourth, ..., second and m-th.
m – 1). Lastly, to build up tests in order to decide upon the differentials
c j

m–1,m, for all j = 1, 2, ..., k:
Here also the entire procedure is exactly similar as in the step 1). but with
only the last two Regressions in (1) ((m – 1)th and mth).
This completes tests for CCC for one and the last pair of regressions:
(m – 1)th and mth.
Thus, tests for CCC for all possible pairs of regressions out of the m given
regressions in (1) is complete.
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Having done this one can partition the set of the given regressions into,
say, clusters, every cluster consisting of those regressions which satisfy the
condition that the vectors of coefficients of any two of these regressions do
not differ from each other significantly. In order to sort out the clusters
easily we first present the outcomes of all the above comparisons neatly by
introducing a matrix, let it be called Indicator Matrix (IM), as:

im�m = (rij ), ...(13)

where, r ij indicates whether the i th and the j th regressions in (1) differ
from each other significantly or not and is defined as follows:

rij = 0, when i = j,

0, when i � j and the two regressions concerned do not differ

from each another significantly,

1, when i � j and the two regressions concerned differ from each another

significantly,

where, i, j = 1, 2, ..., m3.

It is this IM which will clearly show the clusters: number of clusters as well
as the regressions in each of these clusters. Needless to say that IM is a
symmetric matrix of order mxm with all the diagonal elements as zeros and
it will be a null matrix (mxm) iff all the m regressions coincide.

4. ILLUSTRATION

In the context of rate of growth of population in India, we consider three
regression equations (m = 3) as follows. With state level population of India, we
first define the following four variables:

X1 = size of the population in a state of India in 1981,

X2 = size of the population in a state of India in 1991,

X3 = size of the population in a state of India in 2001,

X4 = size of the population in a state of India in 2011,

the sources of these data being Census of India (1981, 1991, 2001, 2011)[10].

Let us now define variables Y1, Y2, Y3 as follows:

Y1 = X2 – X1 (i.e., growth/increase of population during: 1981 to 1991),

Y2 = X3 – X2 (i.e., growth/increase of population during: 1991 to 2001),

Y3 = X4 – X3 (i.e., growth/increase of population during: 2001 to 2011).

We now consider three regressions as follows:

� � � �
�� � � �
�� � � �

...(14)
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�1, �2 and �3 are nothing but the rates of growth of population over the
decades: 1981 to 1991, 1991 to 2001 and 2001 to 2011 respectively (to be referred
as first decade, second decade and so on).

Following the last Section, for CCC of all possible pairs out of the three
regressions in (14), we have here two steps as follows ((m – 1) steps with m = 3).
1. First consider tests for CCC of two pairs of regressions: first and second,

first and third.

Again, following the last Section, we apply OLS separately to each of the
above three regressions in (14). It may be noted that each of these regressions
is a regression without an intercept term. (The no. of observations for each
regression here is n = 32(no. of States in India); so, we have here: n = 32,
k = 1, m = 3.)

The Residual vectors of these three regressions are first obtained. It is now
a routine calculation to get the sum of squares and the sum of products of
the residual vectors and hence the estimates of �i

2 and �ij (si
2 and sij) using

the formula as given already. We then use the following steps to get the
estimate c** in (10), D(c**) in (11), and thence the value of the test statistic
T in (12), the value of c** representing as: first component gives the estimate
of the growth rate in the first decade (�1), and the second and the third
components give respectively the estimates of changes in the growth rates
over first decade to second one (�2 – �1) and over first decade to third one (�3

– �1).
1. Construct the matrix S3�3 and compute (S3�3)

–1,

2. Compute: ( ˆ )–1
96�96 = S –1

3�3 I32�32 ,

3. Compute the matrix: (aij)K�K = (X �( ˆ )–1 X )–1,

4. Compute c** as: c** = (X �( ˆ )–1 X )–1 X �( ˆ )–1Y,

5. Compute the test statistic: T = ci**/(aii)
1/2.

The estimate of growth rate in the first decade is 0.235 and the estimates of
the changes concerned are respectively –0.105 and –0.054 with the
corresponding T-values, given by (12), as 41.499, –5.541 and –2.194
respectively. Compared with table-values, it may be concluded that the
second T-value indicates that there is a decline in growth rate as one moves
from the first decade to the second decade and the third T-value also indicates
in the similar way, i.e., there is a decline in growth rate as one moves from
the first decade to the third one 4. Hence it may be concluded that the first
regression differs significantly from both of second and third regressions.

2. Next and lastly we consider test for CCC of one pair of regressions: second
and third.

We consider now the last two regressions in (14) and proceed exactly in the
similar way as in the step 1). with these two regressions only. The results
come out as follows.
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The estimate of growth rate in the second decade is 0.130 and the estimate
of the change in growth rate as one moves from second decade to the third
one, is 0.051 with the corresponding T-values, given by (12), as 6.871 and
1.721 respectively. Compared with table-value, it may be concluded that
the second T-value indicates that the change is insignificant. Hence it may
be concluded that the second regression does not differ from the third one
significantly!

This evidently completes tests for CCC for all possible pairs of regressions
out of the three given regressions in (14).

Now, in order to get the clusters, we first construct the IM defined by (13)
which comes out to be as follows:

�

� �
� �� � �
� �
� �

...(15)

Hence, representing the decades concerned as D1, D2, D3 respectively, we
get here two clusters as follows:

C1 = {D1} and

C2 = {D2, D3 }.

So, it may be concluded that in respect of the relation of size of population to
growth of population, the behaviour of the first decade do not match with
that of the other decades while the other decades behave in the same manner.

5. CONCLUSIONS

The above test procedure enables one to perform CCC for the two regressions in
each and every pair of regressions possible out of several given regressions.

Needless to say, this generalises the Chow test in two directions. This,
further, has the following important implications.

 Suppose the regressions are now arranged successively in a definite order
for investigating existence of structural change. Then, obviously, if this procedure
is carried out, CCC between every two successive regressions out of the given
regressions, arranged now successively, is automatically done and hence detailed
informations regarding all structural changes are obtained, if there is any such
at all 5.

 Again, once this procedure is performed, i.e., CCC between the two
regressions of all possible pairs of regressions out of the several given regressions
are done, one can partition the set of the given regressions into, say, clusters,
every cluster consisting of those regressions which satisfy the condition that, as
already stated, the vectors of coefficients of any two of these regressions do not
differ from each other significantly. An example has already been illustrated.
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 It is to be noted that number of clusters need not always be two; it may be
more than two as well as be one when and only when all the regressions coincide,
i.e., the Indicator Matrix becomes a null matrix of an appropriate order.

 It may be noted that the clustering introduced here is quite different from
that which is obtained by using Mahalanobis D 2 Statistic[11] or using k-means
Method[12]—clustering by means of each of the later approaches is based on a
single variable/a vector of variables while that by means of our procedure is
based entirely on relationship of variables.

 It is a hunch that the procedure introduced here can be extended for the
purpose of clustering on the basis of not only one relationship of variables but
more than one relationship together!

Notes
1. By complete comparison between any two parameters a and b we mean to decide

whether a < b or a = b or a > b. By component wise complete comparison (CCC)
between two vectors of parameters of the same size (a1 a2 … am) and (b1 b2 … bm) we
mean complete comparison between (a1 and b1), (a2 and b2), ... and (am and bm). By
CCC between/of/for two regressions with same no. of parameters we mean CCC
between the two vectors of parameters of these regressions. In the paper by Saha
and Pal, CCC is done between every two successive regressions out of any number
of given successive regressions with same no. of parameters.

2. Of course, IM provides limited knowledge that for every two regressions, whether
they coincide or not, nothing more.

3. All tests throughout this Illustration is carried out at 5% level of significance.

4. It is to be noted that if one requires only CCC between every two successive
regressions out of given several successive regressions and nothing more, it is not
necessary to carry out the procedure described here; for that purpose it is sufficient
to work out only the procedure laid for that purpose in the paper by Saha and Paul
(2014) referred earlier [2].
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