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Investigation of the Role of Mesoscale
Detachment Rate Expressions in a
Macroscale Model of a Porous Medium
Biofilm Reactor
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ABsTRACT: Starting from the traditional mesoscopic one-dimensional biofilm model we derive a macroscopic
model of a simple porous medium biofilm reactor in the convection dominated, laminar regime. The mesoscopic
processes included in this model are biofilm growth due to substrate consumption and biomass loss due to cell
death and biofilm detachment. The upscaling to the macroscale leads to a stiff quasilinear hyperbolic system of
balance laws. In numerical simulations we investigate the role of the mesoscopic detachment description for the
macroscopic model. To this end we compare four mesoscopic detachment models that are based on different
model assumptions and lead to different mathematical expressions. We find that the particular choice plays only a
minor role for macroscopic behavior, both from a quantitative and qualitative aspect. Similarly, we find that the
overall reactor performance is rather insensitive with respect to the parameters of the detachment rate expressions.
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1. INTRODUCTION

Bacterial biofilms are microbial depositions on immersed surfaces [18]. If the environmental conditions
sustain growth, bacteria adhere to the surface and form microbial communities that are embedded in and
protected by a self-produced layer of extracellular polymeric substances. Biofilms are ubiquitous. Depending
on the context, they can be seen as harmful, e.g. in a medical or industrial setting, neutral, e.g. in natural
systems, or beneficial, e.g. in environmental engineering technologies. An essential feature of biofilms that
distinguishes them from planktonic or suspended microbial populations are substrate gradients, i.e. in
different locations of a biofilm the bacteria can experience different growth conditions [33].

The last two decades saw a vast amount of research conducted in mathematical modeling of biofilm
processes. Biofilm modeling is in the first place concerned with the mathematical description of the processes
on the mesoscale, i.e. the actual biofilm length scale, from around 50 microns to 500 microns. In contrast
to this, one refers by microscale to the length scale of the individual biofilm constituents, i.e. the length
scale of bacteria cells, around 1 micron. On the other hand, macroscale refers to the length scale of a
reactor, usually larger than centimeters or even meters.

Traditional biofilm models are one-dimensional models assuming the biofilm to cover the substratum
in a homogeneous layer [39, 38]. Although these models do not account for the spatial irregularity of
biofilms that can be observed under the microscope, they have been successfully and almost routinely used
by engineers to gain a better understanding of population, resource and degradation dynamics in complex
biofilm communities [8]. These biofilm models, which are primarily studied computationally, due to their
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mathematical complexity, usually include terms accounting for biofilm detachment, i.e. the loss of biomass
due to shear forces acting on the biofilm. Detachment in these models is primarily understood as a mechanism
that balances biomass growth and allows the biofilm to reach an equilibrium. The various detachment rate
functions used in the literature are based on different assumptions. In a recent study [2] it was found that
the choice of a particular detachment rate function might not only affect the mesoscale biofilm prediction
quantitatively, but also qualitatively. More recently, also two- and three-dimensional mesoscale biofilm
models have been developed, using a variety of mathematical concepts, from agent based models, to cellular
automata to partial differential equation models. Among these models there are those that emphasize a
description of biofilms as spatially structured populations, but there are also many that focus on mechanical
and material properties of biofilms, e.g. [3, 10, 11, 26, 40]. The latter question is undoubtedly important for
questions of mechanical stability of biofilms on the mesoscale, but it is not understood well whether these
mechanical aspects also contribute to the performance of biofilms, e.g. in substrate removal.

In this study we want to investigate the question how important the description of mesoscopic detachment
processes is for macroscale models of biofilm systems. More specifically, we focus on biofilms growing in
the pore spaces of a porous medium. Systems of this kind arise in bioremediation of soils, biobarrier for
groundwater protection, and in certain wastewater treatment processes. Many macroscopic model
descriptions of such systems can be found in the literature, primarily for bioremediation applications, e.g.
[7,9,12,16,31, 32, 34]. Usually these models are a priori formulated for the macroscale and the connection
between the underlying mesoscopic processes and the macroscopic description are not always clear. The
biofilm description in these models is usually very simplified, e.g. by assuming a constant biofilm thickness
or by neglecting substrate gradients in the biofilm. In contrast, we will derive a macroscale model from a
mesocale model, using an upscaling procedure. This will ensure that mesoscopic processes are correctly
incorporated in the macroscopic description. Upscaling of biofilm models to macroscale applications is a
relatively recent development, e.g. [4, 15]. Some of these studies focus on the correct treatment of the
substrate transport equations but make simplifying assumptions about biofilm growth. Others propose a
general volume averaging strategy which often leads to models to complex to be entirely closed or accessible
for specific applications. The probably most comprehensive upscaling studies for biofilm models so far are
[14, 23] which use (different) multi-dimensional mesoscopic biofilm model as starting point. The upscaled
models, however, are too complex to be easily accessible. With the model that we derive in this study, we
follow a different philosophy and a different purpose. Starting point is the traditional one-dimensional
biofilm model, including biomass production, substrate degradation, cell death and biofilm detachment.
Goal is to derive a relatively easy to handle conceptual macroscopic biofilm reactor model. In our case this
will be a stiff system of two quasilinear hyperbolic balance laws, one for the local biofilm thickness and
one for the growth limiting substrate. The model then will be studied numerically using a uniformly accurate
centered finite difference scheme that was originally proposed in [19], and is considered very suitable for
stiff problems [20]. Our particular focus will be on understanding the role of the mesoscopic detachment
process for the macroscopic model. To this end we compare quantitatively simulations of the macroscopic
models derived for four different mesoscopic detachment rate functions.

2. MATHEMATICAL M ODEL
2.1 System Description and M odel Assumptions

We consider a macroscale porous medium reactor of length L_and width L that consists of many dense,
parallel, identical, noncommunicating fissures or fractures. In these channel-like pores bacterial biofilms
may form. The pores occupy a void space of fraction p of the entire reactor. We assume that biofilm forms
on both boundaries of the pores at the same thickness. Substrate is added to the reactor at the upstream end
from where the flow through the reactor is driven by prescribing a constant flow rate Q. We assume that Q
is high enough to guarantee convection dominated substrate transport, but still in the laminar regime.
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On the mesoscopic level, we consider small, square segments of length ¢ < min {L , L}, which we refer
to as cell. This is also depicted in Fig. 1. Assuming a convection dominated regime, substrate enters a cell
from the upstream neighbor cell and flows into the downstream neighbor cell. Within the cell the biofilms
on both boundaries of the pore space have thickness A , the pore itself a diameter p . Thus, we are interested
in the case 2A_< p_. Otherwise the pore channel is entirely clogged by biofilm. In the aqueous phase we
assume a laminar, fully developed, parallel flow profile. Since the flow rate is prescribed, a thicker biofilm
implies a faster local flow field and increased shear forces acting on the biofilm. Within the cell of size e,
the substrate is assumed to be completely mixed in the aqueous phase, but substrate gradients in the biofilm,
in the direction perpendicular to the substratum are considered. Similarly, we assume the biofilm thickness
to be spatially constant within one cell. Both the biofilm thickness and the substrate concentration vary
along the reactor length. The biofilm processes considered on the meso-scale are biofilm growth due to
substrate consumption, natural cell death, and detachment of biomass. We assume that detached biomass is
immediately washed out of the reactor. In our model there will be only one substrate considered that
controls the growth of the biofilm. All other required substrates are assumed to be available in abundance
in the bulk fluid. Similarly, we assume a single-species biofilm. The model on the mesoscopic length scale
that we use is formulated in the context of traditional one-dimensional biofilm models [2, 38, 39]
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Figure 1: Representation of the macroscopic reactor (left) by mesoscopic cells of size e x € (right). The reactor consists of parallel,
non-communicating fissures. The fissures are represented as a sequence of cells of size € x €. Each cell contains pore
space of size p_. In each cell biofilm of thickness A_ grows on both substrata. The flow in each cell is assumed to be
Poiseuille flow, i.e. a quadratic flow profile. The flow through the reactor is driven by prescribing a global flow rate Q.
The macroscopic model is obtained from a mesoscopic biofilm mode by letting e — O.

The transition from the mesoscopic to the macroscopic model description is made by passing the size &
of the mesoscopic element to 0.

2.2 Governing Equations

In the ith cell, biofilm net growth is determined by the availability of substrates, such as nutrients or
oxygen (in the aerobic case), cell death and biomass loss due to detachment. Following the traditional
one-dimensional biofilm modeling, we assume the biofilm to be incompressible, i.e. we assume the biomass
density to be constant X throughout the biofilm. Thus, production of new biomass translates directly into
increase of the biofilm thickness A, . The velocity with which biomass moves in the biofilm in the i ® cell
is therefore given by ’
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u(zt)= TE(L(Z)—K,sz, 0<z<A,

K+C (2)

where at position z in the biofilm new biomass is produced at rate K“fic((zz)) . Here, p is the maximum specific
growth rate and C (2) the concentration of the growth controlling substrate. The constant « is called the half
saturation concentration. By K, we denote the biomass death rate. The growth controlling substrate diffuses
in the biofilm and it is consumed by the bacteria for growth. It is obtained as the solution of the two-point
boundary value problem

d’c uX, ¢
pl&_r2 G % g_g c@)=C, 1
dz* Y k+cC dz() (A M

where Y is a yield coefficient for the conversion of substrate into biomass. The convective contribution of
the moving biomass to substrate transport is neglected with the usual time scale arguments [38]. The
biofilm thickness A, is obtained as the balance of net growth and detachment. Assuming volumetric
biofilm detachment, as in [21, 2], we have

o () —d () = j[ he,(2) sz—d(xi,e), 0<z<h, @)

dt 0 K+C(Z)

where the function d () is the detachment rate. The substrate concentration in the biofilm in the ith cell
depends on the substrate concentration C. in the aqueous phase via the boundary conditions of (1). It
satisfies the mass balance

d(v,C)
dt

where q, _ is the specific flow rate. V, is the volume of the aqueous phase, which also depends on the biofilm
thickness, 1.e.

:qifl,ecifl _gi,eCi _2€Ji,e’ (3)

V,=ep, ~21,). (4)

In particular V. changes as the biofilm grows. The first term on the right hand side of (3) accounts for
substrate inflow from the upstream neighboring compartment, at concentration C._, and for outflow into
the downstream neighboring concentration at concentration C. The second term accounts for the substrate

flux into the biofilm. It is obtained as

3,.(C.h )= DdCI
’ dz

Mo )

Note that by integrating (1) once we obtain with the boundary conditions

12

— '[ Mci(z) dZ. (6)

) K+C (2

i,e

Using (4), (5), (6), the mesoscopic equations (2), (3) for the substrate concentration C and the the
biofilm thickness A, in the ith cell become finally

. dh, g, C_.-q.C
[pl,e_z}\q,e] ddCtI _2C Le —qlihﬁ -1 ql’ﬁ !

- ~2J, (G, 7
Tt Y (G L) (7)
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and

d7\‘i € H
d—t,: Ji,e(Ci’}\‘i,e)_ kdki,e - d(}\‘iwﬁ)}\‘i,E' (8)

where we used

L.

. uc (2) Y
S (C,n )= | —22—dz=—1J (C, A,
(o b= [ L 259G )

We normalize the pore space p, _ and the biofilm thickness A _with respect to €, and rescale the local
flow rate g _ accordingly. I.e. we introduce the new dimensionless variables

. A
pi — pe,l , 7\’ — l,e

€ €

Here, p denotes the void fraction of the (empty) porous medium, and 2A denotes the fraction of the
porous medium that is locally occupied by a biofilm.

Substituting this into (8) and (7) leads to

dki,e _ qi—l,eCi—l _qi,eci

dc,
=20 ] — - 2¢C, ~23, (C,eh), 9
€I:F)I Ii| dt € 1 dt € |,€( I € I) ()
and
d;“ti€= i (Coh0) —kghe —d (A0 Ae. (10)

The transition from the mesoscopic, spatially discrete model (9), (10) for an e-cell to a continuous
macroscopic model will be accomplished by passing € — 0. In preparation of this step we note the following
small results.

Lemma 2.1: Let ¢(2) be the solution of the two-point boundary value problem

2
de_, ¢ d
dz K+C dz

.0=0, ¢c(A)=C, (11)

with A>0andj(C, A)= DL (A). Then

C A tanh iA SE(A)SALA. (12)
k+C k+C dz k+C

Proof: We consider the two auxiliary linear boundary value problems

d’c, G de
> =A T
dz k+C dz

z=0207 CI(A):C’

and

d’c, _AC dc,
dz* k+C’ dz

z=0207 CZ(A):C
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Since ¢ = 0 is a lower solution for (11) and ¢ = C an upper solution, we have 0 < c(2) < C. Hence,
because of

A_S aC aC

k+C k+c «k+C

it follows from standard comparison theorems for two-point boundary value problems [6, 37] that
C(2<c(2<c(2.
Moreover, since € (A) = C(A) = € (A) = Cit follows that
dc, dc dc,
— AN)z>2—AN)=>2—(1).
dz( ) dz( ) dz()
As solutions of linear boundary value problems, the functions € (2) and € (2) can be obtained as

e‘\ KfC z + ei‘\ KfC z
eJ%A + ef\/IA

Cl(z):C

and

C

1
c(2)=C+—A 2 - A%,
,(2) AP, ( )
whence by differentiation
L py=c -2 tann| -2 A
dz k+C k+C
and
d AAC
% =20
dz k+C

Remark 2.2: Expanding the lower estimate % (A) for &£ in the above Lemma in terms of A, we find
for small enough A that

3
d—C‘(A):CA A Ly A +0O(A)
dz k+C 3 k+C

i.e. for small enough A,

AAC
k+C’

dc
(A =
OIZ()

This estimate was also derived and verified in a different manner in [1], namely based on a homotopy
perturbation method argument.

Lemma 2.3: In (9) and (10) we have j, (C, A, €) = O(e).
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Proof: This follows directly from Lemma 2.1 and the previous remark.

Before we are able to derive a macroscopic equation from (9) and (10) we need to take a closer look at
the flow rate g, _and at the detachment rate d(%). Assuming that the flow rate through the reactor is a given
constant, Q, it follows that the flow rate in a single pore is

-
4.= LQ- (13)

Several detachment rates have been suggested in the biofilm modeling literature. In [2], it was shown
that the choice of detachment rate function can have an affect on persistence of the biofilm and whether or
not the biofilm will clog its flow channel on the meso-scale. This was achieved by comparing four types of
detachment functions, which we we also compare in this study, with a view on their behavior with respect
to upscaling from the meso- to the macroscale. They are given by

dl(A) = 67

d,(A) = 8A,

G(A) -5 ) 0<v<l, (14)
3 T, >

d,(A) = 8TA,

where by & we denote a constant detachment rate coefficient. We use the same symbol for each detachment
rate model although we point out that both its dimensional unit and its numerical value is different for

ey

In d, the detachment rate is constant. This has been used in [25, 28, 35] and other studies. In d, the
detachment rate grows proportionally with the biofilm thickness. This criterion has become the de facto
standard detachment criterion. It has been proposed in [36] and used since in numerous studies, such as
[5, 38, 39] and many investigations that use existing biofilm modeling software packages. On the mesoscale,
both d, and d, can lead to an asymptotically stable equilibrium, which however, depending on parameters,
is not necessarily bounded by the flow channel height [2]. If this is the case the models break down. The
stable equilibrium can be trivial (no biofilm) if the substrate supply is too low for a biofilm to form.

The detachment rate d, accounts for the experimental observation that the detachment rate depends on
the bulk flow hydrodynamics. In this expression 7 is the hydrodynamic shear rate acting on the biofilm. It
changes as the biofilm grows, i.e. T = 1 (). It also depends on the reactor type and operating conditions.
The exponent v has been derived from experimental data, a default value is v = 0.58 [27]. By t, we denote
the reference shear stress, i.e. the shear stress acting on the channel walls in an empty reactor, 1, = 7 (0).
This is a constant for a given reactor type and flow rate. Note that d, is written in slightly different form
than was used in [2], but both version are equivalent on the mesoscopic scale, only the constant 9 is
interpreted differently.

Finally, the detachment rate function d = d,(1) = 8tA was proposed in [2]. It is assumed to depend on
both, the biofilm itself and the hydrodynamic shear rate, reflecting that biofilms are stronger in the inner
layers than in the outer layers and that well developed thicker biofilms slough off easier than thin biofilms
on the mesoscale [13, 29]. Under constant flow rates, the models d, and d, always lead to an asymptotically
stable equilibrium smaller than the flow channel height, i.e complete clogging of the channel is prevented.
The equilibrium can be trivial (i.e. no biofilm) if the substrate supply is too small.

Detachment rate functions d, , require the shear stress at the biofilm/water interface. If the flow is
laminar, as can be assumed in porous medium applications, it can be obtained from the elementary solution
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of the Navier-Stokes equations for flow between two stationary parallel plates, which can be found in
almost all elementary texts in fluid mechanics, e.g. [22]. With (13) it is

12nq
=
B
2
A more detailed derivation is given in [2]. The parameter 1 in (15) is the dynamic viscosity of the fluid.

Proposition 2.4: We consider (9),(10) with (13), (14), (15).
(a) If the detachment rate is d = d , the scaling limit € — 0 of (9), (10) is obtained as

[(p 2%)0} 9(: [ -2J(C, %) j
+—L |=|. . (16)
ot A x| j(C, ) — kA — A

T(A) = (15)

(b) If the detachment rate is d = d,, the scaling limit € — 0 of (9), (10) is obtained as

Q _
[(p 2x)cj+ =C :[. 2J(C, %) j i
ot A x| j(C, 1) -k A

(c) If the detachment rate is d = d,, the scaling limit ¢ — 0 of (9), (10) is

Q -2J(C, )
o ((p-20)C) o |=c|_ .
— +—| L =| [ p j (18)
ot A oX 0 J(C,A) —kA -0 A
p—2A

(d) If the detachment rate is d = d,, the scaling limit € — 0 of (9), (10) is obtained as

o ~2J(C,2)
ﬁ[(p—Zk)CjJri IC - j((;’)y)_kdyb_g‘)&xz2 (19)
ot A ox| (p ]
L\~

where J(C, %) = and j(C,1)=-J(C,1).

Proof: For every € we introduce continuous C‘(t, 2) and A(t, 2) that interpolate C (t) and A, (1), i.e.
C(t,ie) = C (2) and A(t, i€) = A (t). We pass to the continuous limit by refining € — 0. We denote the limits
of C(t, 2 and A(t, 2 by C(t, 2) and A(t, 2) (if they exist). In Lemma 2.1 it was established that j (C, €A, )= O(e).
More specifically, by Remark 2.2, j (C, €A, ) = “X *) for small €. Similarly, accordlng to (13),
q, is proportional to e. It remains to Verlfy the dependency of the detachment rate functions on e.

(a) For d we have d(A) = d,(A) = 3, ie. hm d,(eX) =08. Taking the limit ¢ — 0 in (9), (10) gives
d1rect1y (16).

(b) For d, we have d(A) = d,(A) = 32, i.e. hm d,(eX) =0. Taking the limit ¢ — 0 in (9), (10) gives
d1rect1y (17).

K+C
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The detachment rate models d3’ , depend on the shear rate at the biofilm/water interface. With (15)
this is obtained as

121Q

— =
()
2
Using this we find:

(¢) Ford,wehaved(h)=d,(A) =6 (3)" =38 (5 )" Thus, taking the limit e — 0 in (9), (10) gives (18).

(d) For d, wehave d(A) =d,(A) =8tA=§ LIZP”Q: _. Taking the limit ¢ — 0 in (9), (10) gives directly (19).

In the upscaled model (16) and (18) the detachment effects do not depend directly on the flow conditions,
although they might depend on them indirectly, since higher flow rates also imply higher substrate availability
which counteracts detachment. Using the detachment model d,(A), which is among the most frequently
used mesoscopic models, the detachment effects are negligible on the macro-scale. Only under detachment
model d, the dependency of the detachment rate on the local hydrodynamic conditions carries over to the
macro- scale Under d, and d, the upscaled detachment rates attain a smgularlty as A —> = . Thus, there is a
critical value of A, Wthh depends on the model parameters, such that - <0, i.e. A will be bounded by this
value, if the initial data are bounded by it.

T(ed)=

For small A < p/2 the model with d, behaves like the one with d , i.e. the detachment losses are a linear
function of the biofilm thickness. For larger values A — p/2, on the other hand it behaves qualitatively like
the model with d,, i.e. the detachment rates blows up. On the other hand, for A < p/2 the model with d,
behaves like the model with d..

More general, the procedure used in Proposition 2.4 converges to a quasilinear hyperbolic equation of
type (16)-(19) if the dependency of the underlying detachment rate function is d= O(e") forn> 1. If n> 1
then the detachment effects become negligible in the macroscopic limit. If on the other hand n < 1 the
detachment rate blows up, i.e. detachment dominates and no biofilm will be able to establish itself.

After introducing the new dependent variable

M:=C(p-21), (20)
the equations (16), (17), (18), (19) can be written in conservative form as
M
o (M 0 Q -2G(M, )
— +—| L p=-2A|= (21)
ot A 0X 0 gM, ) -k,A—D ()
where
uM A X
M, GM, M) =—=g(M, A
g(M,2) = (p_20iM’ (M, ) Y g(M, %)

and the detachment term D () as in (16), (17), (18), (19).

The model (21) needs to be completed by specifying initial and boundary conditions. We consider a
reactor of finite length Lr and denote the initial data by

c(0,x) =c(x), MO, X)=2r,(x), 0<x<L.
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We restrict ourselves to treating the case A (X) > 0 for 0 <x<L_.If A (X) = 0 on an interval X <X <X,
then the solution of (21) on the stripe (0, T) x (X, X)) is C(t, X) = c(t, X)), A(t, X) = 0.

We assume C, to be non-negative.

The boundary condition requirements are determined by the characteristics of (21). Re-writing (21) in
the form

1 Q 2M

Q Q _
(MJ + L p=-2r L(p-21)7° (MJ =[ 2GM. 1) j (22)
A, 0 0 A ) Lg(M, ) -kA—D(R)

we find two characteristic families, determined by the eigenvalues of the system matrix. The characteristic
speeds are x, =0 and y, = 2 pfn . The latter is variable but positive for 0 <A < p/2. In fact, y, > L% . For
A > p/2 the model breaks down. Hence, with one characteristic emanating from the upstream boundary at
X =0 into the domain, we require one boundary condition on the upstream boundary. It takes the form

M,
p—2L"

c(t, 0)=C,(t) =

Note that the biofilm thickness at the upstream boundary can be obtained by integrating

?jk =gM,(),A) —k;A)-dRM)2,
with
M (1) = Cy(t) (P — 2A(1)).

2.3 Steady State Solution

The hyperbolic system (16)-(19) with the constant boundary condition C (t) = C, = const permits the trivial
steady state solution (C, 1) = (C, 0). Linearization about this equilibrium shows that it is unstable if

C, > C= L‘m and stable if C, < C. However, the analysis of the semi-discrete (in space) model, see

Append1x A, suggests that a stable non-trivial equilibrium may be found if C, > C.

In a nontrivial equilibrium, i.e. in an equilibrium with A > 0, the substrate concentration C and the
biofilm thickness A satisfy

HC  —doy-=o, (23)
+C

because of the requlrement 9 <0. If the mesoscoplc detachment rate d(A) is chosen as d, or d,, this is
solved by a unique C, mdependent of A, provided = > K, + d (otherwise no such equ111br1um ex1sts)

If the mesoscopic detachment rate is d, or d,, then (23) defines a function C = C()L),
(ks +d (M)
n—k, —d ()

Substituting this into (18)-(19) and using again that all time derivatives vanish in a steady state, leads to

C= (24)

dr_ 22X LA +d0Dm =k —d@) e o 25)
dx  YQxu d'(h) ’ 0
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where A is obtained as steady state of the biofilm equation at the boundary, i.e. as solution of (23) for
boundary concentration C,. Equation (25) is valid as long as C(Mx)) > C. Note that the solution of (25) is
a monotonically decreasmg function and that A = 0 is a special solution of (25). Thus, indeed A(X) > 0 for
all x € (0, L ). Together with (23) this defines a non-homogeneous steady state solution (C'(X), A'(X)) of
(18) or (19).

thickness A drops quickly, i.e that eventually a relatively thin active layer of biomass is found upstream.

2.4 Non-Steady SolutionsAlong Characteristics

In Section 2.2 the characteristic speeds were obtained from (22) as y, =0 and y, =
left-eigenvectors are

2 =5 - The corresponding

e =(0,1)

and

T
e:{},;?gk] ~(1.2C)".

Hence, following [41], (21) in characteristic form is obtained as

(jj?[b =j(C,A)—k,A—D()A along the lines %: 0 (26)

and

dC Y
=~ __ on =

dt p—2 dt

;{X— %@x>cw+Dmn

27)

The last equation implies that along the characteristic curve X (t) the substrate concentration decreases,
provided 0 < ¢ (X (0)) < % for characteristics that emanate from the initial data, or 0 < C, < % for
characteristics that start at the boundary. For realistic parameters, this is not a severe restriction. Moreover,
since , > 0, the characteristic X (t) moves downstream as t increases. Thus, it follows that the substrate
concentration will decrease both in X and t. The rate of decrease is dominated by =; X2 ), which can be very
large provided A is not too small. This indicates that a rapid depletion can be expected in areas with

considerable biofilm present.

3. NUMERICAL SIMULATION
3.1 Numerical Method

The development of numerical integration schemes for quasilinear hyperbolic systems has been an active
area of research for many years.

The focus of this development has been primarily on conservation laws, i.e. transport equations without
reaction terms. Many of these methods cannot be applied directly to balance laws with non-linear reaction
terms of the form

u + (f(u))x=h(u).
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In our case (20), we have for the dependent variable, the flux and the relaxation term

M oM
u=[}J, fuy=| L(p-22)
0

and
h(u)_[ —2G(M, L) j
lgM, M) -k A -DA)R) )’

Due to the disparity in time scales of biofilm growth and substrate depletion, expressed by the factor
% > 1, the balance law (20) is stiff, which poses additional challenges for the numerical solution. We use a
central difference scheme proposed in [19]. It is referred to as Uniformly accurate Central Scheme of
order 2 (UCS2) in [30]. It is L-stable and well suited for stiff problems [30]. The method splits reaction and
transport terms. The reaction terms are treated implicitly to address questions of stiffness, the transport
terms explicitly. The scheme uses two predictor steps for the reaction for intermediate time steps At/2 and
At/3, namely

1 At At
n+1/2 n ' n+1/2
UJ- :Uj —E—X fj +7h(uj )

p+1/3 — un _lﬁ fjr +% h(u;Hl/S)

u .
: '3 AX

where the upper index n denotes the time step and the lower index j the grid position, and fJ.’ is a suitable
finite difference approximation of the derivative of the flux. The simplest one proposed in [19] is

fr=MM(f, —f,f—f )

where MM denotes the min-mod function

MM y) {Zgn(x>min(|x|,|y|) if sgn(x)=sgn(y)

otherwise

This uses only the values at neighboring grid points. The above predictor steps are used to compute
solution at the new time level, at staggered grid points, as

n+ 1 n n 1 , , At - .
uj+11/2 :E(uj +Uj+1)+§(uj _UHI)_E(f(ujﬂl/z _ f(uj 1/2))

+ At (% h(u*"?) + % h(u!!}” + % h(u}‘jll/z))}

Thus, the method is grid-point explicit but locally implicit in the sense that for the calculation of the new
values in a grid point only already computed values from other grid points are required, but to determine the
new values V in the present grid point three non-linear systems of the type v = v+ th (V) must be solved. This
can be carried out with general purpose nonlinear equation solvers like Newton’s method or fix point iterations,
or one can tailor a method specific to the form of the relaxation term h(v). We use the former approach.
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3.2 A Typical Simulation

To illustrate the model behavior we show the results of two typical numerical simulations. In one, the
substrate C is a major growth controlling nutrient, such as carbon. In the second simulation, while the
substrate is still necessary for growth, it is required in smaller amounts. For better comparability of results
we use the same reaction parameters in both cases, with the exception of the yield coefficient that expresses
how much biomass is produced per unit mass of substrate. In the first case, we choose the yield coefficient
from the literature [38], for the second scenario we increase the yield coefficient by a factor 10. The flow
rate Q is chosen in a range corresponding to a Peclet number clearly greater than one, i.e. in the convection
dominated regime, but a Reynolds number well below 103, i.e. in the laminar regime. The parameters used
in the simulations are summarized in Table 3.2.

Tablel
Model Parameter Values Used in the Simulations

Parameter Symbol Value Unit Reference
substrate inflow concentration C, 30 gm? [38]
biomass density X, 10000 gm? [38]
maximum growth rate u 6 -1 [38]
half saturation concentration K 4 gm? [38]
cell death rate k 0.4 -1 [38]
yield coefficient Y varied - assumed
detachment rate d varied - assumed
detachment coefficient v 0.58 — [27]
bulk viscosity n 86.6 Ndm2 [17]
bulk density p £ 10° gm™? [17]
flow rate Q 0.5 m2d—1 assumed
reactor width L 0.1 m assumed
reactor length L, 0.3 m assumed

For initial data we assume a small background concentration of substrate, at the level of the half saturation
concentration,
c,(¥ =x, 0<x<L
and a non-homogeneous biomass distribution at low level. More specifically, we assume that more biomass
is initially found in the center of the reactor, parameterized by

710(71712)2

Ao(X)=0.001e

At the inflow boundary, the substrate concentration is kept constant at
C,=7.5x,

i.e. clearly above the half saturation concentration, but low enough that substrate is not considered
abundant. More specifically, we have C/(x + C)) =~ 0.88 < 1.

For this first simulation, we use the constant detachment rate model, as in (16). We choose 6 =0.5d "',
i.e. the combined biomass loss rate, cell death and detachment, is not negligible compared to the maximum
specific growth rate.

We first discuss the first scenario, with yield coefficient Y = 0.63. When the simulations starts, the
bacteria along the reactor immediately start the degradation of the available substrate. The substrate plume
moves in from the upstream boundary. About halfway through the channel, where the initial biomass
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concentration is highest, it is almost completely depleted. An extended, almost depleted zone which reaches
from the downstream end upstream develops. In this depleted zone living conditions for the bacteria are
less favorable than at the upstream end where fresh medium is supplied and substrate is available at higher
concentrations. This leads to an accelerated growth of biomass upstream and what appears to be an upstream
movement of bacteria. However, since in our model the bacteria are stationary this is in fact a reaction
wave propagating toward the inflow boundary. Eventually, the active biomass accumulates upstream in a
narrow region, whereas further downstream no substrate is available for notable biomass expansion. This
is illustrated in Figures 2(a), (b).

In the case of the yield coefficient Y = 6.3, the behavior is qualitatively the same but the substrate
depletion is slower and the biomass density grows to substantially higher values. See Figure 2(c), (d).
While also here an upstream moving reaction wave with increasing biomass is observed, it is slower.
Similarly, while in the previous case substrate on outflow was diminished almost immediately, we note
here that the outflow concentration decreases steadily and that complete depletion is observed only after
some time.

0.04

0.03

0.02

"1 +
Lriﬂm
oA
x[d]

Figure 2: Simulation of model (16) with the parameters in Table 3.2 and the initial and boundary conditions as described in
Section 3.2. The top row shows the case of low yield coefficient Y = 0.63: (a) substrate concentration, (b) relative biofilm
thickness. The bottom row shows the case of high yied coefficient Y = 6.3: (c) substrate concentration, (d) relative
biofilm thickness.

3.3 Thelnfluence of the Choice of Detachment Functions

A primary goal of this study is to investigate the effect of the specific form of the detachment rate function
on the overall substrate degradation. A quantitative comparison is difficult, because the detachment functions
(14) all are based on different processes and factors and involve different model parameters. Therefore,
such a comparison is to be taken in qualitative rather than a quantitative sense. To allow for an interpretative
comparison we use the detachment rate functions in the following form:

p ) P
d)=6 d,=0, dA)=8 —P—|. d@y=6->
) : ,(0) [p_nj =85

2
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Thus, for A =0, d, and d, take the same value, but d, > d, for A > 0. On the other hand, d,(0) = 0 (similar
as d, = 0), but it increases as A increases. As discussed above, the leading constant in d, actually depends on
the flow rate and the viscosity of the aqueous phase. However, since we keep those constant we can also
choose d as a constant. The detachment rate functions are plotted in Fig. 3.

3 T T T

25 F

15 F

d [1/day]

0.5

0 0.04 0.08 0.12
lambda [-]

Figure 3: Upscaled detachment rate functions used in this study.

We plot in Fig. 4 the biomass detached from the system for the different detachment rate functions,
both for high and default yield coefficient Y. For Y= 0.63, the amount of biomass detached is largest for d,
and smallest for d,. In all cases it increases with time. In the case of d, and d,, it appears to level off by the
end of the simulation time window. For d, the amount of biomass detached is initially much lower than for
the other two criteria. However, the growing biofilm accelerates detachment, and the difference to the
other two criteria becomes smaller. A similar picture is obtained for Y = 6.3.

2% —— . r ’ . . 400 —
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? o 3
] S 100

- 50} e
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Figure 4: Biomass detached for various detachment rate functions. L eft pand: y = 0.63. Right pand: Y = 6.3.

Initially, as long as the biofilm is small, d and d, agree well with each other, while d4 stays clearly
below. As the amount of biomass in the system increases, detachment according to d. is stronger than in the
case of d,. The biomass detached according to d, eventually surpasses both, d and d,. Overall, the amount
of biomass detached is much higher for the higher yield coefficient than for the lower one. This reflects that
in the latter case less substrate is required and degraded to produce biomass, i.e. more biomass is being
produced. In both cases Y = 0.63 and Y = 6.3 we observe a clear difference in simulation results w.r.t
macroscopic detachment for different mesoscopic detachment rate functions. The criteria d, and d,, which
have a singularity for A = p/2 show qualitatively a different behavior than the model with constant detachment
rate function d,. They predict higher biomass loss from detachment eventually.
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In Fig. 5 we plot the amount of substrate removed from the system as a function of time, i.e.
% (C,—c(t, L), for Y=0.63. The choice of a mesoscopic detachment rate function does not greatly affect
the overall reactor performance. The same simulations conducted for the lower yield case Y =0.63 showed
no effect of the detachment rate function on susbtrate removal (data not shown). In all four cases, the
substrate was swiftly completely degraded.

substrate removal [g/d]

0 01 02 03 04 05 06 07 08
t[d]

Figure 5: Substrate removed using various detachment rate functions. These simulations were carried out for Y = 6.3. A similar
simulation for Y = 0.63 showed that the detachment rate function has no effect (data not shown).

3.4 Effect of Model Parametersfor d,

In further simulation experiments we focus on the detachment rate function d,, in which the detachment
rate is dynamically adjusted, not only in respect to changes in biofilm thickness but also in response to
changing local hydrodynamic conditions at the biofilm/water interfaces. We investigate the sensitivity of
the model with respect to the detachment rate function parameters. In one experiment we varied & over
almost one order of magnitude, from 0.1 pto 0.9 p. In a second one the flow rate Q is varied from 0.1 to 0.9.
Since in the case of the low yield coefficient substrate depletion is almost immediate, we conducted this
simulation study for Y = 6.3.

In Fig. 6 we plot the model solution A and C for selected values of 5 at fixed Q = 0.5. We first note that
the simulation results look qualitatively rather similar. The maximum relative biofilm thickness reached
decreases by about 25% as the detachment rate coefficient increases by 80%. However, in all cases we
observe after about t = 0.5 that the substrate is almost depleted. The amount of biomass detached as well as
a the amount of substrate degraded are plotted in Fig. 7. In both cases, the qualitative and quantitative
differences between the simulations are small. The choice of the detachment rate coefficient does not have
notable effect on the substrate removal efficiency in the reactor, and introduces primarily a small time shift
in the detachment curves. Thus, these plots confirm that the mesoscopic detachment rate coefficient only
plays a minor role on the macroscopic scale.

In a final simulation experiment we vary the reactor flow rate Q from 0.1 to 0.9. Since in detachment
rate function d, the detachment coefficient scales proportionally with the flow rate, the detachment
coefficients are actually the same as in the previous experiment, but changes in the flow rate also affect
substrate supply. We plot again for selected values of the varied parameter the relative biofilm thickness
and the substrate concentration, see Fig. 8. For the slowest flow rate Q= 0.1, substrate is almost completely
depleted in the upstream part of the reactor immediately. Biofilm accumulates in the entrance region of the
reactor. For faster flow rates, the substrate initially reaches the downstream end but is depleted after a while
when the biofilm has the opportunity to establish itself. The higher the flow rate, the longer does it take
until depletion is completed. Since substrate is not depleted entirely, a considerable amount of biofilm is
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(c) @=0.9

Figure 8: Biofilm thickness A (left column) and substrate concentration ¢ (right column) for selected flow rates Q.
These simulations were carried out for the high yield coefficient case Y = 6.3 with model (19).

found along the reactor. The effect of the flow rate on the maximum biofilm thickness in the reactor is not
huge. We note that due to the higher shear forces for faster flows the detachment rate is higher and thus the
maximum biofilm thickness smaller. However, the variation in maximum biofilm thickness is smaller than
the variation in the flow field applied in this experiment.

In Fig. 9 we plot the substrate removal rate and the amount of biofilm detached from the system as
functions of time. At higher reactor flow rates, substantially more biomass is removed from the system
than at lower flow rates. This is owed to the increased substrate supply that leads to an increased production
of new biomass. Similarly, at higher flow rates the substrate removal efficiency increases. Since eventually
substrate is more or less completely depleted, this is entirely due to the increased substrate supply. The
faster the flow, the later the system reaches complete depletion.

We note that the differences in the simulations presented here are much bigger than in Fig. 6. This
suggests, that changes in the flow, rate, and hence in substrate supply have a much bigger impact on the
overall simulation outcome than changes in the detachment coefficient alone.
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Figure 9: Biomass detached (left) and substrate removed (right) for various flow rates Q. These simulations
were carried out for the high yield coefficient case Y = 6.3 with model (19).

4. CONCLUSION

In mesoscale models of biofilms, the particular choice of a detachment rate function can greatly affect the
long term behavior of the model solution, not only quantitatively but also qualitatively [2].

Using a simple macroscale model that was derived by upscaling the traditional one-dimensional biofilm
model for porous medium applications in convection dominated, laminar regimes we find that on the
reactor scale, on the other hand, the choice of a detachment rate function plays a much smaller role.
Detachment models that are based on very different model assumptions can lead to very similar results.

While the parameters of the detachment model affect the detachment process itself, they do not greatly
affect overall system behavior, such as substrate removal efficiency.

Moreover, in the case of detachment models that depend on the reactor flow rate, we find, that the
effect of hydrodynamic on detachment is small compared to its effect on substrate transport and availability.

The overall conclusion of our study is that the specific choice of detachment rate expressions, which
can play a major role for mesoscopic biofilm simulation studies, are only of minor importance in macroscale
simulation studies that focus on substrate removal. This adds justification to the assumption that the
detachment process can be neglected in bioremediation and models, such as [12, 34].
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A ANALSYIS OF THE SEMI-DiscreTE (IN Space) M oDEL

Semi-discretisation in space of (16)-(19) leads to cascades of twodimensional ordinary differential equations
of the form

da(s|_(__d X, 25 da
dt[k}—[(H_%)S -3) —(H ) (Ms Q)+~ T j, S) + K, d(x)xj. (28)

If (S, A;_,) is an equilibrium of the (i — 1)th subsystem, then (S, A7) = (S_,, 0) is a trivial equilibrium
of (28) with Jacobian of the form

_Q "
Lp
F'(S ,,0)= . .
: 0 Ms -1 _ kd _ d (0)
K+ §,
Thus, it has always one negative eigenvalue. The second eigenvalue is negative 1f -k, —d(0)<0.
Hence, the trivial equilibrium is stable if

-k —d(0)’

and unstable if the reversed inequality holds. If the trivial equilibrium is unstable, a nontrivial equilibrium
(S, A, exists, for which

us",
K+ 5,

—k, —d(r)=0.

The Jacobian in such a point is

N Q —jS(X"S)(&—zsj I LY ol
(s, )= L(p—-24) H -2 Y p_27\' (30)
is(h,s) —d' A

For realistic parameter, % > 25’. Therefore, we have negative trace and positive determinant, i.e. such
non-trivial equilibria are stable.

Overall, the equilibria of the cascade of ODEs (28) are chains of equilibria of the subsystems. An
equilibrium of the semi-discrete system is stable if it is composed of stable equilibria of the subsystems,
otherwise unstable.
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