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Abstract. We consider a perturbed double exponential jump diffusion pro-
cess which starts at a fixed level u > 0. We derive an integral equation,

an integro-differential equation, and a general form for the probability that
the double exponential jump diffusion process reaches a fixed level b > u
before it ruins. The analytic solution we obtain can be implemented with

mathematical software.

1. Introduction

Let (Ω,F, (F)t∈T ,P) be a filtered probability space satisfying the usual condi-
tions and containing all defined objects. The following processes which are adapted
to the aforementioned filtration are critical to this article: let {Wt : t ≥ 0} be a

standard Brownian motion with W0 = 0 and let {N t : t ≥ 0} and {N̂t : t ≥ 0} be
two independent Poisson processes with parameters λ, λ1 ≥ 0 such that N0 = 0,

N̂0 = 0 respectively. Also, let {Ci : i ≥ 1} and {Yi : i ≥ 1} be two sequences
of independently identically distributed random variables with with exponential
densities f1(c) = α exp(−αc), f2(y) = β exp(−βy) , α, β ≥ 0 respectively. All
defined stochastic quantities are independent of each other. We can define a jump
diffusion process of the form

Rt = u+

Nt∑
i=1

Ci −
N̂t∑
i=1

Yi + σWt; R0 = 0, t ≥ 0, (1.1)

where u is the initial capital of an insurance company, {N t : t ≥ 0} the number of
insurance policies bought during [0, t], {Ci : i ≥ 1} the sizes of premiums paid for

corresponding policies, {N̂t : t ≥ 0} the number of claims in the interval [0, t] and
{Yi : i ≥ 1} the corresponding claim sizes. The Brownian motion {Wt : t ≥ 0}
captures random changes or fluctuations in the insurance company and σ > 0 is a
constant.
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From properties of Poisson processes, the sum of two compound Poisson pro-
cesses is a compound Poisson process. Thus,

Nt∑
i=1

Ci −
N̂t∑
i=1

Yi =

Nt∑
i=1

Xi, (1.2)

where {Nt : t ≥ 0}, N0 = 0 is a Poisson process with parameter λ2 = λ1 + λ
and {Xi : i ≥ 1} is a sequence of independently identically distributed random
variables independent of {Nt : t ≥ 0} and drawn from the distribution

f(x) = pα exp(−αx)I{x≥0} + qβ exp(βx)I{x<0} (1.3)

with p = λ1

λ1+λ , q = λ
λ1+λ , f(x) = pf1(x) + qf2(x) and IA is the indicator function

of a set A. Note that f2(y) = β exp(−βy)I{y>0} = β exp(βy)I{y<0}.

Proof. Let V =
∑Nt

i=1 Ci and K =
∑N̂t

i=1 Yi where N t and N̂t are Poisson with
parameters λ and λ1 respectively. Let the moment generating functions of Ci be
MC(t) and that of Yi be MY (−t). Then the moment generating function of V and
K are MV (t) = exp{λ(MY (−t)− 1)}, MK(t) = exp{λ1(MC(t)− 1)} respectively.
The moment generating function of V +K is

MV+K(t) = MY (−t)MK(t)

= exp{λ(MY (−t)− 1)} exp{λ1(MC(t)− 1)}

= exp

(
λ2

(
λ1MC(t)

λ2
+

λMY (−t)

λ2
− 1

))
, λ2 = λ+ λ1,

which is Poisson with parameter λ2 and moment generating function

λ1MC(t)

λ2
+

λMY (−t)

λ2
= pMC(t) + qMY (−t).

□

The sequence {Xi : i ≥ 1} drawn from f(x) in (1.3) captures jumps and the
Laplace transform of the jump size distribution of X1, calculated from

ξ(s) =

∫ ∞

−∞
exp(−st)f(t)dt, s > 0 (1.4)

is

ξ(s) =

{
pα
α+s + qβ

β−s , −α < s < β

∞, otherwise.

Considering (1.2), we can rewrite (1.1) as

Rt = u+

Nt∑
i=1

Xi + σWt; R0 = 0, t ≥ 0. (1.5)

Let the jumps of the Poisson process {Nt : t ≥ 0} occur at random times
T1, T2, T3, · · · and let that {Nt : t ≥ 0}, {Wt : t ≥ 0} and {Xi : i ≥ 1} in (1.5) be
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independent. Ruin occurs when Rt ≤ 0. Assuming u = 0, the expected value of
Rt over time period (0, t] is given by

E[Rt] =

(
p

α
− q

β

)
t.

Define u =
(
p
α − q

β

)
. We are concerned with finding the probability that the risk

process (1.5) reaches a fixed level b > u before it ruins.
Lokk and Pärna [3] studied a risk process of the form

Rt = u+ ct−
N̂t∑
i=1

Yi; t ≥ 0, (1.6)

where u ≥ 0 is the initial capital, c is the gross premium rate, N̂t is a Poisson
process with intensity λ1 > 0 independent from the claims represented by Yi such
that f2(y) = βe−βy, β > 0. They obtained an integro-differential equation for
the probability that the risk process which begins at u > 0 reaches an upper level
b > u before the ruin occurs. Furthermore, they obtained an analytic solution for
the case with exponential claim size distribution.

One of our goals in this work is to modify their risk process (1.6) to the pro-
cess (1.5). This is done by replacing the gross premium rate c with stochastic

premiums of the form
∑Nt

i=1 Ci, where {N t : t ≥ 0} is Poisson with parame-
ter λ > 0, independent of premiums {Ci : i ≥ 1} drawn from a distribution

f1(c) = α exp(−αc), α > 0 and also independent of
∑N̂t

i=1 Yi. Further, fluctua-
tions representing random changes to the insurance company are captured by a
Brownian motion component {Wt : t ≥ 0}, essentially giving us the model (1.5).

Nadiia and Zinchenko [4] studied the process (1.5) without the Brownian motion
perturbation term. By martingale theorems, they proved the Lundberg inequality
for ruin probability when both claims and premiums were exponential. Their
model was a generalization of Boykov’s results [1], who derived exact formulas for
ruin and non-ruin probabilities in the special case where both claims and premiums
were exponentially distributed.

In the context of risk processes with two-sided jumps, various ruin-related quan-
tities of the double exponential jump diffusion process have been studied [10].
Zhang et al [11] derived the Laplace transforms and defective renewal equations
of the discounted penalty function. They also derived the asymptotic estimate for
the ruin probability in the case where downward jumps were heavy-tailed and up-
ward jumps had a rational Laplace transform. Kou and Wang [2] obtained explicit
solutions for the Laplace transforms of the distribution of the first passage times
of the upper barrier and the process and its overshoot. Yin et al [9] extended the
results of Kou and Wang [2] to the case where the downward jumps were mixed
exponential, and applied these to look-back and barrier options. These results are
interesting, but none of them tackles the probability that a double exponential
jump diffusion process which starts from level u > 0 reaches a fixed level b > u
before it ruins. The closest to this is discussed by Sepp [7] in the context of option
pricing. Using Laplace transforms, Sepp studied several path dependent options
for which the underlying stochastic process was double exponential jump diffusion.
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For one-sided jumps, the problem is easier as the jumps are generally opposite to
the barrier and there are no overshoot problems. Wang and Wu [8] obtained ex-
plicit solutions for the probability that the risk process (1.6) perturbed by diffusion
starting from level u > 0 reaches a fixed level b > u before it ruins.

In the context of queuing theory, stochastic processes with two-sided jumps can
be interpreted as queuing systems with ordinary workload (customers) arrivals
and instantaneous work removals causing upward and downward jumps respec-
tively. In stochastic cash management context, the cash flow is modeled by a
superposition of Brownian motion and compound Poisson processes with positive
and negative jumps representing big deposits and withdrawals respectively. Perry
and Stadje [5] derived explicit formulas for the bankruptcy time (time of ruin in in-
surance context), the time until reaching a pre-specified level without bankruptcy,
the maximum cash amount in the system, and the expected discounted revenue
generated by the system. The problem tackled by Perry and Stadje [5] closely
resembles ours. The only difference is their process stops when it either ruins or
attains the upper level b.

Our second aim in this work is to derive integral and integro-differential equa-
tions for the probability that a double exponential jump diffusion process which
starts from level u > 0 reaches a fixed level b > u before it ruins. This is helpful
because such a probability tells us that the insurance company can make profits for
a particular number of years before it eventually goes burst. It is also important
in the underwriting of barrier options whose underlying stochastic process may be
a variation of (1.5) as is the case discussed by Sepp [7] in the context of option
pricing.

In section 2, we derive integral and integro-differential equations for the prob-
ability that the risk process (1.5) reaches or surpasses a fixed level b > u before
it ruins. In section 3, we solve the integro-differential equation for the probability
that the risk process (1.5) reaches or surpasses a fixed level b > u before it ruins
and obtain a general solution. We conclude in section 4.

2. Derivation of Integral and Integro-differential Equations

In this section, we derive integral and integro differential equations for the risk
process given by (1.5). Define the time of ruin Tu = inf{t ≥ 0 : Rt ≤ 0} and
Tu = +∞ if Rt ≥ 0 for all t ≥ 0. Similarly, the ruin probability Ψ(u) is defined as
Ψ(u) = P(Tu < ∞) and survival probability Φ(u) = 1 − Ψ(u). We are interested
in the supremum value before ruin reaching or surpassing a fixed level b > 0 when
ruin occurs i.e.

G(u, b) = P
(

sup
0≤t≤Tu

Rt ≥ b, Tu < ∞
)
. (2.1)

2.1. Integral equation for G(u, b). We make use of the following functions as
in Wang and Wu [8]. Let a > 0, define τa = inf{s : |Ws| = a}, where Ws is the
value of Brownian motion at time s. For y ∈ [−a, a], let

H(a, t, y) =
1√
2πt

+∞∑
k=−∞

[
exp

{
− (y + 4ka)2

2t

}
− exp

{
− (y − 2a− 4ka)2

2t

}]
,
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h(a, t) =
at−

3
2

2
√
2π

+∞∑
k=−∞

[
(4k + 1)exp

{
− a2(1 + 4k)2

2t

}

+ (4k − 3)exp

{
− a2(4k − 3)2

2t

}
− 2(4k − 1)exp

{
− a2(4k − 1)2

2t

}]
. (2.2)

Then it follows from [6](pp. 109-110) that P(Ws ∈ dy, τa > s) = H(a, s, y)dy,
and P(τa ∈ ds) = h(a, s)ds.

For t ≥ 0, let θ be the shift operator from Ω to itself defined by Rs(θtw) =
Rs+t(w). For a finite stopping time T , we define the map θT from Ω to itself by
θT (w) = θt(w) if T (w) = t (see [6] pp. 36, 44, 102). Clearly, Rt ◦ θT = Rt+T .

Proposition 2.1. Let b > u > 0 and E[Rt−u] > 0. Then G(u, b) in (2.1) satisfies
the following integral equation:

G(u, b) =
1

2

∫ +∞

0

exp{−λ2t}
[
G(u+ σa, b) +G(u− σa, b)

]
h(a, t)dt

+ q

∫ +∞

0

λ2 exp{−T1λ2}dT1

×
(∫ u+σy

0

∫ +a

−a

H(a, T1, y)G(u+ σy − x, b)dF−(x)dy

)
+ p

∫ +∞

0

λ2 exp{−T1λ2}dT1

×
(∫ u+σy

0

∫ +a

−a

H(a, T1, y)G(u+ σy + x, b)dF+(x)dy

)
, (2.3)

where 0 < a <
( (b−u)∧u

σ

)
.

Proof. Let T1 be the time of the first jump, τa = inf{t : |Wt| = a}, and set
T = τa ∧ T1. For t ∈ (0, T ), we have 0 < Rt < b, thus P(T ≤ Tu) = 1. Therefore,
we have Tu = T+Tu◦θt on (Tu < ∞). By the homogenous strong Markov property
of Rt (see [6] pp.44 Definition 4.7, Proposition 4.8-4.10 and pp.102-103, Theorem
3.1 and Proposition 3.3), we get

G(u, b) = E
[
I

(
sup

0≤t≤Tu

Rt ≥ b, Tu < ∞
)]

= E
[
I

(
sup

T≤t≤Tu

Rt ≥ b, T ≤ Tu < ∞
)]

= E
[
I

(
sup

0≤t≤Tu◦θT
Rt ◦ θT ≥ b, 0 ≤ Tu ◦ θT < ∞

)]
= E

[
I

(
sup

0≤t≤Tu

Rt ≥ b, Tu < ∞
)
◦ θT

]
= E

[
G(RT , b)

]
(2.4)

Therefore,

G(u, b) = E
[
G(Rτa , b), τa < T1

]
+ E

[
G(RT1 , b), τa ≥ T1

]
. (2.5)
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Now,

E
[
G(Rτa , b)

]
= E

[
G(u+ σWτa , b)I(τa<T1)

]
= E

[
G(u+ σa, b)I(Wτa=a)I(τa<T1)

]
+ E

[
G(u− σa, b)I(Wτa=−a)I(τa<T1)

]
=

∫ +∞

0

exp{−λ2t}G(u+ σa, b)P
(
Wτa = a, τa ∈ dt

)
+

∫ +∞

0

exp{−λ2t}G(u− σa, b)P
(
Wτa = −a, τa ∈ dt

)
=

1

2

∫ +∞

0

[
G(u+ σa, b) +G(u− σa, b)

]
e−λ2th(a, t)dt (2.6)

and

E
[
G(RT1 , b), T1 ≤ τa

]
= E−

[
G(u+ σWT1 − x, b)I(T1≤τa)

]
+ E+

[
G(u+ σWT1 + x, b)I(T1≤τa)

]
= q

∫ +∞

0

λ2 exp{−T1λ2}dT1

×
(∫ u+σy

0

∫ +a

−a

H(a, T1, y)G(u+ σy − x, b)dF−(x)dy

)
+ p

∫ +∞

0

λ2 exp{−T1λ2}dT1

×
(∫ u+σy

0

∫ +a

−a

H(a, T1, y)G(u+ σy + x, b)dF+(x)dy

)
. (2.7)

The equation (2.3) follows from (2.5), (2.6), and (2.7). □

Equation (2.3) is challenging to solve. Therefore, we focus on deriving integro-
differential equations for the process (1.5).

2.2. Integro-differential equation for G(u, b).

Proposition 2.2. Let b > u > 0 and E[Rt − u] > 0. Assume that G(u, b) in
(2.1) is twice continuously differentiable ∀u ∈ (0,+∞). Then G(u, b) satisfies the
following integral equation:

σ2

2
G

′′
(u, b) = λ2

[
G(u, b)− q

∫ u

0

G(u− x, b)dF−(x)− p

∫ u

0

G(u+ x, b)dF+(x).

]
(2.8)
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Proof. Let ϵ, t > 0 such that ϵ < u < b− ϵ and define

T ϵ
t = inf{s : u+Ws /∈ (ϵ, b− ϵ)} ∧ t.

Set T = T ϵ
t ∧ T1. As in the proof of proposition 2.1,

G(u, b) = E
[
G(RT , b)

]
= E

[
G(RT ϵ

t ∧T1 , b)

]
.

Therefore,

G(u, b) = E
[
G(RT ϵ

t
, b), T ϵ

t < T1

]
+ E

[
G(RT1 , b), T

ϵ
t ≥ T1

]
. (2.9)

We will proceed by conditioning on the first jump and the time it occurs. Before
time T1, there is no jump, therefore

E
[
G(RT ϵ

t
, b), T ϵ

t < T1

]
= exp{−tλ2}E

[
G(u+ σWT ϵ

t
, b)

]
= exp{−tλ2}

(
G(u, b) + E

[ ∫ T ϵ
t

0

σ2

2
G

′′
(u+ σWs, b)ds

])
(2.10)

by Itô’s formula. Likewise, at T1, there is one jump that can either be positive or
negative. After T1, the process propagates till we reach time t. Hence,

E
[
G(RT1 , b), T

ϵ
t ≥ T1

]
=

∫ t

0

λ2 exp{−sλ2}
{
E
[
G(u+ σWT ϵ

s
, b), T ϵ

s > T1

]}
+ q

∫ u+σWs

0

E
[
G(u+ σWs − x, b), T ϵ

s = T1

]
dF−(x)

+ p

∫ u+σWs

0

E
[
G(u+ σWs + x, b), T ϵ

s = T1

]
dF+(x)

}
ds. (2.11)

Substituting (2.10) and (2.11) in (2.9) and dividing by t, we get(
1− exp{−tλ2}

t

)
G(u, b)

= exp{−tλ2}E
[
1

t

∫ T ϵ
t

0

σ2

2
G

′′
(u+ σWs, b)ds

]
+

1

t

∫ t

0

λ2 exp{−sλ2}
{
E
[
G(u+ σWT ϵ

s
, b), T ϵ

s > T1

]
+ q

∫ u+σWs

0

E
[
G(u+ σWs − x, b), T ϵ

s = T1

]
dF−(x)

+ p

∫ u+σWs

0

E
[
G(u+ σWs + x, b), T ϵ

s = T1

]
dF+(x)

}
ds. (2.12)

By letting t → 0 in (2.12), we obtain (2.8). □
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3. General Solution for G(u, b)

The Laplace exponent of the Lévy process σW1 +X1 is

φ(s) = log

(
E
[
exp{−s(σW1 +X1)}

])
=

(sσ)2

2
+

αλ1

s+ α
+

βλ

β − s
− 1, (3.1)

where −α < s < β. For every r ≥ 0, the equation φ(s) = r has exactly four roots
i.e.

r =
(sσ)2

2
+

αλ1

s+ α
+

βλ

β − s
− 1. (3.2)

Simplifying equation 3.2, we have

0 = −s4σ2 + s3σ2(β − α) + s2(σ2αβ + 2(r + 1))

+ 2s(α(r − λ1 + 1) + β(λ− r − 1)) + 2αβ(λ1 + λ− r − 1) (3.3)

clearly a fourth order polynomial of the form as4 + bs3 + cs2 + ds+ e = 0 where
none of a, b, c, d, e is equal to zero. We will solve for and analyze the roots of this
fourth order polynomial. Let

P1 = 2c3 − 9bcd+ 27ad2 + 27be2 − 72ace,

P2 = P1 +
√
−4(c2 − 3bd+ 12ae)3 + P 2

1 ,

P3 =
c2 − 3bd+ 12ae

3a 3
√
P2/2

+
3
√

P2/2

3a
,

P4 =

√
b2

4a
− 2c

3a
+ P3,

P5 =
b2

2a2
− 4c

3a
− P3,

P6 =
−(b/a)3 + 4bc/a2 − 8d/a

4P4
,

then

θ1,2 =
−b

4a
− P4

2
∓

√
P5 − P6

2
, (3.4)

θ3,4 =
−b

4a
+

P4

2
∓

√
P5 − P6

2
. (3.5)

We can use the transformations

νi = ∓
√
P5 − P6

2
= θi +

b

4a
+

P4

2
, i = 1, 2

ηi = ∓
√
P5 − P6

2
= θi +

b

4a
− P4

2
, i = 3, 4

to see that Re(ν1) = −Re(ν2) and Re(η1) = −Re(η2), where Re stands for real
part. This will mean there are two positive roots and two negative roots. In
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the Laplace space, we focus on the positive real part of the two positive roots
designated θ1 and θ3.

As r → 0, θ1 →
{

0, if u ≥ 0

θ∗1 , if u < 0
, θ3 → θ∗3 likewise.

}

We have defined u =

(
p
α − q

β

)
, θ∗1 and θ∗3 are unique positive real roots i.e.

φ(θ∗1) = 0 = φ(θ∗3), 0 < θ∗1 < β < θ∗3 < ∞. (3.6)

Thus, we can suggest that G(u, b) is of the form

G(u, b) =

{
A exp{θ∗1(b− u)}+B exp{−θ∗3(b− u)}, u < b
1, u ≥ b

}
(3.7)

with constants A and B. Our primary aim now will be to determine the nature of
the constants A and B.

From definition,

G(u, u) = Ψ(u).

Therefore,

A+B = Ψ(u). (3.8)

Lets calculate Ψ(u), the ruin probability. We assume that u > 0. We use [5]
the martingale defined by

m(t) = (φ(s)− r)

∫ t

0

exp{−sRt − ts}dt+ exp{−su} − exp{−sRt − rt},

r, t ≥ 0, −α < Re(s) < β. Using the fact that E[m(Tu)] = E[m(0)], we obtain

(φ(s)− r)

∫ Tu

0

exp{−sRt − ts}dt = − exp{−su}+ E
[
exp{−sRTu − rTu}

]
. (3.9)

There are just two ways Rt can go below zero i.e. continuously or by a jump.
Therefore,

E
[
exp{−sRTu − rTu}

]
= E

[
exp{−rTu}I(RTu=0)

]
+

β

β − s
E
[
exp{−rTu}I(RTu<0)

]
.

(3.10)
Let ρ1 = E

[
exp{−rTu}I(RTu=0)

]
and ρ2 = E

[
exp{−rTu}I(RTu<0)

]
. Using unique

roots θ∗1 and θ∗3 in (3.9), we get

ρ1 = exp{−θ∗1u}+
β

θ∗1 − β
ρ2,

ρ2 =
(β − θ∗1)(θ

∗
3 − β)

β(θ∗3 − θ∗1)

(
exp{−θ∗1u} − exp{−θ∗3u}

)
.

As well,

Ψ(u) = ρ1 + ρ2 (3.11)
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because the inverse Laplace transform of the constant 1 is the Dirac delta function
and Tu < ∞ for all u < ∞. Let us return and consider the various parts of 2.8 i.e.
the various parts of

σ2

2
G

′′
(u, b) = λ2

[
G(u, b)− q

∫ u

0

G(u− x, b)dF−(x)− p

∫ u

0

G(u+ x, b)dF+(x)

]
.

G(u, b) = A exp{θ∗1(b− u)}︸ ︷︷ ︸
N0

+B exp{−θ∗3(b− u)}︸ ︷︷ ︸
N1

. (3.12)

G
′′
(u, b) = A

exp{(b− u)θ∗1}
θ∗1

2︸ ︷︷ ︸
K0

+B
exp{−(b− u)θ∗3}

θ∗3
2︸ ︷︷ ︸

L0

. (3.13)

∫ u

0

G(u− x, b)dF−(x) = −
∫ u

0

[
A exp{(b− (u− x))θ∗1}

+Be−(b−(u−x))θ∗
3

]
β exp{βx}dx (3.14)

= A
β exp{(b− u)θ∗1}

β + θ∗1

(
exp{(θ∗1 + β)u} − 1

)
︸ ︷︷ ︸

K1

+B
β exp{−(b− u)θ∗3}

β − θ∗3

(
exp{(θ∗3 + β)u} − 1

)
︸ ︷︷ ︸

L1

. (3.15)

∫ u

0

G(u+ x, b)dF+(x) =

∫ u

0

[
A exp{(b− (u+ x))θ∗1}

+B exp{−(b− (u+ x))θ∗3}
]
α exp{αx}dx (3.16)

= A
α exp{(b− u)θ∗1}

α+ θ∗1

(
1− exp{−(θ∗1 + α)u}

)
︸ ︷︷ ︸

K2

+B
α exp{−(b− u)θ∗3}

θ∗3 − α

(
1− exp{(θ∗3 − α)u}

)
︸ ︷︷ ︸

L2

. (3.17)

Substituting (3.12), (3.13), (3.14), and (3.17) in (2.8) and simplifying,

B = A
σ2K0

2 − λ2(N0 − qK1 − pK2)

λ2(N1 − qL1 − pL2)− σ2L0

2︸ ︷︷ ︸
J

(3.18)
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Using (3.8), (3.11) and (3.18), the constants A and B are obtained as

A =
ρ1 + ρ2
J + 1

, B = JA.

Therefore we have proved the following proposition:

Proposition 3.1. Let u < 0, b > u ≥ 0 and let θ∗1 , θ
∗
3 > 0. Then,

G(u, b) =

{
A exp{θ∗1(b− u)}+B exp{−θ∗3(b− u)}, u < b
1, u ≥ b

Following the lead of Wang and Wu [8], we can similarly define the probability
that the supreme value before ruin reaches or surpasses the level b i.e.

Γ(u, b) = P
(

sup
0≤t≤Tu

Rt ≥ b

)
= P

(
sup

0≤t<Tu

Rt ≥ b, Tu < ∞
)
+ P

(
sup

0≤t<Tu

Rt ≥ b, Tu = ∞
)

= G(u, b) + Φ(u).

4. Conclusion

In this paper, we have derived an integral equation, an integro-differential equa-
tion and a general formula for the probability that a double exponential jump
diffusion process which starts from level u > 0 reaches a fixed level b > u before
it ruins. The general equation obtained can be implemented with mathematical
software.
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tributed to tidying and clarifying the initial submission, and whose kind advice
resulted in this, hopefully more accessible version of the paper.
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