
209 International Journal of Control Theory and Applications

International Journal of Control Theory and Applications

ISSN : 0974–5572

© International Science Press

Volume 9 • Number 42 • 2016

 A Study of Approaches to Solve Traveling Salesman Problem using
Machine Learning

Manuj Aggarwala Deepak Sharmaa Mohd Nizama and Naveen Yadava

aDepartment of Computer Science, ARSD College, University of Delhi, India
E-mail: mmanuj.aggarwal@gmail.com, dsharma080@gmail.com, alinizam72@gmail.com, yadavnaveen357@gmail.com

Abstract: In Traveling Salesman Problem, a collection of cities and the cost of travel between each pair are given
and the task is to fi nd the cheapest way to visit all the cities exactly once and return to the starting city. For Traveling
Salesman Problem, several methods have been suggested in literature that can fi nd an optimal or near optimal
solution. However, most of the traditional methods are lengthy and with the rise of machine learning, many techniques
emerged out that gave near optimal solution. In this paper, two of the most available machine learning techniques:
Q learning and Hopfi eld Neural Networks to solve traveling salesman problem have been studied. Comparative
analysis of the techniques is done. It was observed that both the machine learning techniques produced near optimal
results for problems of different size. As a part of future work, we will attempt to combine Q learning techniques with
other metaheurisitic techniques such as Genetic Algorithms in order to obtain near optimal solutions.
Keyword: Traveling Salesman Problem, Q Learning, Hopfi eld networks, Machine learning, metaheuristic optimization
problem.

1. INTRODUCTION
The Traveling Salesman Problem (TSP) is a classic optimization problem in the fi eld of computer science.
TSP describes a salesman who must travel through N cities. The order of visiting the cities is not important, as
long as he is able to visit each city exactly once and comes back to starting city [1, 2]. Each city is connected
to other city through some link. Each of the link between cities is weighted. The weight can be anything
such as distance or cost of traveling to the connected city. The salesman wants to keep the distance and cost
of travel as low as possible. In terms of graph theory, TSP can be understood as to fi nd the shortest possible
Hamiltonian Cycle in a graph, in which nodes of the graph represent cities and edges represent a path from
one city to another [1].

TSP is easy to understand but diffi cult to solve. If there is way to divide the problem into smaller sub-
problems then each of the sub-problems is as diffi cult to solve as the original problem. It has been studied for
decades and yet no general solution has been found. In literature, TSP has been proved to fall in the category
of NP-Complete problems [1, 3]. Fig. 1 shows an illustration of TSP.

Manuj Aggarwal, Deepak Sharma, Mohd Nizam and Naveen Yadav

210International Journal of Control Theory and Applications

C C C

D D D

A A AB B B

InputInput Non-optimal tour Optimal tour

Figure 1: Example of TSP

TSP is solvable, that is, an algorithm can be designed that can fi nd correct answer every time. However,
such an algorithm looks at all the possible n! ways a circuit can be constructed with all the nodes of the graph.
As a result, such algorithm essentially takes O(n!) time and therefore requires large amount of time for datasets
of large size [4, 5].

There are two types of methods available to solve TSP, one which gives exact solutions such as cutting plane
method and held-karp algorithm, and the other which use heuristics to approximate the solution such as nearest
neighbor and many of the machine learning techniques use these approximations [1]. Finding exact solutions
is time consuming and for very large problem set may take too long which makes the solution unproductive.
On the other hand, heuristic solutions give a good approximate to the problem in reasonable amount of time.
Of course, the solution may not be the best but the solution is obtained in less time. In real life, it is desirable to
obtain a near optimal solution in less time than to obtain an optimal solution in near infi nite time.

In this paper we have investigated different techniques to solve TSP. In literature, Machine Learning
techniques such as Q learning and Hopfi eld neural networks have been extensively used. We have performed a
comparative analysis of these techniques used for solving TSP.

The rest of the paper is organized as follows: Section II presents brief introduction of machine learning
and its two techniques namely Q learning and Hopfi eld Neural networks. Section III presents Q learning
methods for solving TSP and a comparison is done. Section IV presents Hopfi eld Neural Networks techniques
to solve TSP and section V concludes the paper and presents scope for future work.

2. MACHINE LEARNING
Machine learning gives computers the ability to learn without being explicitly programmed. It evolves from the
study of recognizing patterns and computational learning [6]. It involves constructing agents (algorithms) that
learn and generate predictions, by synthesizing a model from sample inputs. It is useful to provide a solution
to tasks where designing and programming exact algorithms is impractical or in cases where a suboptimal
but effi cient solutions may be desirable, as is the case for solving the Traveling Salesman Problem. Machine
learning techniques that can be used to solve TSP include:

1. Q Learning

2. Hopfi eld Networks

3. Ant Colony System

4. Genetic Algorithms

In this paper, we have examined two Machine Learning approaches, Q-learning and Hopfi eld Neural
Networks that solve the TSP. These approaches aim to create intelligent agents that give the best way of action,
or a good approximate tour after learning the path it understands as optimal. Next, we provide brief overview
of both the techniques.

 A Study of Approaches to Solve Traveling Salesman Problem using Machine Learning

211 International Journal of Control Theory and Applications

2.1. Q Learning
Agent learns how to deal with a problem it has encountered with the dynamic environment through the trial-
and-error interactions in reinforcement learning. For a particular action taken from a given state, the agent gets
a numerical reward value for that action and changes its state. Q-learning can be viewed as an asynchronous
dynamic programming method [6, 7]. It is a form of model-free reinforcement learning. It is model free as it
does not require model the environment an agent will be placed in. Fig. 2 illustrates block diagram of Q learning.

Figure 2:. Block diagram of Q learning

The problem model consists of an agent, a set of states S and a set of actions per state that an agent can
take when it is at that particular state. At a particular state, an agent tries an action, and evaluates the immediate
reward or penalty it receives. The goal of the agent is to maximize total reward. It can be achieved by learning
the optimal action for each state. The agent maintains a Q table. The Q-values Q(s, a) in Q-table refl ect the
observations [6]. Each Q-value is initialized at the beginning. The choice of the next state to move from a given
state is always based on some predefi ned policy. The algorithm is given in fi g. 3.

Initialize Q(s, a) arbitrarily
 For each episode, repeat the following steps
 Initialize s
 Repeat until fi nal state reached
 Choose a from s using an exploratory policy
 Take action a, and observe its reward r, and new state s’
 Update Q(s, a) using below formula
 Q(s, a) <- Q(s, a) + [r +  maxa Q(s’, a’) – Q(s, a)]
 s <- s’
 where  is learning rate and  is discounted reward rate.

Figure 3: Algorithm for Q learning

2.2. Hopfi eld neural networks
Neural networks are an approach in computation wherein a large number of states model a biological brain,
which is able to provide solutions to problem, using large clusters of neurons. Each such neuron (also referred
as state) is connected with many others in the network. Links between nodes can inhibit or strengthen the state
values of such connected neurons [8].

Manuj Aggarwal, Deepak Sharma, Mohd Nizam and Naveen Yadav

212International Journal of Control Theory and Applications

The structure of a Hopfi eld Neural network consists of a fi nite number of units with each node capable of
storing a binary threshold values. For each pair of unit i and j, a mathematical function Wi , j called connectivity
weight is defi ned [9]. Fig. 4 shows an example of Hopfi eld Network for a set of 4 cities.

X1

X4

X2

X3

Figure 4: Hopfi eld network of 4 cities

Apart from the initial value of a node, the same can be updated by using the following:

 Si = is connected to 1 if W *S Threshold

–1 else
j i i, j i∑ >⎧⎪

⎨
⎪⎩

Energy function of the Hopfi eld neural network is defi ned such that its value either lowers or remains same
during an update step. Such process can be inferred as minimization of the energy function, so as to achieve a
stable state. Since such a function can have many local minima, convergence may lead to a suboptimal solution.

For solving optimization problem with Hopfi eld Neural Network, the following steps are considered:
1. The problem is represented in the structure of the Hopfi eld network.

2. Energy function for the network is defi ned.

3. Connectivity weight function for network including the problem constraints is defi ned.

4. Binary threshold values for all nodes are initialized.

5. Nodes (randomly or sequentially) are updated until stable state is reached.

3. METHODS OF SOLVING TSP USING Q LEARNING
In this section, different approaches of Q- learning methods for solving TSP are discussed.

Erban and Pintea [3] have proposed several heuristics methods such as Nearest Neighbor and Ant
colony system for solving the TSP, along with Reinforcement Q-Learning method. The authors have made the
following assumptions:

1. The N cities for the tour form the N Q-states, with each state having actions to move to the other N-1
states.

2. A state is considered a fi nal state if it has been reached after agent has visited the other N-1 nodes
before it.

3. The reward function for the Q-learning method is defi ned as the Euclidean distance between the
considered cities.

The learned optimal policy, i.e. the optimal tour is achieved by using a suffi cient number of iterations of
algorithm, called episodes. An episode ends when a tour is completed. The algorithm runs in O(N * E) time,
where N is the number of cities and E is the number of episodes.

 A Study of Approaches to Solve Traveling Salesman Problem using Machine Learning

213 International Journal of Control Theory and Applications

By applying the prescribed algorithm to several examples of TSP in Cartesian plane, the authors have
found that the algorithm, in average, gives better results than Neural Network approach.

Uslan and Bucak [4] have compared various machine learning techniques to solve TSP and proposed
a Q learning method which combines basic Q learning technique with 2-opt localization as the last step. The
learning agent manages two tables one Q table which refl ects observations for fi nding shortest path and other
a reward table which is modifi ed whenever agent fi nds the shortest path on repetition and other a reward table.

Each r(ci , cj) pair is modifi ed when the agent fi nds the shortest path during the repetition. This is where
the reinforcement learning takes place and better solutions get a higher reinforcement. All reward values are
modifi ed by a discount rate except the pair values of the recent found shortest path. Next, all Q(ci , cj) pairs are
initialized and pairs of the best tour are given a numerical reward to refl ect a fresh observation. Then, instant
Q-values are calculated with those recently modifi ed r(ci , cj) pairs. After some predefi ned criterion is reached
the 2-opt localization is applied to the solution produce.

 Q function used was Q*(s, a) = r + .maxa’ Q(s’, a’)
where, (s, a) is state action pair

r is the immediate reward received
 is learning rate
The idea is to take a route that crosses over itself and reorder it in such a way that it does not.
2-opt improvements were implemented by removing two edges each time and reconnecting them such that

d(c1, c2) + d(c3, c4) > d(c1, c3) + d(c2, c4). Fig. 5 illustrates 2-opt localization.

Figure 5: Example of 2-opt localization

The algorithm for the above approach is given in fi g. 6.

1. Initialize Q-table and reward table for each pair of cities (ci , cj) of distinct cities.
2. Use greedy -greedy approach for choosing next city to move.
3. Receive an immediate reward r(ci , cj) and adjust Q-table.
4. If shortest path so far is found update rewards and initialize the Q-table by giving numerical

reward to each r(ci , cj) belonging to shortest route.
5. Repeat steps 2 to 4 until stopping condition is not satisfi ed.
6. Apply 2-opt localization. Using Q values select global minimum tour.

Figure 6: Algorithm for Q learning [4]

The intent was to decrease the number of intersections as much as possible, 2-opt localization has been
performed at the end of the constructed tour from the Q-values. Depending on the solution obtained, the number
of replacements varies. It was observed that Q- learning method slowly converged to optimal or near optimal
value. As the city size grew, the solution obtained started to diverge from the optimal one. The performance and
speed was suffi cient for the problems less than 200 cities and could fi nd near optimal solutions. For problems
size greater than 200 cities the author have suggested 3-opt localization.

Manuj Aggarwal, Deepak Sharma, Mohd Nizam and Naveen Yadav

214International Journal of Control Theory and Applications

Dorigo and Gambardella [10, 11] have proposed Ant-Q algorithm which is combination of Q learning
algorithm and ant colonies behavior. Ant Q algorithm is divided into three phases which includes initialization
phase, building the tour and fi nally ants update AQ values globally and ultimately fi nd the optimal solution. In
the initialization phase starting city for ants is chosen. In the second phase ants build tours by applying state
transition rules and locally updating AQ values. In this phase ants choose the city where they will go. In the
fi nal phase ants update the edges belonging to the best tour done and fi nally updating the AQ values globally.

Ant Q is a set of simple agents called ants and Ant Q algorithm belongs to ant colony methods. These
ants cooperate to fi nd optimal solution. In Q learning only one agent explores the state space whereas in Ant
Q cooperating agents are used to explore the state space. AQ values between the agents are exchanged. When
compared to other algorithms for solving traveling salesman problem, Ant-Q algorithm was found to produce
better results in most cases. Ant-Q was almost always best performing algorithm.

Ant Q outperforms the other algorithm of same category such as heuristic algorithms, simulated annealing,
elastic net, self-organizing map, farthest insertion etc. The solutions were also locally optimal with respect to
2 opt and 3 opt heuristics. However, the complexity of Ant Q iteration (O(m.n2)) where m is the number of ant
agents and n is the number of cities. Due to this, its application becomes infeasible to big TSP problems. Table
1 shows the comparison among Q learning approaches.

Table 1
Comparison of Q learning approaches

Property First method [3] 2-opt method [4] Ant-Q method [10, 11]

Graph Complete Complete Complete

Agent System Single agent Single agent Multi agent

Reward Mechanism Static Dynamic Static

Action Selection Epsilon Greedy Epsilon Greedy Pseudo random

Optimization None 2-opt None

Time complexity O(N E) O(N2 E) O(M N2 E)

Performance Good Better Best

On the basis of comparison of Q learning approaches to solve TSP, it can be concluded that all three
approaches work on complete graphs, and have randomness to decision making procedure in the algorithms.
They differ in reward mechanism and optimization used in the process. A straightforward pattern of trade-
off between performance and effi ciency is observed among the three methods. Whereas the fi rst approach is
good for large inputs, the best performance is achieved by the multi agent Ant-Q method for comparatively
smaller inputs.

4. TSP USING HOPFIELD NEURAL NETWORK
Various methods to solve TSP using neural network are discussed here.

Moetty [5] has compared shortest path nearest neighbor and Ant Colony System along with neural
networks system for solving TSP.

For using Hopfi eld neural networks for solving TSP, the energy function should have some necessary
properties as given below:

1. It should lead to a stable combination matrix.

2. It should lead to the shortest traveling path.

 A Study of Approaches to Solve Traveling Salesman Problem using Machine Learning

215 International Journal of Control Theory and Applications

The energy function used by the author was :
 E = A1 x k j  k Vx , k Vx , j + A2 ix j  xVx , iVj , i
 + A3 [(x i Vx , i) – N]2 + A4 xj  x i dx , jVx , i (Vj , i + 1 + Vj , i – 1)

where A1 , A2 , A3 and A4 are positive integer constants, and for the performance of Hopfi eld network, the setting
of these constants are very critical. N is the number of cities to be visited in the tour. Let Vxi denote the output
of the ith neuron in the array of neurons corresponding to the xth city. The variable Vxi denotes the fact that city x
is the ith- city visited in a tour. There are N2 such variable and at the end, their value will be 0 or 1 or very close
to 0 or 1.

Using energy function the weight matrix was set up as follows:
 Wxi , yj = – A1xy(1 – ij) – A2ij(1 – δxy) – A3

 – A4 dxy(j, i + 1 + j, i – 1) [ij = 1 if i = j and is 0 otherwise]
The algorithm for fi nding a solution to TSP using Neural Networks is given in fi g. 7.

 Input the network parameters x, y co-ordinates for each city and compute the distance
between all pairs of cities.

 /* initialize the network input according to the following equation */
 uxi(0) = u00 + (2 * rand – 1) /(10*u0)
 /* this is the phase in which neurons are updated using following equation */
 uxi(t + 1) = uxi(t) + dt (duxi /dt)
 Running mode /* by using equation*/
 /* in this phase calculate neuron output according to equation*/
 Vxi = (1 + tanh(uxi / u0)) / 2
 Compute the tour length
 If max_iterations is reached and tour length unchanged for certain number of loop
 Then
 Print tour length
 Else, perform next iteration

Figure 7: Hopfi eld network of 3 cities [5]

The Experimental results found that neural networks were fast as compared to standard techniques. Also it
gave less or same values for shortest path. On changing the starting city, the solution produced also changed as
reported by [12]. Also [12] observed that on increasing number of cities in the problem, the number of iterations
required for fi nding the solution increased non linearly. Also in some cases, the network failed to converge.
Hopfi eld neural networks tend to get captured in local minima.

Feng and Douligeris [13] proposed an optimization of Hopfi eld Networks to solve TSP by using stable
state analysis technique. Stable state analysis is based on determining mutual relations of parameters in energy
function by looking at some special cases when network reaches fi nal stable state. Stable state analysis classifi es
the problem into Constraint terms and Objective Functions. Hopfi eld energy function is a weighted sum of
constraint terms and objective function. Constraint terms can be divided into 3 categories:-Zero constraint term,
non-zero constraint term, hybrid constraint term. If the energy function can be expressed in terms of these terms
and suffi cient number of other conditions is met, then the problem is 1D constrained problem and otherwise it
is 2D constrained problem.

Manuj Aggarwal, Deepak Sharma, Mohd Nizam and Naveen Yadav

216International Journal of Control Theory and Applications

Stable state analysis can be utilized to deal with almost all 1D constrained problem and most of the 2D
constrained problems. After obtaining the constraints we use them to set appropriate values to the parameters
and fi nally obtaining valid solutions. This algorithm works better than Aiyer method [14], the mean error of the
solutions are compared in the two algorithms and stable state analysis gives better mean error rate as compared
to Aiyer method.

Experiments performed on 10 city and 51 city Traveling salesman problem states that on 10-city TSP the
method yields results which were comparable to results obtained using Simulated Annealing and the mean error
of fi nal solutions to a 51-city TSP is better than the optimal tour.

5. CONCLUSION
In this paper, we have performed comparison of two relatively good machine learning approaches, Q learning
and Hopfi eld Neural Networks, for solving the Traveling Salesman Problem. Q learning methods have been
found to give better results than heuristics methods such as Nearest Neighbors method or Ant Colony Systems.
Optimization techniques such as 2-opt technique greatly improve their performance. Ant-Q systems turn out
to give best results, although being relatively infeasible for larger problem size. Q-learning methods though
are diffi cult in terms of setting and fi nding the optimal parameters in the Q-learning technique. On the other
hand, Hopfi eld neural network methods have been shown to be excellent for smaller problem sizes, providing a
relatively smaller bound on worst deviation from optimal solutions. As a part of future work, other optimization
techniques such as 3-opt techniques, improving the learning rate employed in Q learning methods can be applied
and combining such approaches in order to obtain more accurate solutions of Traveling Salesman Problem.

REFERENCES
[1] G. Reinelt, The traveling salesman: computational solutions for TSP applications: Springer-Verlag, 1994.
[2] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The traveling salesman problem: a computational study:

Princeton university press, 2011.
[3] C.-M. P. G. Erban and C.-M. PINTEA, “Heuristics and Learning Approaches for Solving The Travelling Salesman

Problem,” ed.
[4] V. Uslan and İ. Ö. Bucak, “A Comparative Study of Machine Learning Heuristic Algorithms to Solve the Traveling

Salesman Problem.”
[5] S. Abdel-Moetty, “Traveling salesman problem using neural network techniques,” in Informatics and Systems (INFOS),

2010 The 7th International Conference on, 2010, pp. 1-6.
[6] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279-292, 1992.
[7] J. Peng and R. J. Williams, “Incremental multi-step Q-learning,” Machine learning, vol. 22, pp. 283-290, 1996.
[8] K. Y. Lee, A. Sode-Yome, and J. H. Park, “Adaptive Hopfi eld neural networks for economic load dispatch,” IEEE

Transactions on Power Systems, vol. 13, pp. 519-526, 1998.
[9] B. N. K. L. Ding, “Neural network fundamentals with graphs, algorithms and applications,” Mac Graw-Hill, 1996.
[10] M. Dorigo and L. Gambardella, “Ant-Q: A reinforcement learning approach to the traveling salesman problem,” in

Proceedings of ML-95, Twelfth Intern. Conf. on Machine Learning, 2016, pp. 252-260.
[11] M. Dorigo and L. M. Gambardella, “A study of some properties of Ant-Q,” in International Conference on Parallel

Problem Solving from Nature, 1996, pp. 656-665.
[12] D. Graupe and R. Gandhi, “Implementation of Traveling Salesman’s Problem using Neural Network,” Final Project

Report, ECE, vol. 559, 2001.
[13] G. Feng and C. Douligeris, “Using Hopfi eld networks to solve traveling salesman problems based on stable state analysis

technique,” in Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference
on, 2000, pp. 521-526.

[14] S. V. Aiyer, M. Niranjan, and F. Fallside, “A theoretical investigation into the performance of the Hopfi eld model,” IEEE
Transactions on Neural Networks, vol. 1, pp. 204-215, 1990.

