
I J C T A, 9(27), 2016, pp. 227-234
© International Science Press

* Research Scholar, Jamal Mohamed College, Tiruchirappalli, Tamilnadu, India, Email: sr.mariajose25@gmail.com

** Director–MCA &Associate Professor of Computer Science, Jamal Mohamed College, Tiruchirappalli, Tamilnadu, India, Email:
di_george@ymail.com

TDSA - Two Directional Dynamic Task Scheduling
Algorithm for Heterogeneous Multiprocessor
Environment

A. Maria Josphin* and D. I. George Amalarathinam**

ABSTRACT

In multiprocessor environments such as parallel and distributed systems optimizing task scheduling is one of the
most important challenges. These systems with task graph mode are modelled by using directed acyclic graph
(DAG). The main objective is to minimize the makespan by means of assigning tasks to the processor elements in
such a way that precedence constrains are also preserved. This scheduling problem is called NP-complete. In this
paper, a new algorithm called TDSA is designed to work with tasks in different levels of DAG. The performance of
proposed algorithm TDSA minimizes the makespan, communication to computation ratio (CCR) and maximizes the
resource utilization. The parallel scheduling of tasks from different levels yields a better make span, communication
to computation ratio (CCR) and resource utilization compared to other existing traditional algorithms.

Keywords: Multiprocessor task scheduling, Parallel and Distributed systems, Task graph.

1. INTRODUCTION

Increase in the usage of multiprocessor systems nowadays in various applications is the result of many breakthroughs
over the last two decades. These developments of multiprocessor systems are being used for several applications
such as fluid flow, weather modelling, database systems, real-time, and image processing. Data for these applications
are evenly distributed on the processors of multiprocessor systems. The maximum benefits of these systems can be
obtained by employing an efficient task assignment and scheduling strategy [1]. In this paper, the multiprocessor
task scheduling is based on the non-deterministic model, the execution time of tasks and the data communication
time between tasks that are assigned; and the directed acyclic task graph (DAG) that represents the precedence
relations of the tasks of a parallel processing system [2]. The goal of the scheduler is to assign tasks to available
processors such that precedence requirements among tasks are satisfied. Thus, the time required to execute the
entire program and the schedule length or makespan is minimized.

Multiprocessor scheduling problems is classified into many different classes based on the following characteristics:

1. The number of tasks and their precedence.

2. Execution time of the tasks and the communication cost, the cost to transmit messages from a task on one
processor to a succeeding task on a different processor (Communication cost between two tasks on the
same processor is assumed to be zero).

3. Number of processors.

4. Topology of the representative task graph.

DAG represents applications executed within multiprocessor system. In DAG, G = (V, E) consists of a set of
vertices V representing the tasks to be executed and a set of directed edges E representing communication dependencies

ISSN: 0974-5572

228 A. Maria Josphin and D. I. George Amalarathinam

among tasks. The edge set (E) contains directed edges e
ij
 for each task T

i
. The computation weight of a task is

represented by the number of CPU clock cycles to execute the task. Given an edge e
ij
, T

i
 is called the immediate

predecessor of T
j
 and T

j
 is called the immediate successor of T

i
. An immediate successor T

j
 depends on its immediate

predecessors such that T
j
 does not execute before it receives results from all of its immediate predecessors. A task

without immediate predecessors is called an entry-task and a task without immediate successors is called an exit-task.
A DAG may have multiple entry tasks and one exit-task. They are randomly generated models [3,4].

The next section of the paper discusses some studies related to the proposed algorithm, followed by the
proposal in details, and section 4 contains the evaluation and results to prove the accuracy of the proposal.

2. RELATED WORK

Several approaches such as heuristic approaches, evolutionary approaches and hybrid methods [6] have been
adopted to solve the multiprocessor task scheduling. ReaKook et al [7] presented a comprehensive review and
classification of deterministic scheduling algorithms. List scheduling techniques are widely used in task scheduling
problems [8]. Insertion Scheduling Heuristic (ISH) and Duplication Scheduling Heuristic (DSH) are well-known
list scheduling heuristic methods [9]. ISH is a list scheduling heuristic that was developed to optimize scheduling
DAGs with communication delays. ISH extends a basic list scheduling heuristic from GA [10] by attempting to
insert ready tasks into existing communication delay slots. DSH [11] improved ISH by using task duplication to
reduce the starting time of tasks within a schedule. DSH reduces inter-processor communication time by scheduling
tasks redundantly to multiple processors. The genetic-based methods have attracted a lot of researcher attention in
solving the Multiprocessor Task Scheduling [12]. One of the main differences in genetic approaches is the usage of
genetic operators, such as crossover and mutation. Using different crossover and mutation methods for reproducing
the offspring is strongly dependent upon the chromosome representation which may lead to the production of legal
or illegal solutions. Another important factor in designing a GA is the simplicity of the algorithm and complexity of
the evolutionary optimization process. Moore [13] reported that the results of GA were within 10% of the optimal
schedules. The results are based on task graphs with dependencies but without communication delays.

In dynamic scheduling, when a new set of tasks (which correspond to a plan) arrive at the system, the scheduler
dynamically determines the feasibility of scheduling these new tasks without jeopardizing the guarantees that have
been provided for the previously scheduled tasks. A plan is typically a set of actions that has to be either completed in
full or not at all. Each action could correspond to a task and these tasks may have resource requirements, and possibly
may have precedence constraints. Thus, for predictable executions, schedulability analysis must be done before a task
execution. For schedulability analysis, tasks with worst case computation times must be taken into account. A feasible
schedule is generated in which the timing constraints, resource and fault tolerant requirements of all the tasks in the new
set can be satisfied. If a feasible schedule cannot be found, the new set of tasks is rejected and the previous schedule
remains intact. If the plan is getting to be rejected, the application might invoke an exception task, which must be run,
depending on the nature of the plan. This plan allows admission control and results in reservation based system. Tasks
are dispatched according to this feasible schedule. Such a type of scheduling approach is called dynamic planning
based scheduling [14] and spring kernel is an example for this approach [15].

Abdelkader et al [16] proposed new algorithm Cluster Based Heterogeneous system with Duplication (CBHD)
with duplication achieved minimum makespan, maximum utilization and load balancing which are considered as
main performance parameters in dynamic environment.

Tabatabae et al [17] proposed linear switching space model using a fuzzy heuristic approach. Fuzzy decision
making procedure handles changes in the multiprocessor system while migrating a scheduled task from one processor
to another processor to achieve minimum makespan.

Kallia Chronaki et al [18] proposed an algorithm called critically aware dynamic task scheduling on heterogeneous
architectures, which shows the potential of a critically aware scheduler to speed up dependency intensive applications

TDSA-Two Directional Dynamic Task Scheduling Algorithm for Heterogeneous... 229

and take advantage of the asymmetric compute resources. It improves the performance by prioritizing the newly
created tasks at runtime, detecting the longest path of the dynamic task dependency graph and assigning critical
tasks to fast cores.

Vinay Kumar et al [19] introduced an algorithm called Novel Heterogeneous Earliest Finish Time (NHEFT),
to enhance the functions of Heterogeneous Earliest Finish Time (HEFT) that works for a bounded number of
heterogeneous processors. The main objective of this paper was to achieve high performance and fast scheduling.
The proposed algorithm selects the tasks with a rank system and minimizes earliest finish time with minimization
cost.

3. PROPOSED ALGORITHM

The process of proposed algorithm starts from the DAG. A DAG contains the parallel tasks called as Parallel Task
Queue (PTQ).

The tasks from the PTQ will be assigned to the processors that are taken from the processor bank with the
help of bidirectional (TDSA) scheduler.

The proposed scheduler performs two tasks. One is to allot a task to Processors and at the same time
manipulate the parent child relationship of tasks. At the initial stage, two directional scheduler creates a CTQ (Child
Task Queue) if all the parents of a task are completed. The two directional scheduler schedules the tasks from
CTQ in parallel while working with other parent tasks of same level. Once the task is completed, it will be moved
to FTQ (Finished Task Queue). The above process will be continued until all the tasks from DAG are allotted to
Processors.

Algorithm - TDSA

Step 1: LET D be the input DAG

Step 2: DAG Creates PTQ and PCR Table

Step 3: Allot (Min(T
i
), Max(P

j
)

Step 4: CT = Fetch Children(T
i
)

Step 5: FR = Fetch Free Processor()

Step 6: Allot (ct i ∈ CT, FP
j
)

Step 7: do step 3 to 7 until all the tasks allotted

Step 8: Migrate(T
n
, Min(p

j
∈ P))

Where

PTQ is the Parent Task queue

PCR is the Parent Child Relation Table

T
i
 is the ith Task

P
j
 is the jth Processor

CT is the Child Task

FR is the Free Processor

Figure 1 shows the complete architecture diagram of the proposed TDSA scheduling algorithm.

230 A. Maria Josphin and D. I. George Amalarathinam

Figure 1: Flow Diagram of Proposed Algorithm

4. EVALUATION AND RESULTS

The main aim of this proposal is to reduce the make span by reducing the waiting time of child tasks for any parent
tasks. If T

i
 is the task having m number of child Tasks. The first child tasks of T

i
will be started immediately after the

completion of Task T
i
.

The waiting time for the completion of all tasks in the same level is eliminated in this proposal. This is to reduce
the make span of overall scheduling. But in this proposal the child of any parent task may start immediately after the
completion of parent task. The sample DAG with 10 tasks shows in Figure 2. Initial allocation of tasks to the
processors is shown in Table 1. Migrated task to the processors is shown in Table 2. Migration is based on the
EST (n

i
, p

j
) and EFT (n

i
, p

j
), the earliest execution start time and the earliest execution finish time of task n

i
 on

processor p
j
 respectively.

Figure 2: A Sample DAG with 10 Tasks

TDSA-Two Directional Dynamic Task Scheduling Algorithm for Heterogeneous... 231

The EST and EFT values are computed recursively, starting from the entry task as shown in equations (1) and
(2). In order to compute the EFT of a task all immediate predecessor task n

i
 of must have been scheduled.

EST (n
i
,p

j
) = max avil j nm pred ni AFT nm Cm ib � b � b �� �,max ,∉ + (1)

EFT (n
i
, p

j
) = w

i,j
 EST (n

i
, p

j
) (2)

For the entry task EST (n
entry

, p
j
) = 0 (3)

where avail (j) is the same processor p
j
is

free and it is ready to execute task n

i,
the inner max block in equation (1) returns

the ready time i.e., the time when all data needed by task has arrived at processor. After all tasks in a graph are scheduled,
the scheduled length (overall completion time) will be the AFT of the exit task (n

exit)
). If there are multiple exit tasks and

the convention of inserting a pseudo exit task is not applied, the schedule length, called makespan, is defined as

makespan = max [AFT (n
exit)

] (4)

Processors have their own characteristics such as CPU characteristics, memory, etc. One of the CPU
characteristics is the speed of the processors considered for this result. The speed is varied as 1.25, 1.50 and 1.75.
Gantt chart for a given task graph is shown in Figure 3. Figures 4a – 4c shows the comparative study of the
makespan with various algorithms.

In TDSA scheduling algorithm there are four metrics such as makespan, communication to computation ratio
and resource utilization. These are the performance of parallelism parameter, is considered for comparison.

4.1. Makespan

The main performance measure of a scheduling algorithm is the total execution time of exit task in makespan.
Figures 4a – 4c shows that all cases of makespan of proposed algorithm is minimized.

4.2.Communication-to-Computation-Ratio (CCR)

The CCR of a parallel program is defined as the average edge weight divided by the average node weight which
can be obtained from the formula.

CCR= Average Communication Cost

Average Computation Cost

When CCR > 1, the DAG is a communication intensive, when the CCR < 1, it is the computation intensive.
When the communication cost and the computation cost is equal, i.e., CCR = 1, it is called mixed graph [20,21].
TDSA Algorithm performs better result for communication intensive and computation intensive DAGs. Comparison
of DLS algorithm are shown in Figures 5a and 5b.

4.3. Resource Utilization

The processors which have been reserved in advance are available till the execution of the last task. Figures 6a –
6c shows the effective utilization of processors better then DLS.

While designing the scheduling algorithms for efficient parallel processing, the following fundamental aspects
achieved: performance, time- complexity, scalability and applicability.

Tasks are distributed to the processors according to its dependency. After completion of parent task, the child
task is assigned to the processors which require minimum computation cost.

The dynamic scheduling is implemented using task migration at runtime. Two steps are considered while selection
of processor for a particular task:

232 A. Maria Josphin and D. I. George Amalarathinam

• Earliest free time of the processor P
j

• Earliest start time of the task T
i
 on the processors P

j
.

If any processor completes its task at the earliest, move the suitable task from the available queue to the
processors.

Table 1
Migration Makespan

Task Processors EST EFT

T0 P1 0 9.714286

T3 P1 9.714286 12.57143

T1 P0 9.714286 18.04762

T5 P1 12.57143 16.57143

T4 P2 12.57143 28.77143

T2 P0 18.04762 24.04762

T7 P1 16.57143 24

T6 P0 24.04762 25.38095

T8 P2 28.77143 38.77143

T9 P2 38.77143 56.37143

T9 P0 38.77143 49.71429

Task/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Processors

P
0

T1(9-18) T1(18-24)

P
1

T0(0-9) T3(9-12)T5 (12-16)T7 (16-24)

P
2

T4(12-28)

Task/ 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Processors

P
0

T1(18-24) T9(38-49)

P
1

P
2

T4(12-28) T8(28-38)

Task/ 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Processors

P
0

T9(38-49)

P
1

P
2

Figure 3: Gantt chart for the Given Task Graph

TDSA-Two Directional Dynamic Task Scheduling Algorithm for Heterogeneous... 233

4a. Number of Tasks = 10 4 4c. Number of Tasks = 200b. Number of Tasks = 100

Figure 4: Comparison of DLS with TDSA algorithm in terms of makespan with different processors

5a. Makespan under Different CCR < 1 5 b. Makespan under Different CCR > 1

Figure 5: Comparison of DLS and TDSA algorithm with different CCR values

 6a. Number of Tasks = 10 6 c. Number of Tasks = 200b. Number of Tasks = 100 6

Figure 6: Comparison of DLS with TDSA algorithm in terms of Resource Utilization

5. CONCLUSIONS

In this paper a new DAG based TDSA scheduling algorithm for multiprocessor system is proposed. Scheduling is
the decision process by which application components are assigned to the available processors to optimize various
performance metrics. The performance of proposed algorithm minimizes the makespan, communication to

234 A. Maria Josphin and D. I. George Amalarathinam

computation ratio (CCR) and maximizes the resource utilization. The results of TDSA are compared with many
traditional algorithms and it is concluded that the proposed algorithms produced better results for any size of task.

REFERENCES
[1] Garshasbi, M. S. and Mehdi, E., “Tasks Scheduling on Parallel Heterogeneous Multi-processor Systems using Genetic

Algorithm”, International Journal of Computer Applications, 61, 23-27, 2013.

[2] Hwang, R., Gen, M., Katayama, H., “A comparison of multiprocessor task scheduling algorithms with communication
costs”, Computers and Operations Research, 35, 976-993, 2008.

[3] Dai, M., Tang C., and Chuang C. “An Energy-Aware Workload Dispatching Simulator for Heterogeneous Clusters”,
Proceedings of the International MultiConference of Engineers and Computer Scientists, I , 13 - 15, 2013.

[4] Nissanke, N., Leulseged, A., Chillara, S., “Probabilistic performance analysis in multiprocessor scheduling”, Journal of
Computing and Control Engineering, 13, 171-179, 2002.

[5] R., RahimiAzghadi,M., Hashemi, S., EbrahimiMoghadam, M., “A hybrid multiprocessor task scheduling method based on
immune genetic algorithm” Qshine 2008 Workshop on Artificial Intelligence in Grid Computing, 2008.

[6] Wu, A.S., Yu, H., Jin, S., Lin, K.-C., Schiavone, G., “An incremental genetic algorithm approach to multiprocessor scheduling”,
IEEE Transactions on Parallel and Distributed Systems, 15, 824-834, 2004.

[7] Moore M., “An accurate parallel genetic algorithm to schedule tasks on a cluster”, Parallel and Distributed Systems, 30,
567-583, 2004.

[8] Corbalan, J., Martorell, X., Labarta, J., “Performance-driven processor allocation”, IEEE Transactions on Parallel and
Distributed Systems, 16, 599-611, 2005.

[9] ReaKook H., Mitsuo G. and Hiroshi K., “A Performance Evaluation of Multiprocessor Scheduling with Genetic Algorithm”,
ReaKook Hwang et al./Asia Pacific Management Review , 11, 67-72, 2006.

[10] Montazeri, F., Salmani-Jelodar, M., Fakhraie, S.N., Fakhraie, S.M., “Evolutionary multiprocessor task scheduling”,
Proceedings of the International Symposium on Parallel Computing in Electrical Engineering (PARELEC’06), 2006.

[11] K. Ramamritham and J.A. Stankovic, “Scheduling algorithms and operating systems support for real time systems”, Proc.
of IEEE, 82, 55-67, 1994.

[12] J.A. Stankovic and K. Ramamritham, The Spring Kernel,” A new paradigm for real time operating systems”, ACM SIGOPS
Operating Systems Review,23, 54-71, 1989.

[13] Doaa M.Abdelkader, Fatma Omara, “ Dynamic task scheduling algorithm with load balancing for heterogeneous computing
system”, Egyptian Informatics Journal, 13, 135-145, 2012.

[14] Hamid TABATABAEE, Mohammad Reza AKBARZADEH-T and Naser PARIZ,” Dynamic task scheduling modeling in
unstructured heterogeneous multiprocessor systems”, Journal of Zhejiang university – Science (Computers & Electronics)
,15, 423 – 434, 2014.

[15] Kallia Chronaki,Alejandro Rico,Rosa M.Badia Eduard Ayguadé, Jesús Labarta, Mateo Valero,”Critiality –Aware Dynamic
Task Scheduling for Heterogeneous Architectures”, Proceedings of the 29th ACM on International Conference on
Supercomputing , 329 – 338, 2015.

[16] Vinay Kumar,C.P.Katti and P.C.Saxena” A Novel Task Scheduling Algorithm for Heterogeneous computing”, International
Journal of Computer Applications, 85, 2015.

[17] G.J. Joyce Mary and D.I.Geroge Amalarethinam, “A New DAG based Dynamic Task Scheduling Algorithm (DYTAS) for
Multiprocessor Systems”, International Journal of Computer Applications, 19, 2011.

[18] Hwang RK, Gen M., “Multiprocessor scheduling using genetic algorithm with priority- based coding”, Proceedings of
IEEE conference on electronics, information and systems, 2004.

[19] T. Lucia Agnes Beena and D.I.Geroge Amalarethinam, “Analysis of Task Scheduling Algorithm in Fine-Grained and
Coarse – Grained Dags in Cloud Environment”, International Journal of Fuzzy Mathematical Archive, 6, 161-168, 2015.

[20] Kamaljit Kaur, Amit Chhabra and Gurvinder Singh, “Modified Genetic Algorithm for Task Scheduling in Homogeneous
Parallel System Using Heuristics”, International Journal of Soft Computing, 5, 242-251, 2013.

[21] G. Padmavathi and S.R.Vijayalakshmi, “Multiprocessor scheduling for tasks with priority using GA”, International Journal
of Computer Science Issues, 7, 37-42, 2010.

