
KOM Multiplier for ECC implementation in FPGA

KOM Multiplier for ECC implementation in FPGA

Aditi Sharma1 and Rajesh Bhadada2

1 PhD Research Scholar Department of Computer Science & Engineering MBM Engineering College,

Jai Narain Vyas University,Jodhpur, India, Email: aditi11121986@gmail.com
2 Professor Department of Electronics and Communication Engineering MBM Engineering College,

Jai Narain Vyas University,Jodhpur, India, Email: rajesh_bhadada@rediffmail.com

Abstract: Cryptographic algorithms are having high security for a large amount of data, if their performance can be

attained by hardware acceleration as compared to software implantations. We have presented a Karatsuba- Ofman

multiplier being developed for generating a secure elliptic curve crypto processor. Modular multiplication of large

integers is a key structure for cryptographic algorithms. Karatsuba- Ofman multiplier is based on the divide and

conquers methodology. The proposed strategy and performance outcomes in FPGAs for a scalable hardware design.

This design is considered as a computing modular multiplication in Galois prime fields GF(p), based on the Karatsuba-

Ofman multiplier algorithm.We have also represented the comparison of Karatsuba- Ofman multiplier with the existing

multiplier of ECC. ECC multiplication is attained by using a dedicated Galois Field arithmetic simulated on Xilinx

FPGA.

Keywords: ECC, Karatsuba-Ofman, FPGA

1. INTRODUCTION

In most of the cryptosystems modular exponentiation is used as the powerful operation. It is also considered as

the nonlinear scrambling operation. In this operation modular multiplication is done at many times. Modular

Multiplication is operated via earliest multiplying then decreasing or else interleaving multiplication with

decreased steps. Previous methods are considered as there are very fast multiplication is need, the final method

is used where limitation of storage is being considered. In this paper we ponder on specifying Karatsuba –

Ofman Multiplier that is proposed by Karatsuba and Ofman. The Karatsuba-Ofman Multiplier or the Karatsuba

multiplier is a high-speed multiplier algorithm, exposed by Anatolii Alexeevitch Karatsuba in the year 1960

with availability in 1962. In general multiplication of two m bits digit numbers used to decrease to maximum of

single valued digit multiplications. 2m valued digit numbers multiplication operations are reduced with the two

m digits additions, multiplications, subtractions, left shifts and m+1 digit multiplications and two 2m digits

additions. FPGAs provide constructive performance tool for encryption and decryption algorithms for the

implementation where the timely inaccuracy is main aspect for findings and for system on chips where system

measures can easily be altered to suit developing security necessities.

Aditi Sharma and Rajesh Bhadada

The rest of the paper is organized as follows. Proposed algorithms are explained in section II with

implemented hardware architecture. Simulation Tool with language is explained in Section III. Simulation and

Experimental results with comparative studies are presented in section IV. Concluding remarks are given in

section IV.

2. KARATSUBA – OFMAN ALGORITHM

Let two long integers are A and B. Binary representation of these numbers are as follows:

1 1

0 0

2 , 2
m m

i i

i i

i i

A a B b
 

 

     (1)

Here the multiplier product AB is computed effectively. AH and AL, BH and BL equal digits sized are

parted by the decomposition of operands correspondingly. These are having the representations as m upper

ordered bits and lesser ordered bits of A and B .

Let y = 2m. Zero is right padded while y is odd. Multiplier product Z = AB used to be calculated as in

equation (4) and equation (5):

1 1

0 0

2 2 2 2
m m

m i i m

i m i H L

i i

A A A A A
 



 

 
    

 
  (2)

1 1

2
0 0

2 2 2 2i

m m
m i i m

i H Li m
i i

B B B B B
 


 

 
    

 
  (3)

 2n

H LZ AB A A   (4)

2 22 () 2 ()m m

H H H L L H L LZ A B A B A B A B    (5)

Figure 1: ALU for ECC Processor

KOM Multiplier for ECC implementation in FPGA

The above equations results the following necessities:-

For calculation of product Z four m-bits multiplications is needed as the requisite of standard multiplication

algorithm. Formulation of T(y) in equation (6) is done based upon the assumption that T(y) one-bit operations is

carried out for multiplication of y-bits. For computation of operation of additions and operation of shifts, the

count of one bit operations y is used.

In following equation complexity of multiplication algorithm is set with consideration of T(1) = 1 However,

The computation of Z can be improved by noticing Equation (8):

   4T y T m y  (6)

     log 4 22T y y y   (7)

  H L L H H L H L H H L LA B A B A A B B A B A B      (8)

Following algorithm explains the method of Karatsuba-Ofman’s multiplication. Here the number of bits in

A are |A| function ,higher upper half portion number of bits of A is returned by HIGH(A), lower half portion

number of bits of A is returned by LOW(A), A2m is returned by RShift(A, m), When A and B are sized one then

AB is returned by Onebitmultiplier(A,B). For the extraction of highest half bits and lowest half bits A is right

padded with zero, conditioning |A| is odd.

Figure 2: Karastuba Ofman Multiplier Model

Aditi Sharma and Rajesh Bhadada

1.1KOM Multiplier algorithm –

Algorithm KOM(A, B)

if |A| = 1

then KOM := OneBitMultiplier(A, B)

else

Z1 := KOM(High(A), High(B));

Z2 := KOM(Low(A), Low(B));

Z3 := KOM(High(A)+Low(A), High(B)+Low(B));

KOM :=RShift(Z1,|A|)+RShift(Z3-Z1-Z2,|A|/2)+Z2;

end.

Three m-bits multiplication is used for the computation of Z in KOM(A,B) algorithm. Here addition,

subtraction, multiplication are done by ,one bit operations. For getting KOM(A,B) algorithm complexity

asymptotically faster we have to consider the value T(1) = 1.This comparison is from standard multiplication

algorithm.

       2 1 3 ,T y T m T m y T n y         (9)

     3 1.58log2T y y y   (10)

3. SIMULATION TOOL & LANGUAGE USED

We have implemented the hardware design using VHDL language and simulated using Xilinx ISE System

edition. For electronic device computerization, VHDL and Verilog (Hardware Description language) is used.

VHDL is a all-purpose and parallel programming language for the description of FPGA’s and IC’s, digital and

mixed signal systems. VHDL key feature allows synthesisation of required design into the genuine hardware

after the subsequently process of behaviour modelling and simulation.

Comprehensive software HDL designs for synthesisation analysis is contrivance produced by Xilinx

ISE, Integrated Software Environment. This software tool allows RTL schematic designs to simulate, synthesize

and build programs into the target device to perform various timing, RTL diagrams examination, testing

analysis. Structure Originator intended for DSP™ is the organisation and industry leading advanced

implementation.

FPGAs are used for implantation of excessive-performance Digital Signal Processing systems. The target

device is Spartan6 XC6SLX16-CSG324and product version of Xilinx ISE used is 14.3.

Table 1

Karastuba Ofman Multiplier Model

Speed Grade -5

Delay in Route 9.438ns

Delay in Logic 11.864ns

Delay (Levels of logic =17) 21.3022ns

KOM Multiplier for ECC implementation in FPGA

4. SIMULATION RESULTS

The simulation results are shown for target device is Spartan6 XC6SLX16-CSG324 in terms of timing report

and occupied slices for Galois Field 191.

We have used the synthesis tool precision synthesis for the calculation of GF 191 bits which occupies 6265

slices area without implementing clock and timing delay of 0.29 ms. We have compared the results of our

proposed multiplier to the existence multiplier which shows the better performance as in Table 2.

Figure 3: RTL Schematic Proposed Karatsuba- Ofman Multiplier Model

Figure 4: Simulation Results Proposed Karatsuba- Ofman Multiplier Model

Aditi Sharma and Rajesh Bhadada

Table 2

Comparison Result with existing KOM Multiplier Model

Ref. FPGA Field Occupied Clock Timing

Device slices (MHz) delay

El hadj[7] Virtex 2600E 163 9581 Not avail 2.68ms

163 1800 5.2ms

163 7579 3.976ms

163 1300 4.1ms

Smart[8] XCV 4000XL 191 Not avail Not avail 17.71ms

191 11.82ms

Sakiyama[9] Virtex II pro 163 Not avail 100 MHz 0.84ms

191 100 MHz 2.11ms

Gura[10] Virtex II pro 163 Not avail 66.4MHz 0.143ms

193 66.4MHz 0.187ms

233 66.4MHz 0.225ms

Bednara[11] Virtex XCV1000BG 191 Not avail 50MHz 3.72ms

191 50MHz 4.07ms

191 36MHz 0.5ms

Proposed Work Spartan6XC6SLX16-CSG324 191 6265 Not avail 0.29ms

60 MHz 0.23ms

5. CONCLUSION

In this work, FPGA Implementation of KOM multiplier has been carried out using structural design of VHDL

language in Xilinx ISE. We have used Xilinx ISE System edition to perform the simulations for the 8 bit binary

numbers. Compared to other multipliers which are being used in the industry, KOM multiplier has low delay

levels and high performance which makes it as the best choice by the designers. In this project we have simulated

results for the 8 bit binary numbers which consists of four 4*4 KOM multipliers in the hardware level along with

summers and barrel shifters for the radix operations. This KOM multiplier is applicable for 191bits as well as 8

bits multiplier which uses very few additions and shifting operations compared to other conventional multipliers

which greatly enhance the speed.

REFERENCES

[1] P. Montgomery, “Modular multiplication without trial division,” Mathematics of computation, vol. 44, no. 170, pp. 519–

521, 1985.

[2] C. Kaya Koc, T. Acar, and J. Kaliski, B.S., “Analyzing and comparing Montgomery multiplication algorithms,” IEEE Micro,

vol. 16, no. 3, pp.

[3] E. Oksuzoglu and E. Savas, “Parametric, secure and compact implementation of RSA on FPGA,” in International Conference

on Reconfigurable Computing and FPGAs, 2008, pp. 391 –396.

[4] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by automatic computers,” in Doklady Akad. Nauk

SSSR, vol. 145, no. 293-294, 1962, p. 85.

[5] Bhadada, R., & Sharma, A. (2014, December). Montgomery implantation of ECC over RSA on FPGA for public key

cryptography application. In Emerging Technology Trends in Electronics, Communication and Networking (ET2ECN), 2014

2nd International Conference on (pp. 1-5). IEEE

[6] A. Sharma and R. Bhadada, Security of Database: An approach using Elliptic Curve cryptography in the proceedings of

National Conference on New Advances of databases, data mining and Knowledge discovery,(2013).

[7] Youssef Wajih, E.h., Zied, G., Mohsen, M., Rached, T.: Design and Implementation of Elliptic Curve Point Multiplication

Processor over GF (2m) IJCSES International Journal of Computer Sciences and Engineering Systems 2(2) (April 2008).

KOM Multiplier for ECC implementation in FPGA

[8] Smart, N.P.: The hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol.

2162, pp. 118–125. Springer, Heidelberg (2001).

[9] Sakiyama, K., De Mulder, E., Preneel, B., Verbauwhede, I.: A Parallel Processing Hardware Architecture for Elliptic Curve

Cryptosystems. In:Acoustics,Speech and Signal Processing, ICASSP (May 2006).

[10] Gura, N., Shantz, S., Eberle, H., et al.: An End-to-End Systems Approach to Elliptic Curve Cryptography. In: Kaliski Jr.,

B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 349–365. Springer, Heidelberg (2003).

[11] Bednara, M., Daldrup, M., Shokrollahi, J., Teich, J., von zur Gathen, J.: Reconfigurable Implementation of Elliptic Curve

Crypto Algorithms. In: 9th Reconfigurable Architectures Workshop (RAW 2002), Fort Laud- erdale, Florida, U.S.A, pp.

157–164 (April 2002).

[12] Yang, Y., Wu, C., Li, Z., & Yang, J. Efficient FPGA implementation of modular multiplication based on Montgomery

algorithm. Microprocessors and Microsystems, 47, 209-215(2016).

